
Meet BFT

A hierarchy of
failure models

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

Weird Things Happen in
Distributed Systems

Weird Things Happen in
Distributed Systems

Terminating
Reliable Broadcast

Validity If the sender is correct and broadcasts a
 message , then all correct processes
 eventually deliver

Agreement If a correct process delivers a message ,
 then all correct processes eventually
 deliver
Integrity

 Every correct process delivers at most one

 message, and if it delivers ≠ SF, then

 some process must have broadcast
Termination Every correct process eventually delivers
 some message

m

m

m

m

m

m

Arbitrary failures with
message authentication

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Process can send
conflicting messages
to different receivers
Messages signed with
unforgeable signatures

Valid messages

A valid message has the following form:

in round 1:
 . (is signed by the sender)

in round > 1, if received by from :
 where

 = sender;
 are distinct from each other and from
message has not been tampered with
p1, . . . , pr

p1 pr = q

m

m

r p q

p

m : sid

m : p1 : p2 : . . . : pr

AFMA: The Idea

A correct process discards all non-valid messages
it receives
If a message is valid,

it “extracts” the value from the message
it relays the message, with its own signature
appended

At round :
if it extracted exactly one message, delivers it
otherwise, delivers SF

p

p

p

f+1

AFMA: The Protocol
Initialization for process :
 if = sender and wishes to broadcast then
 extracted := relay :=

Process in round
 for each relay
 send to all
 receive round messages from all processes
 relay :=
 for each valid message received
 if extracted then
 extracted := extracted
 relay := relay

At the end of round
 if such that extracted = then
 deliver
 else deliver SF

p

{m}

p

p p m

k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m ̸∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

s : p

Termination

In round , every
correct process delivers
either or SF and then
halts

m

f+1

Initialization for process :
 if = sender and wishes to broadcast then
 extracted := relay :=

Process in round
 for each relay
 send to all
 receive round messages from all processes
 relay :=
 for each valid message received
 if extracted then
 extracted := extracted
 relay := relay

At the end of round
 if such that extracted = then
 deliver
 else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m ̸∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p

Lemma. If a correct process
extracts , then every correct
process eventually extracts

Agreement
Proof
Let be the earliest round in which some correct process
extracts . Let that process be .
• if is the sender, then in round 1 sends a valid

 message to all.
All correct processes extract that message in round 1
• If will send a valid message

 in round and every correct process will

extract it in round
• If , has received in round a message

• Each has signed and relayed a message

 in round
• At most faulty processes - one is correct and has

 extracted before

CONTRADICTION

Agreement follows directly, since all correct
process extract the same set of messages

m

m

r

m p

pp

p

pj

j−1

m : p1 : p2 : . . . : pr : p

r+1≤f+1

r+1≤f+1

r =f+1

f

Initialization for process :
 if = sender and wishes to broadcast then
 extracted := relay :=

Process in round
 for each relay
 send to all
 receive round messages from all processes
 relay :=
 for each valid message received
 if extracted then
 extracted := extracted
 relay := relay

At the end of round
 if such that extracted = then
 deliver
 else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m ̸∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p
r≤f, p

m : p1 : p2 : . . . : pf+1

f+1

pj , 1 ≤j ≤f+1

< f+1

m p

Validity

From Agreement and the
observation that the
sender, if correct,
delivers its own message.

Initialization for process :
 if = sender and wishes to broadcast then
 extracted := relay :=

Process in round
 for each relay
 send to all
 receive round messages from all processes
 relay :=
 for each valid message received
 if extracted then
 extracted := extracted
 relay := relay

At the end of round
 if such that extracted = then
 deliver
 else deliver SF

p p m

{m}

p k, 1≤k≤f+1

s ∈

k

∅

s = m : p1 : p2 : . . . : pk

m ̸∈

∪ {m}

∪ {s}

f+1

∃m {m}

m

p

s : p

TRB for
arbitrary failures

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Srikanth, T.K., Toueg S.
Simulating Authenticated

Broadcasts to Derive Simple
Fault-Tolerant Algorithms
Distributed Computing 2 (2),

80-94

AF: The Idea

Identify the essential properties of message
authentication that made AFMA work

Implement these properties without using
message authentication

AF: The Approach

Introduce two primitives
broadcast (executed by in round)
accept (executed by in round)

Give axiomatic definitions of broadcast and accept
Derive an algorithm that solves TRB for AF using
these primitives
Show an implementation of these primitives that
does not use message authentication

q

p

j≥ i

i(p, m, i)

(p, m, i)

Properties of
broadcast and accept

Correctness If a correct process executes
broadcast in round , then all correct
processes will execute accept in round

Unforgeability If a correct process executes
accept in round , and is correct, then
did in fact execute broadcast in round

Relay If a correct process executes accept
in round , then all correct processes will
execute accept by round

p

p

i

i

p

i

(p,m, i) j≥ i

(p,m, i)

(p,m, i)

(p,m, i)

(p,m, i) j+1

(p,m, i)

j≥ i

q

q

AF: The Protocol - 1
sender in round 0:
0: extract

sender in round 1:
1: broadcast
Process in round
2:
if extracted in round and ≠ sender then
4: broadcast
5: if has executed at least accept in rounds 1 through

 (where (i) distinct from each other and from , (ii) one is , and
(iii)) and has not previously extracted then

6: extract
7: if then
8: if in the entire execution has extracted exactly one then
9: deliver
10: else deliver SF
11: halt

(p, m, k)

m

k=f+1

(s,m, 1)

m

s

s

k, 1≤k≤f+1

1≤ i≤k

1≤ji≤k

p

p

p

pm k−1

m

m

p

(qi,m, ji)

mp

k k

qi qip s

Termination

In round , every
correct process delivers
either or SF and then
halts

f+1

m

sender in round 0:
0: extract
sender in round 1:
1: broadcast

Process in round
2:
 if extracted in round and ≠ sender then
4: broadcast
5: if has executed at least accept in
 rounds 1 through
 (where (i) distinct from each other and from
 , (ii) one is , and (iii))
 and has not previously extracted then
6: extract
7: if then
8: if in the entire execution has extracted exactly
 one then
9: deliver
10: else deliver SF
11: halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi,m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Validity
A correct sender executes
broadcast in round 1

By CORRECTNESS, all correct processes
execute accept in round 1 and
extract

In order to extract a different message
 , a process must execute accept
in some round

By UNFORGEABILITY, and because s is
correct, no correct process can
extract .

All correct processes will deliver m

m
′ ̸= m

i ≤ f + 1

(s,m, 1)

m

(s,m
′
, 1)

(s,m, 1)

m
′

sender in round 0:
0: extract
sender in round 1:
1: broadcast

Process in round
2:
 if extracted in round and ≠ sender then
4: broadcast
5: if has executed at least accept in
 rounds 1 through
 (where (i) distinct from each other and from
 , (ii) one is , and (iii))
 and has not previously extracted then
6: extract
7: if then
8: if in the entire execution has extracted exactly
 one then
9: deliver
10: else deliver SF
11: halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi,m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

Agreement - 1

Lemma
If a correct process extracts , then

every correct process eventually extracts

sender in round 0:
0: extract
sender in round 1:
1: broadcast

Process in round
2:
 if extracted in round and ≠ sender then
4: broadcast
5: if has executed at least accept in
 rounds 1 through
 (where (i) distinct from each other and from
 , (ii) one is , and (iii))
 and has not previously extracted then
6: extract
7: if then
8: if in the entire execution has extracted exactly
 one then
9: deliver
10: else deliver SF
11: halt

(s,m, 1)

s

m

s

k, 1≤k≤f+1

k−1m p

(p,m, k)

p

p k (qi,m, ji) 1≤ i≤k

k

qi

p qi s 1≤ji≤k

p

m

m

m

m

p

k = f+1

p

m

m

