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Termination

If the sender is correct and broadcasts a
message m, then all correct processes
eventually deliver m

If a correct process delivers a message m,
then all correct processes eventually
deliver m

Every correct process delivers at most one
message, and if it delivers m # SF, then
some process must have broadcast m

Every correct process eventually delivers
some message

Valid messages

A valid message m has the following form:

in round 1:

m : S;d

(m is signed by the sender)

in round r > 1, if received by p from q :

m:py:ipa:...: D, Where

@ P1 = sender; Pr =¢q

@ message has not been fampered with
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AFMA: The Idea

@ A correct process p discards all non-valid messages
it receives

@ If a message is valid,
0 it "extracts” the value from the message

D it relays the message, with its own signature
appended

@ At round f+1:
O if it extracted exactly one message, p delivers it
0 otherwise, p delivers SF




AFMA: The Protocol

Initialization for process p :

if p= sender and p wishes to broadcast m then

extracted := relay := {m}

Process p in round k,1<k< f+1
for each s € relay
send s : p to all

receive round k messages from all processes

relay = ()

for each valid message received s =m:p; :ps:...:

if m ¢ extracted then

extracted := extracted U {m}

relay := relay U{s}

At the end of round f+1

if 3m such that extracted ={m} then

deliver m
else deliver SF

Agreement

Proof
Let r be the earliest round in which some correct process
extracts m. Let that process be p.

Initialization for process p:
if p=sender and p wishes to broadcast m then
extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s € relay
send s : pto all
receive round k messages from all processes
relay := ()

for each valid message received s =m :p; :py:...:

if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if Im such that extracted = {m}then
deliver m
else deliver SF

Lemma. If a correct process
extracts m, then every correct
process eventually extracts m

e if p is the sender, then in round 1 p sends a valid
message to all.
All correct processes extract that message in round 1
o If »<f,p will send a valid message
TVXDL D2 Dy i D
in round 7+1<f+1 and every correct process will
extract it in round r+1<f+1
o If r =f+1, p has received in round f41 a message
T DiaDY e~ Dfef1
® Each p;,1 <j <f+1 has signed and relayed a message
inround j—1< f+1
® At most f faulty processes - one P; is correct and has
extractedn before
CONTRADICTION

Agreement follows directly, since all correct
process extract the same set of messages

Termination

Initialization for process p:

if p=sender and p wishes to broadcast m then

extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s € relay
send s : pto all
receive round k messages from all processes
relay := ()

for each valid message received s =m :py :pa ... 1]

if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if Im such that extracted = {m}then
deliver m
else deliver SF

In round f+1, every
correct process delivers
either m or SF and then
halts

Validity

Initialization for process p:

if p=sender and p wishes to broadcast m then

extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s € relay
send s : pto all
receive round k messages from all processes
relay := ()

for each valid message received s =m :py :pa:... 1]

if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if Im such that extracted = {m}then
deliver m
else deliver SF

From Agreement and the
observation that the
sender, if correct,
delivers its own message.
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AF: The Approach

@ Introduce two primitives

broadcast(p, m, i) (executed by p in round i)
accept(p, m, i) (executed by ¢ in round j>1)

@ Give axiomatic definitions of broadcast and accept

@ Derive an algorithm that solves TRB for AF using
these primitives

@ Show an implementation of these primitives that
does not use message authentication

AF: The Idea

@ Identify the essential properties of message
authentication that made AFMA work

@ Implement these properties without using
message authentication

Properties of
broadcast and accept

@ Correctness If a correct process p executes
broadcast(p,m, ) in round i, then all correct
processes will execute accept(p,m,i)in round ¢

@ Unforgeability If a correct process ¢ executes
accept(p,m, i) in round j>i, and p is correct, then p
did in fact execute broadcast(p,m,i) in round i

@ Relay If a correct process ¢ executes accept(p,m,i)
in round j>i, then all correct processes will
execute accept(p,m,i) by round ;41




AF: The Protocol -1

sender s in round O:
0: extract m

sender s in round 1:

1: broadcast(s,m,1)

Process p in round k,1<k<f+1

2: if p extracted m in round k—1 and p# sender then

4: broadcast(p, m, k)

5: if p has executed at least k accept(qi,m,j;) 1<i<k in rounds 1 through k
(where (i) ¢; distinct from each other and from yp, (ii) one ¢; is s, and

(iii) 1<j;<k) and p has not previously extracted m then

6: extract m

7:if k=f+1 then

8: if in the entire execution p has extracted exactly one m then

9: deliver m

10: else deliver SF

11: halt

Validity

sender s in round 0:

0: extract m @ A correct sender executfes

sender s in round 1:

1 broadcast(s,m, 1) broadcast(s,m, 1) in round 1

Process p in round k, 1.<k<f+1 @ By CORRECTNESS, all correct processes
2: if p extracted m in round k—1and p # sender then .
ol breas execute accept(s,m,1) in round 1 and
S: if p has executed at least k accept(g;,m.ji) 1<i<k in extract m
rounds 1 through k
(where (i) ¢i distinct from each other and from
p, (ii) one g; is s, and (iii) 1<ji <k )
and p has not previously extracted m then
extract m
if k=f+1 then
if in the entire execution P has extracted exactly

one m then By UNFORGEABILITY, and because s is
delygrr correct, no correct process can

else deliver SF

halt extract m’ #m

In order to extract a different message

in some round ¢ < f +1

@ All correct processes will deliver m

m/, a process must execute accept(s,m’, 1)

Termination

sender s in round O:
0: extract m
sender s in round 1:
1:  broadcast(s,m,1)

Process p in round k, 1 <k<f+1
if p extracted m in round k—1 and p # sender then
broadcast(p, m, k)
if P has executed at least k accept(qi;m,ji) 1<i<k in
rounds 1 through k
(where (i) ¢ distinct from each other and from

In round f-+1, every
correct process delivers
», (i) one g is 5, and (iii) 1<j; <k ) either m or SF and then
and p has not previously extracted m then
extract m halts

if k=f+1 then
if in the entire execution P has extracted exactly
one m then
deliver m
else deliver SF
halt

Agreement - 1

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s,m,1)

Process p in round k, 1<k<f+1
2: if p extracted m in round k—1and p # sender then
4: broadcast(p, m, k)
5: if p has executed at least k accept(qi,m.ji) 1<i<k in
rounds 1 through k
(where (i) ¢i distinct from each other and from
p, (ii) one g; is s, and (iii) 1<ji <k )
and p has not previously extracted m then
extract m
if k=f+1 then
if in the entire execution P has extracted exactly
one m then
deliver m
else deliver SF
halt

Lemma
If a correct process extracts m, then
every correct process eventually extracts m




