A hierarchy of
failure models

Fail-stop @~ - - — - - Crash

Send Omission @ Receive Omission

I benign failures ot
General Omission

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Weird Things Happen in Weird Things Happen in
Distributed Systems Distributed Systems

Aq Biting the hand that feedswhat IT

Th e 4 LAT Home | My LATimes | Print Edition | All Sections

fLos Angeles Times | Travel
RECTEIEN Software | Music & Media | Com

PCs & Chips | Servers | Storage | |Y0U are her ' Articles > At LAX, computer glitch delays 20,00...

Travel S print [21E-mail [ZAdd to my

The Register » Hardware » Data Networking » Los Angeles

- . : Hawaii
Dublin airport was crippled b |~

Flight into terrer tedium Europe

By Joe Fay — Las Vegas

e : : Santa Barbara

News Tools _, How IT Management Can "Green" the Data Cen (ange County

&‘ F An air traffic control fault that brought Dublin a San Diego
alaiiian B F San Francisco

Reg Hardware
Cnannel Register
Whitepapers

More than 20,000 international passengers were stranded fq
hours at Los Angele rnational Airport on Saturday, waiti
airplanes and in packed customs halls while a malfunctionin|
Napa Wine Country > B computer system prevented U.S. officials from processing tht
| SEARCH: California’s Central 7 B travelers entry into the coun
c 3

—_—m oast
I washingtonpost.com > Technology Asia & India

.TechCrunch asout | More Headlines
. . Caribbean
' Systemwide GMail Outage Paite & ustalia

Michael Arrington More Destinations

Editor's note: Have you been affected by delays at LAX recq

Great Britain Share your story on our Tra

Latin America &

The U.S. Customs and Border Protection computer system
Related Stories down around 2 p.m., forcing some planes to sit on the tarmaq
Camoutor atteh sovcac a B d to refuel them to heir powe

Terminating

Reliable Broadcast

Validity

Agreement

Integrity

Termination

If the sender is correct and broadcasts a
message m, then all correct processes
eventually deliver m

If a correct process delivers a message m,
then all correct processes eventually
deliver m

Every correct process delivers at most one
message, and if it delivers m # SF, then
some process must have broadcast m

Every correct process eventually delivers
some message

Valid messages

A valid message m has the following form:

in round 1:

m : S;d

(m is signed by the sender)

in round r > 1, if received by p from q :

m:py:ipa:...: D, Where

@ P1 = sender; Pr =¢q

@ message has not been fampered with

Arbitrary failures with
message authentication

Fail-stop@)-= - - - - Q

Send Omission @ Receive Omission

General Omission
Process can send

conflicting messages

Arbitrary failures with
to different receivers

message authentication
Messages signed with

unforgedble Sl Arbitrary (Byzantine) failures

AFMA: The Idea

@ A correct process p discards all non-valid messages
it receives

@ If a message is valid,
0 it "extracts” the value from the message

D it relays the message, with its own signature
appended

@ At round f+1:
O if it extracted exactly one message, p delivers it
0 otherwise, p delivers SF

AFMA: The Protocol

Initialization for process p :

if p= sender and p wishes to broadcast m then

extracted := relay := {m}

Process p in round k,1<k< f+1
for each s € relay
send s : p to all

receive round k messages from all processes

relay = ()

for each valid message received s =m:p; :ps:...:

if m ¢ extracted then

extracted := extracted U {m}

relay := relay U{s}

At the end of round f+1

if 3m such that extracted ={m} then

deliver m
else deliver SF

Agreement

Proof
Let r be the earliest round in which some correct process
extracts m. Let that process be p.

Initialization for process p:
if p=sender and p wishes to broadcast m then
extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s € relay
send s : pto all
receive round k messages from all processes
relay := ()

for each valid message received s =m :p; :py:...:

if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if Im such that extracted = {m}then
deliver m
else deliver SF

Lemma. If a correct process
extracts m, then every correct
process eventually extracts m

e if p is the sender, then in round 1 p sends a valid
message to all.
All correct processes extract that message in round 1
o If »<f,p will send a valid message
TVXDL D2 Dy i D
in round 7+1<f+1 and every correct process will
extract it in round r+1<f+1
o If r =f+1, p has received in round f41 a message
T DiaDY e~ Dfef1
® Each p;,1 <j <f+1 has signed and relayed a message
inround j—1< f+1
® At most f faulty processes - one P; is correct and has
extractedn before
CONTRADICTION

Agreement follows directly, since all correct
process extract the same set of messages

Termination

Initialization for process p:

if p=sender and p wishes to broadcast m then

extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s € relay
send s : pto all
receive round k messages from all processes
relay := ()

for each valid message received s =m :py :pa ... 1]

if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if Im such that extracted = {m}then
deliver m
else deliver SF

In round f+1, every
correct process delivers
either m or SF and then
halts

Validity

Initialization for process p:

if p=sender and p wishes to broadcast m then

extracted := relay := {m}

Process pin round k, 1<k<f+1
for each s € relay
send s : pto all
receive round k messages from all processes
relay := ()

for each valid message received s =m :py :pa:... 1]

if m ¢ extracted then
extracted := extracted U {m}
relay := relay U {s}

At the end of round f+1
if Im such that extracted = {m}then
deliver m
else deliver SF

From Agreement and the
observation that the
sender, if correct,
delivers its own message.

TRB for
arbitrary failures

Fail-stop @~ - - — - - Q

Send Omission @ Receive Omission

General Omission
Srikanth, T.K., Toueg S.

Arbitrary failures with
message authentication

Distributed Computing 2 (2),
80-94 Arbitrary (Byzantine) failures

AF: The Approach

@ Introduce two primitives

broadcast(p, m, i) (executed by p in round i)
accept(p, m, i) (executed by ¢ in round j>1)

@ Give axiomatic definitions of broadcast and accept

@ Derive an algorithm that solves TRB for AF using
these primitives

@ Show an implementation of these primitives that
does not use message authentication

AF: The Idea

@ Identify the essential properties of message
authentication that made AFMA work

@ Implement these properties without using
message authentication

Properties of
broadcast and accept

@ Correctness If a correct process p executes
broadcast(p,m,) in round i, then all correct
processes will execute accept(p,m,i)in round ¢

@ Unforgeability If a correct process ¢ executes
accept(p,m, i) in round j>i, and p is correct, then p
did in fact execute broadcast(p,m,i) in round i

@ Relay If a correct process ¢ executes accept(p,m,i)
in round j>i, then all correct processes will
execute accept(p,m,i) by round ;41

AF: The Protocol -1

sender s in round O:
0: extract m

sender s in round 1:

1: broadcast(s,m,1)

Process p in round k,1<k<f+1

2: if p extracted m in round k—1 and p# sender then

4: broadcast(p, m, k)

5: if p has executed at least k accept(qi,m,j;) 1<i<k in rounds 1 through k
(where (i) ¢; distinct from each other and from yp, (ii) one ¢; is s, and

(iii) 1<j;<k) and p has not previously extracted m then

6: extract m

7:if k=f+1 then

8: if in the entire execution p has extracted exactly one m then

9: deliver m

10: else deliver SF

11: halt

Validity

sender s in round 0:

0: extract m @ A correct sender executfes

sender s in round 1:

1 broadcast(s,m, 1) broadcast(s,m, 1) in round 1

Process p in round k, 1.<k<f+1 @ By CORRECTNESS, all correct processes
2: if p extracted m in round k—1and p # sender then .
ol breas execute accept(s,m,1) in round 1 and
S: if p has executed at least k accept(g;,m.ji) 1<i<k in extract m
rounds 1 through k
(where (i) ¢i distinct from each other and from
p, (ii) one g; is s, and (iii) 1<ji <k)
and p has not previously extracted m then
extract m
if k=f+1 then
if in the entire execution P has extracted exactly

one m then By UNFORGEABILITY, and because s is
delygrr correct, no correct process can

else deliver SF

halt extract m’ #m

In order to extract a different message

in some round ¢ < f +1

@ All correct processes will deliver m

m/, a process must execute accept(s,m’, 1)

Termination

sender s in round O:
0: extract m
sender s in round 1:
1: broadcast(s,m,1)

Process p in round k, 1 <k<f+1
if p extracted m in round k—1 and p # sender then
broadcast(p, m, k)
if P has executed at least k accept(qi;m,ji) 1<i<k in
rounds 1 through k
(where (i) ¢ distinct from each other and from

In round f-+1, every
correct process delivers
», (i) one g is 5, and (iii) 1<j; <k) either m or SF and then
and p has not previously extracted m then
extract m halts

if k=f+1 then
if in the entire execution P has extracted exactly
one m then
deliver m
else deliver SF
halt

Agreement - 1

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast(s,m,1)

Process p in round k, 1<k<f+1
2: if p extracted m in round k—1and p # sender then
4: broadcast(p, m, k)
5: if p has executed at least k accept(qi,m.ji) 1<i<k in
rounds 1 through k
(where (i) ¢i distinct from each other and from
p, (ii) one g; is s, and (iii) 1<ji <k)
and p has not previously extracted m then
extract m
if k=f+1 then
if in the entire execution P has extracted exactly
one m then
deliver m
else deliver SF
halt

Lemma
If a correct process extracts m, then
every correct process eventually extracts m

