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1. THE PROBLEM

1.1 The Island of Paxos

Early in this millennium, the Aegean island of Paxos was a thriving
mercantile center.1 Wealth led to political sophistication, and the Paxons
replaced their ancient theocracy with a parliamentary form of government.
But trade came before civic duty, and no one in Paxos was willing to devote
his life to Parliament. The Paxon Parliament had to function even though
legislators continually wandered in and out of the parliamentary Chamber.

The problem of governing with a part-time parliament bears a remark-
able correspondence to the problem faced by today’s fault-tolerant distrib-
uted systems, where legislators correspond to processes, and leaving the
Chamber corresponds to failing. The Paxons’ solution may therefore be of
some interest to computer scientists. I present here a short history of the
Paxos Parliament’s protocol, followed by an even shorter discussion of its
relevance for distributed systems.
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Paxon civilization was destroyed by a foreign invasion, and archeologists
have just recently begun to unearth its history. Our knowledge of the
Paxon Parliament is therefore fragmentary. Although the basic protocols
are known, we are ignorant of many details. Where such details are of
interest, I will take the liberty of speculating on what the Paxons might
have done.

1.2 Requirements

Parliament’s primary task was to determine the law of the land, which was
defined by the sequence of decrees it passed. A modern parliament will
employ a secretary to record its actions, but no one in Paxos was willing to
remain in the Chamber throughout the session to act as secretary. Instead,
each Paxon legislator maintained a ledger in which he recorded the
numbered sequence of decrees that were passed. For example, L ǐnx­ ’s
legislator had the entry

155: The olive tax is 3 drachmas per ton

if she believed that the 155th decree passed by Parliament set the tax on
olives to 3 drachmas per ton. Ledgers were written with indelible ink, and
their entries could not be changed.

The first requirement of the parliamentary protocol was the consistency
of ledgers, meaning that no two ledgers could contain contradictory infor-
mation. If legislator Fis­«r had the entry

132: Lamps must use only olive oil

.
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in his ledger, then no other legislator’s ledger could have a different entry
for decree 132. However, another legislator might have no entry in his
ledger for decree 132 if he had not yet learned that the decree had been
passed.

Consistency of ledgers was not sufficient, since it could be trivially
fulfilled by leaving all ledgers blank. Some requirement was needed to
guarantee that decrees were eventually passed and recorded in ledgers. In
modern parliaments, the passing of decrees is hindered by disagreement
among legislators. This was not the case in Paxos, where an atmosphere of
mutual trust prevailed. Paxon legislators were willing to pass any decree
that was proposed. However, their peripatetic propensity posed a problem.
Consistency would be lost if one group of legislators passed the decree

37: Painting on temple walls is forbidden

and then left for a banquet, whereupon a different group of legislators
entered the Chamber and, knowing nothing about what had just happened,
passed the conflicting decree

37: Freedom of artistic expression is guaranteed

Progress could not be guaranteed unless enough legislators stayed in the
Chamber for a long enough time. Because Paxon legislators were unwilling
to curtail their outside activities, it was impossible to ensure that any
decree would ever be passed. However, legislators were willing to guaran-
tee that, while in the Chamber, they and their aides would act promptly on
all parliamentary matters. This guarantee allowed the Paxons to devise a
parliamentary protocol satisfying the following progress condition.

If a majority of the legislators2 were in the Chamber, and no one entered or left
the Chamber for a sufficiently long period of time, then any decree proposed by
a legislator in the Chamber would be passed, and every decree that had been
passed would appear in the ledger of every legislator in the Chamber.

1.3 Assumptions

The requirements of the parliamentary protocol could be achieved only by
providing the legislators with the necessary resources. Each legislator
received a sturdy ledger in which to record the decrees, a pen, and a supply
of indelible ink. Legislators might forget what they had been doing if they
left the Chamber,3 so they would write notes in the back of the ledgers to
remind themselves of important parliamentary tasks. An entry in the list of
decrees was never changed, but notes could be crossed out. Achieving the

2In translating the progress condition, I have rendered the Paxon word mad§­vritǐs«t as
majority of the legislators. Alternative translations of this word have been proposed and are
discussed in Section 2.2.
3In one tragic incident, legislator Tvy«g developed irreversible amnesia after being hit on the
head by a falling statue just outside the Chamber.
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progress condition required that legislators be able to measure the passage
of time, so they were given simple hourglass timers.

Legislators carried their ledgers at all times and could always read the
list of decrees and any note that had not been crossed out. The ledgers were
made of the finest parchment and were used for only the most important
notes. A legislator would write other notes on a slip of paper, which he
might (or might not) lose if he left the Chamber.

The acoustics of the Chamber were poor, making oratory impossible.
Legislators could communicate only by messenger and were provided with
funds to hire as many messengers as they needed. A messenger could be
counted on not to garble messages, but he might forget that he had already
delivered a message, and deliver it again. Like the legislators they served,
messengers devoted only part of their time to parliamentary duties. A
messenger might leave the Chamber to conduct some business—perhaps
taking a six-month voyage—before delivering a message. He might even
leave forever, in which case the message would never be delivered.

Although legislators and messengers could enter and leave at any time,
when inside the Chamber they devoted themselves to the business of
Parliament. While they remained in the Chamber, messengers delivered
messages in a timely fashion, and legislators reacted promptly to any
messages they received.

The official records of Paxos claim that legislators and messengers were
scrupulously honest and strictly obeyed parliamentary protocol. Most schol-
ars discount this as propaganda, intended to portray Paxos as morally
superior to its eastern neighbors. Dishonesty, although rare, undoubtedly
did occur. However, because it was never mentioned in official documents,
we have little knowledge of how Parliament coped with dishonest legisla-
tors or messengers. What evidence has been uncovered is discussed in
Section 3.3.5.

2. THE SINGLE-DECREE SYNOD

The Paxon Parliament evolved from an earlier ceremonial Synod of priests
that was convened every 19 years to choose a single, symbolic decree. For
centuries, the Synod had chosen the decree by a conventional procedure
that required all priests to be present. But as commerce flourished, priests
began wandering in and out of the Chamber while the Synod was in
progress. Finally, the old protocol failed, and a Synod ended with no decree
chosen. To prevent a repetition of this theological disaster, Paxon religious
leaders asked mathematicians to formulate a protocol for choosing the
Synod’s decree. The protocol’s requirements and assumptions were essen-
tially the same as those of the later Parliament except that instead of
containing a sequence of decrees, a ledger would have at most one decree.
The resulting Synod protocol is described here; the parliamentary protocol
is described in Section 3.

Mathematicians derived the Synod protocol in a series of steps. First,
they proved results showing that a protocol satisfying certain constraints
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would guarantee consistency and allow progress. A preliminary protocol
was then derived directly from these constraints. A restricted version of the
preliminary protocol provided the basic protocol that guaranteed consis-
tency, but not progress. The complete Synod protocol, satisfying the consis-
tency and progress requirements, was obtained by restricting the basic
protocol.4

The mathematical results are described in Section 2.1, and the protocols
are described informally in Sections 2.2–2.4. A more formal description and
correctness proof of the basic protocol appears in the appendix.

2.1 Mathematical Results

The Synod’s decree was chosen through a series of numbered ballots, where
a ballot was a referendum on a single decree. In each ballot, a priest had
the choice only of voting for the decree or not voting.5 Associated with a
ballot was a set of priests called a quorum. A ballot succeeded if and only if
every priest in the quorum voted for the decree. Formally, a ballot B
consisted of the following four components. (Unless otherwise qualified, set
is taken to mean finite set.6)

Bdec A decree (the one being voted on).

Bqrm A nonempty set of priests (the ballot’s quorum).

Bvot A set of priests (the ones who cast votes for the decree).7

Bbal A ballot number.

A ballot B was said to be successful iff (if and only if) Bqrm # Bvot, so a
successful ballot was one in which every quorum member voted.

Ballot numbers were chosen from an unbounded ordered set of numbers.
If B9bal . Bbal, then ballot B9 was said to be later than ballot B. However,
this indicated nothing about the order in which ballots were conducted; a
later ballot could actually have taken place before an earlier one.

Paxon mathematicians defined three conditions on a set @ of ballots, and
then showed that consistency was guaranteed and progress was possible if
the set of ballots that had taken place satisfied those conditions. The first

4The complete history of the Synod protocol’s discovery is not known. Like modern computer
scientists, Paxon mathematicians would describe elegant, logical derivations that bore no
resemblance to how the algorithms were actually derived. However, it is known that the
mathematical results (Theorems 1 and 2 of Section 2.1) really did precede the protocol. They
were discovered when mathematicians, in response to the request for a protocol, were
attempting to prove that a satisfactory protocol was impossible.
5Like some modern nations, Paxos had not fully grasped the nature of Athenian democracy.
6Although Paxon mathematicians were remarkably advanced for their time, they obviously
had no knowledge of set theory. I have taken the liberty of translating the Paxons’ more
primitive notation into the language of modern set theory.
7Only priests in the quorum actually voted, but Paxon mathematicians found it easier to
convince people that the protocol was correct if, in their proof, they allowed any priest to vote
in any ballot.
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two conditions were simple; they can be stated informally as follows.

B1~@! Each ballot in @ has a unique ballot number.

B2~@! The quorums of any two ballots in @ have at least one priest in
common.

The third condition was more complicated. One Paxon manuscript con-
tained the following, rather confusing, statement of it.

B3~@! For every ballot B in @, if any priest in B ’s quorum voted in an
earlier ballot in @, then the decree of B equals the decree of the
latest of those earlier ballots.

Interpretation of this cryptic text was aided by the manuscript pictured in
Figure 1, which illustrates condition B3~@! with a set @ of five ballots for
a Synod consisting of the five priests A, B, G, D, and E. This set @ contains
five ballots, where for each ballot the set of voters is the subset of the
priests in the quorum whose names are enclosed in boxes. For example,
ballot number 14 has decree a, a quorum containing three priests, and a
set of two voters. Condition B3~@! has the form “for every B in @ : . . . : ”,
where “ . . . ” is a condition on ballot B. The conditions for the five ballots
B of Figure 1 are as follows:

2 Ballot number 2 is the earliest ballot, so the condition on that ballot is
trivially true.

5 None of ballot 5’s four quorum members voted in an earlier ballot, so
the condition on ballot 5 is also trivially true.

Fig. 1. Paxon manuscript showing a set @, consisting of five ballots, that satisfies conditions
B1~@!–B3~@!. (Explanatory column headings have been added.)
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14 The only member of ballot 14’s quorum to vote in an earlier ballot is D,
who voted in ballot number 2, so the condition requires that ballot 14’s
decree must equal ballot 2’s decree.

27 (This is a successful ballot.) The members of ballot 27’s quorum are A,
G, and D. Priest A did not vote in an earlier ballot, the only earlier
ballot G voted in was ballot 5, and the only earlier ballot D voted in
was ballot 2. The latest of these two earlier ballots is ballot 5, so the
condition requires that ballot 27’s decree must equal ballot 5’s decree.

29 The members of ballot 29’s quorum are B, G, and D. The only earlier
ballot that B voted in was number 14, priest G voted in ballots 5 and
27, and D voted in ballots 2 and 27. The latest of these four earlier
ballots is number 27, so the condition requires that ballot 29’s decree
must equal ballot 27’s decree.

To state B1~@!–B3~@! formally requires some more notation. A vote v
was defined to be a quantity consisting of three components: a priest ypst, a
ballot number ybal, and a decree ydec. It represents a vote cast by priest ypst

for decree ydec in ballot number ybal. The Paxons also defined null votes to
be votes v with vbal 5 2` and vdec 5 BLANK, where 2` , b , ` for
any ballot number b, and BLANK is not a decree. For any priest p, they
defined nullp to be the unique null vote v with vpst 5 p.

Paxon mathematicians defined a total ordering on the set of all votes, but
part of the manuscript containing the definition has been lost. The remain-
ing fragment indicates that, for any votes v and v9, if vbal , v9bal then v ,
v9. It is not known how the relative order of v and v9 was defined if vbal

, v9bal.
For any set @ of ballots, the set Votes~@! of votes in @ was defined to

consist of all votes v such that vpst { Bvot, vbal 5 Bbal, and vdec 5 Bdec for
some B { @. If p is a priest and b is either a ballot number or 6`, then
MaxVote~b, p, @! was defined to be the largest vote v in Votes~@! cast by
p with vbal , b, or to be nullp if there was no such vote. Since nullp is
smaller than any real vote cast by p, this means that MaxVote~b, p, @! is
the largest vote in the set

$v { Votes~@! : ~vpst 5 p! ∧ ~vbal , b!% ø $nullp%.

For any nonempty set Q of priests, MaxVote~b, Q, @! was defined to
equal the maximum of all votes MaxVote~b, p, @! with p in Q.

Conditions B1~@!–B3~@! are stated formally as follows:8

B1~@! – @B, B9 { @ : ~B Þ B9! f ~Bbal Þ B9bal!

8I use the Paxon mathematical symbol –, which meant equals by definition.
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B2~@! – @B, B9 { @ : Bqrm ù B9qrm Þ À

B3~@! – @B { @ : ~MaxVote~Bbal, Bqrm, @!bal Þ 2`! f

~Bdec 5 MaxVote~Bbal, Bqrm, @!dec!

Although the definition of MaxVote depends upon the ordering of votes,
B1~@! implies that MaxVote~b, Q, @!dec is independent of how votes with
equal ballot numbers were ordered.

To show that these conditions imply consistency, the Paxons first showed
that B1~@!–B3~@! imply that, if a ballot B in @ is successful, then any
later ballot in @ is for the same decree as B.

LEMMA. If B1~@!, B2~@!, and B3~@! hold, then

~~Bqrm # Bvot! ∧ ~B9bal . Bbal!! f ~B9dec 5 Bdec!

for any B, B9 in @.

PROOF OF LEMMA. For any ballot B in @, let C~B, @! be the set of
ballots in @ later than B for a decree different from B ’s:

C~B, b! – $B9 { @ : ~B9bal . Bbal! ∧ ~B9dec Þ Bdec!%

To prove the lemma, it suffices to show that if Bqrm # Bvot then C~B, @! is
empty. The Paxons gave a proof by contradiction. They assumed the
existence of a B with Bqrm # Bvot and C~B, @! Þ À, and obtained a
contradiction as follows.9

(1) Choose C { C~B, @! such that Cbal 5 min$B9bal : B9 { C~B, @!%.
PROOF: C exists because C~B, @! is nonempty and finite.

(2) Cbal . Bbal

PROOF: By (1) and the definition of C~B, @!.

(3) Bvot ù Cqrm Þ À
PROOF: By B2~@! and the hypothesis that Bqrm # Bvot.

(4) MaxVote~Cbal, Cqrm, @!bal $ Bbal

PROOF: By (2), (3), and the definition of MaxVote~Cbal, Cqrm, @!.

(5) MaxVote~Cbal, Cqrm, @! { Votes~@!

PROOF: By (4) (which implies that MaxVote~Cbal, Cqrm, @! is not a
null vote) and the definition of MaxVote~Cbal, Cqrm, @!.

9Paxon mathematicians always provided careful, structured proofs of important theorems.
They were not as sophisticated as modern mathematicians, who can omit many details and
write paragraph-style proofs without ever making a mistake.
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(6) MaxVote~Cbal, Cqrm, @!dec 5 Cdec

PROOF: By (5) and B3~@!.

(7) MaxVote~Cbal, Cqrm, @!dec Þ Bdec

PROOF: By (6), (1), and the definition of C~B, @!.

(8) MaxVote~Cbal, Cqrm, @!bal . Bbal

PROOF: By (4), since (7) and B1~@! imply that MaxVote~Cbal, Cqrm,
@!bal Þ Bbal.

(9) MaxVote~Cbal, Cqrm, @! { Votes~C~B, @!!

PROOF: By (7), (8), and the definition of C~B, @!.

(10) MaxVote~Cbal, Cqrm, @!bal , Cbal

PROOF: By definition of MaxVote~Cbal, Cqrm, @!.

(11) Contradiction
PROOF: By (9), (10), and (1). e

With this lemma, it was easy to show that, if B1–B3 hold, then any two
successful ballots are for the same decree.

THEOREM 1. If B1~@!, B2~@!, and B3~@! hold, then

~~Bqrm # Bvot! ∧ ~B9qrm # B9vot!! f ~B9dec 5 Bdec!

for any B, B9 in @.

PROOF OF THEOREM. If B9bal 5 Bbal then B1~@! implies B9 5 B. If
B9bal Þ Bbal, then the theorem follows immediately from the lemma. e

The Paxons then proved a theorem asserting that if there are enough
priests in the Chamber, then it is possible to conduct a successful ballot
while preserving B1–B3. Although this does not guarantee progress, it at
least shows that a balloting protocol based on B1–B3 will not deadlock.

THEOREM 2. Let b be a ballot number, and let Q be a set of priests such
that b . Bbal and Q ù Bqrm Þ À for all B { @. If B1~@!, B2~@!, and
B3~@! hold, then there is a ballot B9 with B9bal 5 b and B9qrm 5 B9vot 5 Q
such that B1~@ ø $B9%!, B2~@ ø $B9%!, and B3~@ ø $B9%! hold.

PROOF OF THEOREM. Condition B1~@ ø $B9%! follows from B1~@!, the
choice of B9bal, and the assumption about b. Condition B2~@ ø $B9%!
follows from B2~@!, the choice of B9qrm, and the assumption about Q. If
MaxVote~b, Q, B!bal 5 2` then let B9dec be any decree. Else let it equal
MaxVote~b, Q, B!dec. Condition B3~@ ø $B9%! then follows from
B3~@!. e
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2.2 The Preliminary Protocol

The Paxons derived the preliminary protocol from the requirement that
conditions B1~@!–B3~@! remain true, where @ was the set of all ballots
that had been or were being conducted. The definition of the protocol
specified how the set @ changed, but the set was never explicitly calcu-
lated. The Paxons referred to @ as a quantity observed only by the gods,
since it might never be known to any mortal.

Each ballot was initiated by a priest, who chose its number, decree, and
quorum. Each priest in the quorum then decided whether or not to vote in
the ballot. The rules determining how the initiator chose a ballot’s number,
decree, and quorum and how a priest decided whether or not to vote in a
ballot were derived directly from the need to maintain B1~@!–B3~@!.

To maintain B1, each ballot had to receive a unique number. By
remembering (with notes in his ledger) what ballots he had previously
initiated, a priest could easily avoid initiating two different ballots with the
same number. To keep different priests from initiating ballots with the
same number, the set of possible ballot numbers was partitioned among the
priests. While it is not known how this was done, an obvious method would
have been to let a ballot number be a pair consisting of an integer and a
priest, using a lexicographical ordering, where

~13, Graǐ! , ~13, Linseǐ! , ~15, Graǐ!

since G came before L in the Paxon alphabet. In any case, it is known that
every priest had an unbounded set of ballot numbers reserved for his use.

To maintain B2, a ballot’s quorum was chosen to contain a
madz­vritǐset of priests. Initially, madz­vritǐset just meant a simple
majority. Later, it was observed that fat priests were less mobile and spent
more time in the Chamber than thin ones, so a madz­vritǐset was taken
to mean any set of priests whose total weight was more than half the total
weight of all priests, rather than a simple majority of the priests. When a
group of thin priests complained that this was unfair, actual weights were
replaced with symbolic weights based on a priest’s attendance record. The
primary requirement for a madz­vritǐset was that any two sets contain-
ing a madz­vritǐset of priests had at least one priest in common. To
maintain B2, the priest initiating a ballot B chose Bqrm to be a majority set.

Condition B3 requires that if MaxVote~b, Q, @!dec is not equal to
BLANK, then a ballot with number b and quorum Q must have decree
MaxVote~b, Q, @!dec. If MaxVote~b, Q, @!dec equals BLANK, then the
ballot can have any decree. To maintain B3~@!, before initiating a new
ballot with ballot number b and quorum Q, a priest p had to find
MaxVote~b, Q, @!dec. To do this, p had to find MaxVote~b, Q, @! for each
priest q in Q.

Recall that MaxVote~b, Q, @! is the vote with the largest ballot number
less than b among all the votes cast by q, or nullq if q did not vote in any
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ballot numbered less than b. Priest p obtains MaxVote~b, q, @! from q by
an exchange of messages. Therefore, the first two steps in the protocol for
conducting a single ballot initiated by p are:10

(1) Priest p chooses a new ballot number b and sends a NextBallot~b!
message to some set of priests.

(2) A priest q responds to the receipt of a NextBallot~b! message by
sending a LastVote~b, v! message to p, where v is the vote with the
largest ballot number less than b that q has cast, or his null vote nullq

if q did not vote in any ballot numbered less than b.

Priest q must use notes in the back of his ledger to remember what votes he
had previously cast.

When q sends the LastVote~b, v! message, v equals MaxVote~b, q, @!.
But the set @ of ballots changes as new ballots are initiated and votes are
cast. Since priest p is going to use v as the value of MaxVote~b, q, @! when
choosing a decree, to keep B3~@! true it is necessary that MaxVote~b, q,
@! not change after q has sent the LastVote~b, v! message. To keep
MaxVote~b, q, @! from changing, q must cast no new votes with ballot
numbers between vbal and b. By sending the LastVote~b, v! message, q is
promising not to cast any such vote. (To keep this promise, q must record
the necessary information in his ledger.)

The next two steps in the balloting protocol (begun in step (1) by priest p)
are:

(3) After receiving a LastVote~b, v! message from every priest in some
majority set Q, priest p initiates a new ballot with number b, quorum
Q, and decree d, where d is chosen to satisfy B3. He then records the
ballot in the back of his ledger and sends a BeginBallot~b, d! message
to every priest in Q.

(4) Upon receipt of the BeginBallot~b, d! message, priest q decides
whether or not to cast his vote in ballot number b. (He may not cast the
vote if doing so would violate a promise implied by a LastVote~b9, v9!
message he has sent for some other ballot.) If q decides to vote for ballot
number b, then he sends a Voted~b, q! message to p and records the
vote in the back of his ledger.

The execution of step (3) is considered to add a ballot B to @, where Bbal

5 b, Bqrm 5 Q, Bvot 5 À (no one has yet voted in this ballot), and Bdec 5
d. In step (4), if priest q decides to vote in the ballot, then executing that

10Priests p and q could be the same. For simplicity, the protocol is described with p sending
messages to himself in this case. In reality, a priest could talk to himself without the use of
messengers.
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step is considered to change the set @ of ballots by adding q to the set Bvot

of voters in the ballot B { @.
A priest has the option not to vote in step (4), even if casting a vote would

not violate any previous promise. In fact, all the steps in this protocol are
optional. For example, a priest q can ignore a NextBallot~b! message
instead of executing step (2). Failure to take an action can prevent
progress, but it cannot cause any inconsistency because it cannot make
B1~@!–B3~@! false. Since the only effect not receiving a message can have
is to prevent an action from happening, message loss also cannot cause
inconsistency. Thus, the protocol guarantees consistency even if priests
leave the chamber or messages are lost.

Receiving multiple copies of a message can cause an action to be
repeated. Except in step (3), performing the action a second time has no
effect. For example, sending several Voted~b, q! messages in step (4) has
the same effect as sending just one. The repetition of step (3) is prevented
by using the entry made in the back of the ledger when it is executed. Thus,
the consistency condition is maintained even if a messenger delivers the
same message several times.

Steps (1)–(4) describe the complete protocol for initiating a ballot and
voting on it. All that remains is to determine the results of the balloting
and announce when a decree has been selected. Recall that a ballot is
successful iff every priest in the quorum has voted. The decree of a
successful ballot is the one chosen by the Synod. The rest of the protocol is:

(5) If p has received a Voted~b, q! message from every priest q in Q (the
quorum for ballot number b), then he writes d (the decree of that ballot)
in his ledger and sends a Success~d! message to every priest.

(6) Upon receiving a Success~d! message, a priest enters decree d in his
ledger.

Steps (1)–(6) describe how an individual ballot is conducted. The prelimi-
nary protocol allows any priest to initiate a new ballot at any time. Each
step maintains B1~@!–B3~@!, so the entire protocol also maintains these
conditions. Since a priest enters a decree in his ledger only if it is the
decree of a successful ballot, Theorem 1 implies that the priests’ ledgers are
consistent. The protocol does not address the question of progress.

In step (3), if the decree d is determined by condition B3, then it is
possible that this decree is already written in the ledger of some priest.
That priest need not be in the quorum Q; he could have left the Chamber.
Thus, consistency would not be guaranteed if step (3) allowed any greater
freedom in choosing d.

2.3 The Basic Protocol

In the preliminary protocol, a priest must record (1) the number of every
ballot he has initiated, (2) every vote he has cast, and (3) every LastVote
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message he has sent. Keeping track of all this information would have been
difficult for the busy priests. The Paxons therefore restricted the prelimi-
nary protocol to obtain the more practical basic protocol in which each
priest p had to maintain only the following information in the back of his
ledger:

lastTried@p#The number of the last ballot that p tried to initiate, or 2` if
there was none.

prevVote@p# The vote cast by p in the highest-numbered ballot in which he
voted, or 2` if he never voted.

nextBal@p# The largest value of b for which p has sent a LastVote~b, v!
message, or 2` if he has never sent such a message.

Steps (1)–(6) of the preliminary protocol describe how a single ballot is
conducted by its initiator, priest p. The preliminary protocol allows p to
conduct any number of ballots concurrently. In the basic protocol, he
conducts only one ballot at a time—ballot number lastTried@p#. After p
initiates this ballot, he ignores messages that pertain to any other ballot
that he had previously initiated. Priest p keeps all information about the
progress of ballot number lastTried@p# on a slip of paper. If he loses that
slip of paper, then he stops conducting the ballot.

In the preliminary protocol, each LastVote~b, v! message sent by a priest
q represents a promise not to vote in any ballot numbered between vbal and
b. In the basic protocol, it represents the stronger promise not to cast a new
vote in any ballot numbered less than b. This stronger promise might
prevent him from casting a vote in step (4) of the basic protocol that he
would have been allowed to cast in the preliminary protocol. However,
since the preliminary protocol always gives q the option of not casting his
vote, the basic protocol does not require him to do anything not allowed by
the preliminary protocol.

Steps (1)–(6) of the preliminary protocol become the following six steps
for conducting a ballot in the basic protocol. (All information used by p to
conduct the ballot, other than lastTried@p#, prevVote@p#, and nextBal@p#,
is kept on a slip of paper.)

(1) Priest p chooses a new ballot number b greater than lastTried@p#, sets
lastTried@p# to b, and sends a NextBallot~b! message to some set of
priests.

(2) Upon receipt of a NextBallot~b! message from p with b . nextBal@q#,
priest q sets nextBal@q# to b and sends a LastVote~b, v! message to p,
where v equals prevVote@q#. (A NextBallot~b! message is ignored if b
# nextBal@q#.)
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(3) After receiving a LastVote~b, v! message from every priest in some
majority set Q, where b 5 lastTried@p#, priest p initiates a new ballot
with number b, quorum Q, and decree d, where d is chosen to satisfy
B3. He then sends a BeginBallot~b, d! message to every priest in Q.

(4) Upon receipt of a BeginBallot~b, d! message with b 5 nextBal@q#,
priest q casts his vote in ballot number b, sets prevVote@q# to this vote,
and sends a Voted~b, q! message to p. (A BeginBallot~b, d! message is
ignored if b Þ nextBal@q#.)

(5) If p has received a Voted~b, q! message from every priest q in Q (the
quorum for ballot number b), where b 5 lastTried@p#, then he writes d
(the decree of that ballot) in his ledger and sends a Success~d! message
to every priest.

(6) Upon receiving a Success~d! message, a priest enters decree d in his
ledger.

The basic protocol is a restricted version of the preliminary protocol,
meaning that every action allowed by the basic protocol is also allowed by
the preliminary protocol. Since the preliminary protocol satisfies the con-
sistency condition, the basic protocol also satisfies that condition. Like the
preliminary protocol, the basic protocol does not require that any action
ever be taken, so it does not address the question of progress.

The derivation of the basic protocol from B1–B3 made it obvious that the
consistency condition was satisfied. However, some similarly “obvious”
ancient wisdom had turned out to be false, and skeptical citizens demanded
a more rigorous proof. Their Paxon mathematicians’ proof that the protocol
satisfies the consistency condition is reproduced in the appendix.

2.4 The Complete Synod Protocol

The basic protocol maintains consistency, but it cannot ensure any progress
because it states only what a priest may do; it does not require him to do
anything. The complete protocol consists of the same six steps for conduct-
ing a ballot as the basic protocol. To help achieve progress, it includes the
obvious additional requirement that priests perform steps (2)–(6) of the
protocol as soon as possible. However, to meet the progress condition, it is
necessary that some priest be required to perform step (1), which initiates a
ballot. The key to the complete protocol lay in determining when a priest
should initiate a ballot.

Never initiating a ballot will certainly prevent progress. However, initi-
ating too many ballots can also prevent progress. If b is larger than any
other ballot number, then the receipt of a NextBallot~b! message by priest
q in step (2) may elicit a promise that prevents him from voting in step (4)
for any previously initiated ballot. Thus, the initiation of a new ballot can
prevent any previously initiated ballot from succeeding. If new ballots are
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continually initiated with increasing ballot numbers before the previous
ballots have a chance to succeed, then no progress might be made.

Achieving the progress condition requires that new ballots be initiated
until one succeeds, but that they not be initiated too frequently. To develop
the complete protocol, the Paxons first had to know how long it took
messengers to deliver messages and priests to respond. They determined
that a messenger who did not leave the Chamber would always deliver a
message within 4 minutes, and a priest who remained in the Chamber
would always perform an action within 7 minutes of the event that caused
the action.11 Thus, if p and q were in the Chamber when some event caused
p to send a message to q, and q responded with a reply to p, then p would
receive that reply within 22 minutes if neither messenger left the Chamber.
(Priest p would send the message within 7 minutes of the event; q would
receive the message within 4 more minutes; he would respond within 7
minutes; and the reply would reach p within 4 more minutes.)

Suppose that only a single priest p was initiating ballots, and that he did
so by sending a message to every priest in step (1) of the protocol. If p
initiated a ballot when a majority set of priests was in the chamber, then
he could expect to execute step (3) within 22 minutes of initiating the
ballot, and to execute step (5) within another 22 minutes. If he was unable
to execute the steps by those times, then either some priest or messenger
left the Chamber after p initiated the ballot, or a larger-numbered ballot
had previously been initiated by another priest (before p became the only
priest to initiate ballots). To handle the latter possibility, p had to learn
about any ballot numbers greater than lastTried@p# used by other priests.
This could be done by extending the protocol to require that if a priest q
received a NextBallot~b! or a BeginBallot~b, d! message from p with b ,
nextBal@q#, then he would send p a message containing nextBal@q#. Priest
p would then initiate a new ballot with a larger ballot number.

Still assuming that p was the only priest initiating ballots, suppose that
he were required to initiate a new ballot iff (1) he had not executed step (3)
or step (5) within the previous 22 minutes or (2) he learned that another
priest had initiated a higher-numbered ballot. If the Chamber doors were
locked with p and a majority set of priests inside, then a decree would be
passed and recorded in the ledgers of all priests in the Chamber within 99
minutes. (It could take 22 minutes for p to start the next ballot, 22 more
minutes to learn that another priest had initiated a larger-numbered
ballot, then 55 minutes to complete steps (1)–(6) for a successful ballot.)
Thus, the progress condition would be met if only a single priest, who did
not leave the chamber, were initiating ballots.

11I am assuming a value of 30 seconds for the dz­ifǐ, the Paxon unit of time. This value is
within the range determined from studies of hourglass shards. The reaction time of priests
was so long because they had to respond to every message within 7 minutes (14 dz­ifǐ), even
if a number of messages arrived simultaneously.
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The complete protocol therefore included a procedure for choosing a
single priest, called the president, to initiate ballots. In most forms of
government, choosing a president can be a difficult problem. However, the
difficulty arises only because most governments require that there be
exactly one president at any time. In the United States, for example, chaos
would result after the 1988 election if some people thought Bush had been
elected president while others thought that Dukakis had, since one of them
might decide to sign a bill into law while the other decided to veto it.
However, in the Paxon Synod, having multiple presidents could only
impede progress; it could not cause inconsistency. For the complete protocol
to satisfy the progress condition, the method for choosing the president
needed only to satisfy the following presidential selection requirement:

If no one entered or left the Chamber, then after T minutes exactly one priest
in the Chamber would consider himself to be the president.

If the presidential selection requirement were met, then the complete
protocol would have the property that if a majority set of priests were in
the chamber and no one entered or left the Chamber for T 1 99 minutes,
then at the end of that period every priest in the Chamber would have a
decree written in his ledger.

The Paxons chose as president the priest whose name was last in
alphabetical order among the names of all priests in the Chamber,
though we do not know exactly how this was done. The presidential
selection requirement would have been satisfied if a priest in the Chamber
sent a message containing his name to every other priest at least once
every T 2 11 minutes, and a priest considered himself to be president if
and only if he received no message from a “higher-named” priest for T
minutes.

The complete Synod protocol was obtained from the basic protocol by
requiring priests to perform steps (2)–(6) promptly, adding a method for
choosing a president who initiated ballots, and requiring the president to
initiate ballots at the appropriate times. Many details of the protocol are
not known. I have described simple methods for selecting a president and
for deciding when the president should initiate a new ballot, but they are
undoubtedly not the ones used in Paxos. The rules I have given require the
president to keep initiating ballots even after a decree has been chosen,
thereby ensuring that priests who have just entered the Chamber learn
about the chosen decree. There were obviously better ways to make sure
priests learned about the decree after it had been chosen. Also, in the
course of selecting a president, each priest probably sent his value of
lastTried@p# to the other priests, allowing the president to choose a large
enough ballot number on his first try.

The Paxons realized that any protocol to achieve the progress condition
must involve measuring the passage of time.12 The protocols given above

12However, many centuries were to pass before a rigorous proof of this result was given
[Fischer et al. 1985].
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for selecting a president and initiating ballots are easily formulated as
precise algorithms that set timers and perform actions when time-outs
occur—assuming perfectly accurate timers. A closer analysis reveals that
such protocols can be made to work with timers having a known bound on
their accuracy. The skilled glass blowers of Paxos had no difficulty con-
structing suitable hourglass timers.

Given the sophistication of Paxon mathematicians, it is widely believed
that they must have found an optimal algorithm to satisfy the presidential
selection requirement. We can only hope that this algorithm will be
discovered in future excavations on Paxos.

3. THE MULTIDECREE PARLIAMENT

When Parliament was established, a protocol to satisfy its consistency and
progress requirements was derived from the Synod protocol. The derivation
and properties of the original parliamentary protocol are described in
Sections 3.1 and 3.2. Section 3.3 discusses the further evolution of the
protocol.

3.1 The Protocol

Instead of passing just one decree, the Paxon Parliament had to pass a
series of numbered decrees. As in the Synod protocol, a president was
elected. Anyone who wanted a decree passed would inform the president,
who would assign a number to the decree and attempt to pass it. Logically,
the parliamentary protocol used a separate instance of the complete Synod
protocol for each decree number. However, a single president was selected
for all these instances, and he performed the first two steps of the protocol
just once.

The key to deriving the parliamentary protocol is the observation that, in
the Synod protocol, the president does not choose the decree or the quorum
until step (3). A newly elected president p can send to some set of
legislators a single message that serves as the NextBallot~b! message for
all instances of the Synod protocol. (There are an infinite number of
instances—one for each decree number.) A legislator q can reply with a
single message that serves as the LastVote messages for step (2) of all
instances of the Synod protocol. This message contains only a finite amount
of information, since q can have voted in only a finite number of instances.

When the new president has received a reply from every member of a
majority set, he is ready to perform step (3) for every instance of the Synod
protocol. For some finite number of instances (decree numbers), the choice
of decree in step (3) will be determined by B3. The president immediately
performs step (3) for each of those instances to try passing these decrees.
Then, whenever he receives a request to pass a decree, he chooses the
lowest-numbered decree that he is still free to choose, and he performs step
(3) for that decree number (instance of the Synod protocol) to try to pass the
decree.
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The following modifications to this simple protocol lead to the actual
Paxon Parliament’s protocol.

—There is no reason to go through the Synod protocol for a decree number
whose outcome is already known. Therefore, if a newly elected president
p has all decrees with numbers less than or equal to n written in his
ledger, then he sends a NextBallot~b, n! message that serves as a
NextBallot~b! message in all instances of the Synod protocol for decree
numbers larger than n. In his response to this message, legislator q
informs p of all decrees numbered greater than n that already appear in
q ’s ledger (in addition to sending the usual LastVote information for
decrees not in his ledger), and he asks p to send him any decrees
numbered n or less that are not in his ledger.

—Suppose decrees 125 and 126 are introduced late Friday afternoon,
decree 126 is passed and is written in one or two ledgers, but before
anything else happens, the legislators all go home for the weekend.
Suppose also that the following Monday, Dfvrk is elected the new
president and learns about decree 126, but she has no knowledge of
decree 125 because the previous president and all legislators who had
voted for it are still out of the Chamber. She will hold a ballot that passes
decree 126, which leaves a gap in the ledgers. Assigning number 125 to a
new decree would cause it to appear earlier in the ledger than decree 126,
which had been passed the previous week. Passing decrees out of order in
this way might cause confusion—for example, if the citizen who proposed
the new decree did so because he knew decree 126 had already passed.
Instead, Dfvrk would attempt to pass

125: The ides of February is national olive day

a traditional decree that made absolutely no difference to anyone in
Paxos. In general, a new president would fill any gaps in his ledger by
passing the “olive-day” decree.

The consistency and progress properties of the parliamentary protocol
follow immediately from the corresponding properties of the Synod protocol
from which it was derived. To our knowledge, the Paxons never bothered
writing a precise description of the parliamentary protocol because it was
so easily derived from the Synod protocol.

3.2 Properties of the Protocol

3.2.1 The Ordering of Decrees. Balloting could take place concurrently
for many different decree numbers, with ballots initiated by different
legislators—each thinking he was president when he initiated the ballot.
We cannot say precisely in what order decrees would be passed, especially
without knowing how a president was selected. However, there is one
important property about the ordering of decrees that can be deduced.
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A decree was said to to be proposed when it was chosen by the president
in step (3) of the corresponding instance of the Synod protocol. The decree
was said to be passed when it was written for the first time in a ledger.
Before a president could propose any new decrees, he had to learn from all
the members of a majority set what decrees they had voted for. Any decree
that had already been passed must have been voted for by at least one
legislator in the majority set. Therefore, the president must have learned
about all previously passed decrees before initiating any new decree. The
president would not fill a gap in the ledgers with an important decree—
that is, with any decree other than the “olive-day” decree. He would also
not propose decrees out of order. Therefore, the protocol satisfied the
following decree-ordering property.

If decrees A and B are important and decree A was passed before decree B was
proposed, then A has a lower decree number than B.

3.2.2 Behind Closed Doors. Although we do not know the details in-
volved in choosing a new president, we do know exactly how Parliament
functioned when the president had been chosen and no one was entering or
leaving the Chamber. Upon receiving a request to pass a decree—either
directly from a citizen or relayed from another legislator—the president
assigned the decree a number and passed it with the following exchange of
messages. (The numbers refer to the corresponding steps in the Synod
protocol.)

(3) The president sent a BeginBallot message to each legislator in a
quorum.

(4) Each legislator in the quorum sent a Voted message to the president.

(5) The president sent a Success message to every legislator.

This is a total of three message delays and about 3N messages, assuming
a parliament of N legislators and a quorum of about N/2. Moreover, if
Parliament was busy, the president would combine the BeginBallot
message for one decree with the Success message for a previous one, for a
total of only 2N messages per decree.

3.3 Further Developments

Governing the island turned out to be a more complex task than the Paxons
realized. A number of problems arose whose solutions required changes to
the protocol. The most important of these changes are described below.

3.3.1 Picking a President. The president of parliament was originally
chosen by the method that had been used in the Synod, which was based
purely on the alphabetical ordering of names. Thus, when legislator Vki
returned from a six-month vacation, he was immediately made president—
even though he had no idea what had happened in his absence. Parliamen-
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tary activity came to a halt while Vki, who was a slow writer, laboriously
copied six months worth of decrees to bring his ledger up to date.

This incident led to a debate about the best way to choose a president.
Some Paxons urged that once a legislator became president, he should
remain president until he left the Chamber. An influential group of citizens
wanted the richest legislator in the Chamber to be president, since he could
afford to hire more scribes and other servants to help him with the
presidential duties. They argued that once a rich legislator had brought his
ledger up to date, there was no reason for him not to assume the presi-
dency. Others, however, argued that the most upstanding citizen should be
made president, regardless of wealth. Upstanding probably meant less
likely to be dishonest, although no Paxon would publicly admit the possi-
bility of official malfeasance. Unfortunately, the outcome of this debate is
not known; no record exists of the presidential selection protocol that was
ultimately used.

3.3.2 Long Ledgers. As the years progressed and Parliament passed
more and more decrees, Paxons had to pore over an ever longer list of
decrees to find the current olive tax or what color goat could be sold. A
legislator who returned to the Chamber after an extended voyage had to do
quite a bit of copying to bring his ledger up to date. Eventually, the
legislators were forced to convert their ledgers from lists of decrees into law
books that contained only the current state of the law and the number of
the last decree whose passage was reflected in that state.

To learn the current olive tax, one looked in the law book under “taxes”;
to learn what color goat could be sold, one looked under “mercantile law.” If
a legislator’s ledger contained the law through decree 1298 and he learned
that decree 1299 set the olive tax to 6 drachmas per ton, he just changed
the entry for the olive-tax law and noted that his ledger was complete
through decree 1299. If he then learned about decree 1302, he would write
it down in the back of the ledger and wait until he learned about decrees
1300 and 1301 before incorporating decree 1302 into the law book.

To enable a legislator who had been gone for a short time to catch up
without copying the entire law book, legislators kept a list of the past
week’s decrees in the back of the book. They could have kept this list on a
slip of paper, but it was convenient for a legislator to enter decrees in the
back of the ledger as they were passed and update the law book only two or
three times a week.

3.3.3 Bureaucrats. As Paxos prospered, legislators became very busy.
Parliament could no longer handle all details of government, so a bureau-
cracy was established. Instead of passing a decree to declare whether each
lot of cheese was fit for sale, Parliament passed a decree appointing a
cheese inspector to make those decisions.

It soon became evident that selecting bureaucrats was not as simple as it
first seemed. Parliament passed a decree making D ǐkstra the first cheese
inspector. After some months, merchants complained that D ǐkstra was too
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strict and was rejecting perfectly good cheese. Parliament then replaced
him by passing the decree

1375: Gvyda is the new cheese inspector

But D ǐkstra did not pay close attention to what Parliament did, so he did
not learn of this decree right away. There was a period of confusion in the
cheese market when both D ǐkstra and Gvyda were inspecting cheese and
making conflicting decisions.

To prevent such confusion, the Paxons had to guarantee that a position
could be held by at most one bureaucrat at any time. To do this, a president
included as part of each decree the time and date when it was proposed. A
decree making D ǐkstra the cheese inspector might read

2716: 8:30 15 Jan 72 2 Dǐkstra is cheese inspector for 3 months

This declares his term to begin either at 8:30 on 15 January or when the
previous inspector’s term ended—whichever was later. His term would end
at 8:30 on 15 March, unless he explicitly resigned by asking the president
to pass a decree like

2834: 9:15 3 Mar 72 2 Dǐkstra resigns as cheese inspector

A bureaucrat was appointed for a short term, so he could be replaced
quickly—for example, if he left the island. Parliament would pass a decree
to extend the bureaucrat’s term if he was doing a satisfactory job.

A bureaucrat needed to tell time to determine if he currently held a post.
Mechanical clocks were unknown on Paxos, but Paxons could tell time
accurately to within 15 minutes by the position of the sun or the stars.13 If
D ǐkstra ’s term began at 8:30, he would not start inspecting cheese until
his celestial observations indicated that it was 8:45.

It is easy to make this method of appointing bureaucrats work if
higher-numbered decrees always have later proposal times. But what if
Parliament passed the decrees

2854: 9:45 9 Apr 78 2 Fransez is wine taster for 2 months

2855: 9:20 9 Apr 78 2 Pnyelǐ is wine taster for 1 month

that were proposed between 9:30 and 9:35 by different legislators who both
thought they were president? Such out-of-order proposal times are easily
prevented because the parliamentary protocol satisfies the following prop-
erty.

If two decrees are passed by different presidents, then one of the presidents
proposed his decree after learning that the other decree had been proposed.

13Cloudy days are rare in Paxos’ balmy climate.
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To see that this property is satisfied, suppose that ballot number b was
successful for decree D, ballot number b9 was successful for decree D9, and
b , b9. Let q be a legislator who voted in both ballots. The balloting for D9
began with a NextBallot~b9, n! message. If the sender of that message did
not already know about D, then n is less than the decree number of D, and
q ’s reply to the NextBallot message must state that he voted for D.

3.3.4 Learning the Law. In addition to requesting the passage of de-
crees, ordinary citizens needed to inquire about the current law of the land.
The Paxons at first thought that a citizen could simply examine the ledger
of any legislator, but the following incident demonstrated that a more
sophisticated approach was needed. For centuries, it had been legal to sell
only white goats. A farmer named Dvlef got Parliament to pass the decree

77: The sale of black goats is permitted

Dvlef then instructed his goatherd to sell some black goats to a merchant
named Skeen. As a law-abiding citizen, Skeen asked legislator Stvkmeǐr

if such a sale would be legal. But Stvkmeǐr had been out of the Chamber
and had no entry in his ledger past decree 76. He advised Skeen that the
sale would be illegal under the current law, so Skeen refused to buy the
goats.

This incident led to the formulation of the following monotonicity condi-
tion on inquiries about the law.

If one inquiry precedes a second inquiry, then the second inquiry cannot reveal
an earlier state of the law than the first.

If a citizen learns that a particular decree has been passed, then the
process of acquiring that knowledge is considered to be an implicit inquiry
to which this condition applies. As we will see, the interpretation of the
monotonicity condition changed over the years.

Initially, the monotonicity condition was achieved by passing a decree for
each inquiry. If S­nǐder wanted to know the current tax on olives, he
would get Parliament to pass a decree such as

87: Citizen S­nǐder is reading the law

He would then read any ledger complete at least through decree 86 to learn
the olive tax as of that decree. If citizen Greez then inquired about the olive
tax, the decree for his inquiry was proposed after decree 87 was passed, so
the decree-ordering property (Section 3.2.1) implies that it received a
decree number greater than 87. Therefore, Greez could not obtain an
earlier value of the olive tax than S­nǐder. This method of reading the law
satisfied the monotonicity condition when precedes was interpreted to mean
that inquiry A precedes inquiry B if and only if A finished at an earlier
time than B began.
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Passing a decree for every inquiry soon proved too cumbersome. The
Paxons realized that a simpler method was possible if they weakened the
monotonicity condition by changing the interpretation of precedes. They
decided that for one event to precede another, the first event not only had
to happen at an earlier time, but it had to be able to causally affect the
second event. The weaker monotonicity condition prevents the problem
first encountered by farmer Dvlef and merchant Skeen because there is a
causal chain of events between the end of the implicit inquiry by Dvlef

and the beginning of the inquiry by Skeen.
The weaker monotonicity condition was met by using decree numbers in

all business transactions and inquiries. For example, farmer Dvlef, whose
flock included many nonwhite goats, got Parliament to pass the decree

277: The sale of brown goats is permitted

When selling his brown goats to Skeen, he informed the merchant that the
sale was legal as of decree number 277. Skeen then asked legislator
Stvkmeǐr if the sale were legal under the law through at least decree 277.
If Stvkmeǐr ’s ledger was not complete through decree 277, he would either
wait until it was or else tell Skeen to ask someone else. If Stvkmeǐr ’s
ledger went through decree 298, then he would tell Skeen that the sale was
legal as of decree number 298. Merchant Skeen would remember the
number 298 for use in his next business transaction or inquiry about the
law.

The Paxons had satisfied the monotonicity condition, but ordinary citi-
zens disliked having to remember decree numbers. Again, the Paxons
solved the problem by reinterpreting the monotonicity condition—this time,
by changing the meaning of state of the law. They divided the law into
separate areas, and a legislator was chosen as specialist for each area. The
current state of each area of the law was determined by that specialist’s
ledger. For example, suppose decree 1517 changed the tariff law and decree
1518 changed the tax law. The tax law would change first if the tax-law
specialist learned of both decrees before the tariff-law specialist learned of
either, yielding a state of the law that could not be obtained by enacting the
decrees in numerical order.

To avoid conflicting definitions of the current state, the Paxons required
that there be at most one specialist at a time for any area. This require-
ment was satisfied by using the same method to choose specialists that was
used to choose bureaucrats (see Section 3.3.3). If each inquiry involved only
a single area of the law, monotonicity was then achieved by directing the
inquiry to that area’s specialist, who answered it from his ledger. Since
learning that a law had passed constituted the result of an implicit inquiry,
the Paxons required that a decree change at most one area of the law, and
that notification of the decree’s passage could come only from the area’s
specialist.
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Inquiries involving multiple areas were not hard to handle. When mer-
chant Liskvf asked if the tariff on an imported golden fleece was higher
than the sales tax on one purchased locally, the tax-law and tariff-law
specialists had to cooperate to provide an answer. For example, the tax
specialist could answer Liskvf by first asking the tariff specialist for the
tariff on golden fleeces, so long as he made no changes to his ledger before
receiving a reply.

This method proved satisfactory until it became necessary to make a
sweeping change to several areas of the law at one time. The Paxons then
realized that the necessary requirement for maintaining monotonicity was
not that a decree affect only a single area, but that every area it affects
have the same specialist. Parliament could change several areas of the law
with a single decree by first appointing a single legislator to be the
specialist for all those areas. Moreover, the same area could have multiple
specialists, so long as that area of the law was not allowed to change. Just
before income taxes were due, Parliament would appoint several tax-law
specialists to handle the seasonal flood of inquiries about the tax law.

3.3.5 Dishonest Legislators and Honest Mistakes. Despite official asser-
tions to the contrary, there must have been a few dishonest legislators in
the history of Paxos. When caught, they were probably exiled. By sending
contradictory messages, a malicious legislator could cause different legisla-
tors’ ledgers to be inconsistent. Inconsistency could also result from a lapse
of memory by an honest legislator or messenger.

When inconsistencies were recognized, they could easily be corrected by
passing decrees. For example, disagreement about the current olive tax
could be eliminated by passing a new decree declaring the tax to have a
certain value. The difficult problem lay in correcting inconsistent ledgers
even if no one was aware of the inconsistency.

The existence of dishonesty or mistakes by legislators can be inferred
from the redundant decrees that began appearing in ledgers several years
after the founding of Parliament. For example, the decree

2605: The olive tax is 9 drachmas per ton

was passed even though decree 2155 had already set the olive tax to 9
drachmas per ton, and no intervening decree had changed it. Parliament
apparently cycled through its laws every six months so that even if
legislators’ ledgers were initially inconsistent, all legislators would agree
on the current law of the land within six months. It is believed that by the
use of these redundant decrees, the Paxons made their Parliament self-
stabilizing. (Self-stabilizing is a modern term due to Dijkstra [1974].)

It is not clear precisely what self-stabilization meant in a Parliament
with legislators coming and going at will. The Paxons would not have been
satisfied with a definition that required all legislators to be in the Chamber
at one time before consistency could be guaranteed. However, achieving
consistency required that if one legislator had an entry in his ledger for a
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certain decree number and another did not, then the second legislator
would eventually fill in that entry.

Unfortunately, we do not know exactly what sort of self-stabilization
property the Paxon Parliament possessed or how it was achieved. Paxon
mathematicians undoubtedly addressed the problem, but their work has
not yet been found. I hope that future archaeological expeditions to Paxos
will give high priority to the search for manuscripts on self-stabilization.

3.3.6 Choosing New Legislators. At first, membership in Parliament
was hereditary, passing from parent to child. When the elder statesman
Parnaz retired, he gave his ledger to his son, who carried on without
interruption. It made no difference to other legislators which Parnaz they
communicated with.

As old families emigrated and new ones immigrated, this system had to
change. The Paxons decided to add and remove members of Parliament by
decree. This posed a circularity problem: membership in Parliament was
determined by which decrees were passed, but passing a decree required
knowing what constituted a majority set, which in turn depended upon who
was a member of Parliament. The circularity was broken by letting the
membership of Parliament used in passing decree n be specified by the law
as of decree n 2 3. A president could not try to pass decree 3255 until he
knew all decrees through decree 3252. In practice, after passing the decree

3252: Strvng is now a legislator

the president would immediately pass the “olive-day” decree as decrees
3253 and 3254.

Changing the composition of Parliament in this way was dangerous and
had to be done with care. The consistency and progress conditions would
always hold. However, the progress condition guaranteed progress only if a
majority set was in the Chamber; it did not guarantee that a majority set
would ever be there. In fact, the mechanism for choosing legislators led to
the downfall of the Parliamentary system in Paxos. Because of a scribe’s
error, a decree that was supposed to honor sailors who had drowned in a
shipwreck instead declared them to be the only members of Parliament. Its
passage prevented any new decrees from being passed—including the
decrees proposed to correct the mistake. Government in Paxos came to a
halt. A general named Lampsvn took advantage of the confusion to stage
a coup, establishing a military dictatorship that ended centuries of progres-
sive government. Paxos grew weak under a series of corrupt dictators, and
was unable to repel an invasion from the east that led to the destruction of
its civilization.

4. RELEVANCE TO COMPUTER SCIENCE

4.1 The State Machine Approach

Although Paxos’ Parliament was destroyed many centuries ago, its protocol
is still useful. For example, consider a simple distributed database system
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that might be used as a name server. A state of the database consists of an
assignment of values to names. Copies of the database are maintained by
multiple servers. A client program can issue, to any server, a request to
read or change the value assigned to a name. There are two kinds of read
request: a slow read, which returns the value currently assigned to a name,
and a fast read, which is faster but might not reflect a recent change to the
database.

Table I shows the obvious correspondence between this database system
and the Paxon Parliament. A client’s request to change a value is per-
formed by passing a decree. A slow read involves passing a decree, as
described in Section 3.3.4. A fast read is performed by reading the server’s
current version of the database. The Paxon Parliament protocol provides a
distributed, fault-tolerant implementation of the database system.

This method of implementing a distributed database is an instance of the
state machine approach, first proposed by Lamport [1978]. In this ap-
proach, one first defines a state machine, which consists of a set of states, a
set of commands, a set of responses, and a function that assigns a
response/state pair (a pair consisting of a response and a state) to each
command/state pair. Intuitively, a state machine executes a command by
producing a response and changing its state; the command and the ma-
chine’s current state determine its response and its new state. For the
distributed database, a state machine state is just a database state. The
state machine commands and the function specifying the response and new
state are described in Figure 2.

In the state machine approach, a system is implemented with a network
of server processes. The servers transform client requests into state ma-
chine commands, execute the commands, and transform the state machine
responses into replies to clients. A general algorithm ensures that all
servers obtain the same sequence of commands, thereby ensuring that they
all produce the same sequence of responses and state changes—assuming
they all start from the same initial state. In the database example, a client
request to perform a slow read or to change a value is transformed into a
state machine read or update command. That command is executed, and
the state machine response is transformed into a reply to the client, which
is sent to him by the server who received his request. Since all servers
perform the same sequence of state machine commands, they all maintain
consistent versions of the database. However, at any time, some servers
may have earlier versions than others because a state machine command
need not be executed at the same time by all servers. A server uses his

Table I.

Parliament
Distributed
Database

legislator 7 server
citizen 7 client program

current law 7 database state
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current version of the state to reply to a fast read request, without
executing a state machine command.

The functionality of the system is expressed by the state machine, which
is just a function from command/state pairs to response/state pairs. Prob-
lems of synchronization and fault-tolerance are handled by the general
algorithm with which servers obtain the sequence of commands. When
designing a new system, only the state machine is new. The servers obtain
the state machine commands by a standard distributed algorithm that has
already been proved correct. Functions are much easier to design, and to
get right, than distributed algorithms.

The first algorithm for implementing an arbitrary state machine was by
Lamport [1978]. Later, algorithms were devised to tolerate up to any fixed
number f of arbitrary failures [Lamport 1984]. These algorithms guarantee
that, if fewer than f processes fail, then state machine commands are
executed within a fixed length of time. The algorithms are thus suitable for
applications requiring real-time response.14 But if more than f failures
occur, then different servers may have inconsistent copies of the state
machine. Moreover, the inability of two servers to communicate with each
other is equivalent to the failure of one of them. For a system to have a low
probability of losing consistency, it must use an algorithm with a large
value of f, which in turn implies a large cost in redundant hardware,
communication bandwidth, and response time.

The Paxon Parliament’s protocol provides another way to implement an
arbitrary state machine. The legislators’ law book corresponds to the
machine state, and passing a decree corresponds to executing a state
machine command. The resulting algorithm is less robust and less expen-
sive than the earlier algorithms. It does not tolerate arbitrary, malicious
failures, nor does it guarantee bounded-time response. However, consis-
tency is maintained despite the (benign) failure of any number of processes
and communication paths. The Paxon algorithm is suitable for systems
with modest reliability requirements that do not justify the expense of an
extremely fault-tolerant, real-time implementation.

If the state machine is executed with an algorithm that guarantees
bounded-time response, then time can be made part of the state, and
machine actions can be triggered by the passage of time. For example,
consider a system for granting ownership of resources. The state can

14These algorithms were derived from the military protocols of another Mediterranean state.

Fig. 2. State machine for simple database.
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include the time at which a client was granted a resource, and the state
machine can automatically execute a command to revoke ownership if the
client has held the resource too long.

With the Paxon algorithm, time cannot be made part of the state in such
a natural way. If failures occur, it can take arbitrarily long to execute a
command (pass a decree), and one command can be executed before (appear
earlier in the sequence of decrees than) another command that was issued
earlier. However, a state machine can still use real time the same way the
Paxon Parliament did. For example, the method described in Section 3.3.3
for deciding who was the current cheese inspector can be used to decide
who is the current owner of a resource.

4.2 Commit Protocols

The Paxon Synod protocol is similar to standard three-phase commit
protocols [Bernstein 1987; Skeen 1982]. A Paxon ballot and a three-phase
commit protocol both involve the exchange of five messages between a
coordinator (the president) and the other quorum members (legislators). A
commit protocol chooses one of two values—commit or abort—while the
Synod protocol chooses an arbitrary decree. To convert a commit protocol to
a Synod protocol, one sends the decree in the initial round of messages. A
commit decision means that this decree was passed, and an abort decision
means that the “olive-day” decree was passed.

The Synod protocol differs from a converted commit protocol because the
decree is not sent until the second phase. This allows the corresponding
parliamentary protocol to execute the first phase just once for all decrees,
so the exchange of only three messages is needed to pass each individual
decree.

The theorems on which the Synod protocol is based are similar to results
obtained by Dwork, Lynch, and Stockmeyer [Dwork et al. 1988]. However,
their algorithms execute ballots sequentially in separate rounds, and they
seem to be unrelated to the Synod protocol.

.
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APPENDIX

PROOF OF CONSISTENCY OF THE SYNODIC PROTOCOL

A.1 The Basic Protocol

The Synod’s basic protocol, described informally in Section 2.3, is stated
here using modern algorithmic notation. We begin with the variables that a
priest p must maintain. First come the variables that represent informa-
tion kept in his ledger. (For convenience, the vote prevVote@p# used in
Section 2.3 is replaced by its components prevBal@p# and prevDec@p#.)

outcome@p# The decree written in p ’s ledger, or BLANK if there is
nothing written there yet.

lastTried@p#The number of the last ballot that p tried to begin, or 2` if
there was none.

prevBal@p# The number of the last ballot in which p voted, or 2` if he
never voted.

prevDec@p# The decree for which p last voted, or BLANK if p never voted.

nextBal@p# The number of the last ballot in which p agreed to partici-
pate, or 2` if he has never agreed to participate in a ballot.

Next come variables representing information that priest p could keep on a
slip of paper:

status@p# One of the following values:

idle Not conducting or trying to begin a ballot
trying Trying to begin ballot number lastTried@p#

polling Now conducting ballot number lastTried@p#

If p has lost his slip of paper, then status@p# is assumed to
equal idle and the values of the following four variables are
irrelevant.

prevVotes@p#The set of votes received in LastVote messages for the
current ballot (the one with ballot number lastTried@p#).

quorum@p# If status@p# 5 polling, then the set of priests forming the
quorum of the current ballot; otherwise, meaningless.

voters@p# If status@p# 5 polling, then the set of quorum members
from whom p has received Voted messages in the current
ballot; otherwise, meaningless.
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decree@p# [If status@p# 5 polling, then the decree of the current
ballot; otherwise, meaningless.

There is also the history variable @, which is the set of ballots that have
been started and their progress—namely, which priests have cast votes. (A
history variable is one used in the development and proof of an algorithm,
but not actually implemented.)

Next come the actions that priest p may take. These actions are assumed
to be atomic, meaning that once an action is begun, it must be completed
before priest p begins any other action. An action is described by an
enabling condition and a list of effects. The enabling condition describes
when the action can be performed; actions that receive a message are
enabled whenever a messenger has arrived with the appropriate message.
The list of effects describes how the action changes the algorithm’s vari-
ables and what message, if any, it sends. (Each individual action sends at
most one message.)

Recall that ballot numbers were partitioned among the priests. For any
ballot number b, the Paxons defined owner~b! to be the priest who was
allowed to use that ballot number.

The actions in the basic protocol are allowed actions; the protocol does
not require that a priest ever do anything. No attempt at efficiency has
been made; the actions allow p to do silly things, such as sending another
BeginBallot message to a priest from whom he has already received a
LastVote message.

Try New Ballot
Always enabled.

—Set lastTried@p# to any ballot number b, greater than its
previous value, such that owner~b! 5 p.

—Set status@p# to trying.
—Set prevVotes@p# to À.

Send NextBallot Message
Enabled whenever status@p# 5 trying.

—Send a NextBallot~lastTried@p#! message to any priest.

Receive NextBallot~b! Message
If b $ nextBal@p# then

—Set nextBal@p# to b.

Send LastVote Message
Enabled whenever nextBal@p# . prevBal@p#.

—Send a LastVote~nextBal@p#, v! message to priest
owner~nextBal@p#!, where vpst 5 p, vbal 5 prevBal@p#,
and vdec 5 prevDec@p#.
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Receive LastVote~b, v! Message
If b 5 lastTried@p# and status@p# 5 trying, then

—Set prevVotes@p# to the union of its original value and $v%.

Start Polling Majority Set Q
Enabled when status@p# 5 trying
and Q # $vpst : v { prevVotes@p#%, where Q is a majority set.

—Set status@p# to polling.
—Set quorum@p# to Q.
—Set voters@p# to À.
—Set decree@p# to a decree d chosen as follows: Let v be the

maximum element of prevVotes@p#. If vbal Þ 2` then
d 5 vdec, else d can equal any decree.

—Set @ to the union of its former value and $B%, where Bdec 5 d,
Bqrm 5 Q, Bvot 5 À, and Bbal 5 lastTried@p#.

Send BeginBallot Message
Enabled when status@p# 5 polling.

—Send a BeginBallot~lastTried@p#, decree@p#! message
to any priest in quorum@p#.

Receive BeginBallot~b, d! Message
If b 5 nextBal@p# . prevBal@p# then

—Set prevBal@p# to b.
—Set prevDec@p# to d.
—If there is a ballot B in @ with Bbal 5 b [there will be], then

choose any such B [there will be only one] and let the new
value of @ be obtained from its old value by setting Bvot equal to
the union of its old value and $p%.

Send Voted Message
Enabled whenever prevBal@p# Þ 2`.

—Send a Voted~prevBal@p#, p! message to owner~prevBal@p#!.

Receive Voted~b, q! Message
If b 5 lastTried@p# and status@p# 5 polling, then

—Set voters@p# to the union of its old value and $q%.

Succeed
Enabled whenever status@p# 5 polling, quorum@p# # voters@p#,
and outcome@p# 5 BLANK.

—Set outcome@p# to decree@p#.

Send Success Message
Enabled whenever outcome@p# Þ BLANK.
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—Send a Sucess~outcome@p#! message to any priest.

Receive Success~d! Message
If outcome@p# 5 BLANK, then

—Set ~outcome@p#! to d.

This algorithm is an abstract description of the real protocol performed
by Paxon priests. Do the algorithm’s actions accurately model the actions of
the real priests? There were three kinds of actions that a priest could
perform “atomically”: receiving a message, writing a note or ledger entry,
and sending a message. Each of these is represented by a single action of
the algorithm, except that Receive actions both receive a message and set
a variable. We can pretend that the receipt of a message occurred when a
priest acted upon the message; if he left the Chamber before acting upon it,
then we can pretend that the message was never received. Since this
pretense does not affect the consistency condition, we can infer the consis-
tency of the basic Synod protocol from the consistency of the algorithm.

A.2 Proof of Consistency

To prove the consistency condition, it is necessary to show that whenever
outcome@p# and outcome@q# are both different from BLANK, they are
equal. A rigorous correctness proof requires a complete description of the
algorithm. The description given above is almost complete. Missing is a
variable } whose value is the multiset of all messages in transit.15 Each
Send action adds a message to this multiset and each Receive action
removes one. Also needed are actions to represent the loss and duplication
of messages, as well as a Forget action that represents a priest losing his
slip of paper.

With these additions, we get an algorithm that defines a set of possible
behaviors, in which each change of state corresponds to one of the allowed
actions. The Paxons proved correctness by finding a predicate I such that

(1) I is true initially.

(2) I implies the desired correctness condition.

(3) Each allowed action leaves I true.

The predicate I was written as a conjunction I1 ∧ . . . ∧ I7, where I1–I5
were in turn the conjunction of predicates I1~p!–I5~p! for all priests p.
Although most variables are mentioned in several of the conjuncts, each
variable except status@p# is naturally associated with one conjunct, and
each conjunct can be thought of as a constraint on its associated variables.
The definitions of the individual conjuncts of I are given in Figure 3, where
a list of items marked by ∧ symbols denotes the conjunction of those

15A multiset is a set that may contain multiple copies of the same element.
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items. The variables associated with a conjunct are listed in bracketed
comments.

The Paxons had to prove that I satisfies the three conditions given above.
The first condition, that I holds initially, requires checking that each
conjunct is true for the initial values of all the variables. While not stated

Fig. 3. Individual conjuncts of predicate I.
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explicitly, these initial values can be inferred from the variables’ descrip-
tions, and checking the first condition is straightforward. The second
condition, that I implies consistency, follows from I1, the first conjunct of
I6, and Theorem 1. The hard part was proving the third condition, the
invariance of I, which meant proving that I is left true by every action. This
condition is proved by showing that, for each conjunct of I, executing any
action when I is true leaves that conjunct true. The proofs are sketched
below.

PROOF SKETCH FOR I1~p!. @ is changed only by adding a new ballot or
adding a new priest to Bvot for some B { @, neither of which can falsify
I1~p!. The value of outcome@p# is changed only by the Succeed and
Receive Success Message actions. The enabling condition and I5~p! imply
that I1~p! is left true by the Succeed action. The enabling condition,
I1~p!, and the last conjunct of I7 imply that I1~p! is left true by the
Receive Success Message action. e

PROOF SKETCH FOR I2~p!. This conjunct depends only on lastTried@p#,
status@p#, and @. Only the Try New Ballot action changes lastTried@p#,
and only that action can set status@p# to trying. Since the action increases
lastTried@p# to a value b with owner~b! 5 p, it leaves I2~p! true. A
completely new element is added to @ only by a Start Polling action; the
first conjunct of I2~p! and the specification of the action imply that adding
this new element does not falsify the second conjunct of I2~p!. The only
other way @ is changed is by adding a new priest to Bvot for some B { @,
which does not affect I2~p!. e

PROOF SKETCH FOR I3~p!. Since votes are never removed from @, the
only action that can change MaxVote~`, p, @! is one that adds to @ a vote
cast by p. Only a Receive BeginBallot Message action can do that, and
only that action changes prevBal@p# and prevDec@p#. The BeginBallot
conjunct of I7 implies that this action actually does add a vote to @, and
B1~@! (the first conjunct of I6) implies that there is only one ballot to
which the vote can be added. The enabling condition, the assumption that
I3~p! holds before executing the action, and the definition of MaxVote then
imply that the action leaves the first two conjuncts of I3~p! true. The third
conjunct is left true because prevBal@p# is changed only by setting it to
nextBal@p#, and nextBal@p# is never decreased. e

PROOF SKETCH FOR I4~p!. This conjunct depends only upon the values of
status@p#, prevVotes@p#, lastTried@p#, nextBal@q# for some priests q, and
@. The value of status@p# is changed from idle to not idle only by a Try
New Ballot action, which sets prevVotes@p# to À, making I4~p! vacuously
true. The only other actions that change prevVotes@p# are the Forget
action, which leaves I4~p! true because it sets status@p# to idle, and the
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Receive LastVote Message action. It follows from the enabling condition
and the LastVote conjunct of I7 that the Receive LastVote Message action
preserves I4~p!. The value of lastTried@p# is changed only by the Try New
Ballot action, which leaves I4~p! true because it sets status@p#to trying.
The value of nextBal@q# can only increase, which cannot make I4~p! false.
Finally, MaxVote~lastTried@p#, vpst, @! can be changed only if vpst is
added to Bvot for some B { @ with Bbal , lastTried@p#. But vpst is added
to Bvot (by a Receive BeginBallot Message action) only if nextBal@vpst#
5 Bbal, in which case I4~p! implies that Bbal $ lastTried@p#. e

PROOF SKETCH FOR I5~p!. The value status@p# is set to polling only by
the Start Polling action. This action’s enabling condition guarantees that
the first conjunct becomes true, and it adds the ballot to @ that makes the
second conjunct true. No other action changes quorum@p#, decree@p#, or
lastTried@p# while leaving status@p# equal to polling. The value of
prevVotes@p# cannot be changed while status@p# 5 polling, and @ is
changed only by adding new elements or by adding a new priest to Bvot. The
only remaining possibility for falsifying I5~p! is the addition of a new
element to voters@p# by the Receive Voted Message action. The Voted
conjunct of I7, B1~@! (the first conjunct of I6), and the action’s enabling
condition imply that the element added to voters@p# is in Bvot, where B is
the ballot whose existence is asserted in I5~p!. e

PROOF SKETCH FOR I6. Since Bbal and Bqrm are never changed for any
B { @, the only way B1~@!, B2~@!, and the second conjunct of I6 can be
falsified is by adding a new ballot to @, which is done only by the Start
Polling Majority Set Q action when status@p# equals trying. It follows
from the second conjunct of I2~p! that this action leaves B1~@! true; and
the assertion, in the enabling condition, that Q is a majority set implies
that the action leaves B2~@! and the second conjunct of I6 true. There are
two possible ways of falsifying B3~@!: changing MaxVote~Bbal, Bqrm, @!
by adding a new vote to @, and adding a new ballot to @. A new vote is
added only by the Receive BeginBallot Message action, and I3~p! implies
that the action adds a vote later than any other vote cast by p in @, so it
cannot change MaxVote~Bbal, Bqrm, @! for any B in @. Conjunct I4~p!
implies that the new ballot added by the Start Polling action does not
falsify B3~@!. e

PROOF SKETCH FOR I7. I7 can be falsified either by adding a new
message to } or by changing the value of another variable on which I7
depends. Since lastTried@p# and nextBal@p# are never decreased, changing
them cannot make I7 false. Since outcome@p# is never changed if its value
is not BLANK, changing it cannot falsify I7. Since @ is changed only by
adding ballots and adding votes, the only change to it that can make I7
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false is the addition of a vote by vpst that makes the LastVote~b, v!

conjunct false by changing MaxVote~b, vpst, @!. This can happen only if
vpst votes in a ballot B with Bbal , b. But vpst can vote only in ballot
number nextBal@vpst#, and the assumption that this conjunct holds ini-
tially implies that nextBal@vpst# $ b. Therefore, we need check only that
every message that is sent satisfies the condition in the appropriate
conjunct of I7.

NextBallot: Follows from the definition of the Send NextBallot Message
action and the first conjunct of I2~p!.

LastVote: The enabling condition of the Send LastVote Message action
and I3~p! imply that MaxVote~nextBal@p#, p, @! 5 MaxVote~`, p,
@!, from which it follows that the LastVote message sent by the action
satisfies the condition in I7.

BeginBallot: Follows from I5~p! and the definition of the Send BeginBal-
lot Message action.

Voted: Follows from I3~p!, the definition of MaxVote, and the definition
of the Send Voted Message action.

Success: Follows from the definition of Send Success Message. e
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