Global Predicate Detection

and Event Ordering

Model

@ Message passing
@ No failures

@ Two possible timing assumptions:
1. Synchronous System
2. Asynchronous System
n No upper bound on message delivery
time
o No bound on relative process speeds
o No centralized clock

Our Problem

To compute predicates
over the state of
a distributed application

Clock Synchronization

External Clock Synchronization Internal Clock Synchronization:

keep processor clock within some maximum keep processor clocks within some
deviation from an external time source. maximum deviation from each other.

can exchange of info about timing e can measure duration of distributed
events of different systems activities that start on one process

can take actions at real-time and ferminate on another

deadlines e can totally order events that occur

synchronization within 0.1 ms on a distribufed sysfem

Synchronizion clocks:
Take 1

@ Assume an upper bound max and a lower
bound min on message delivery time

@ Guarantee that processes stay synchronized

Synchronizion clocks:
Take 1

@ Assume an upper bound max and a lower
bound min on message delivery time

@ Guarantee that processes stay synchronized

within max - min within max - min
% of
messages

5000 message run
(IBM Almaden)

Time (ms) 93.17

Clock Synchronization: Probabilistic Clock
Take 2 Synchronization (Cristian)

® Master-Slave architecture

@ No upper bound on message delivery time... @

@ ..but lower bound min on message delivery
time time source

@ Master is connected to external

@ Use timeout maxp to detect process failures V” (@WH o Slaves read master’s clock and
: adjust their own
@ slaves send messages to master :

@ Master averages slaves value; computes

fault-tolerant average M
How accurately can a slave
Precision: 4 maxp - min read the masters clock?

The Idea

@ Clock accuracy depends on message roundtrip
time
o if roundtrip is small, master and slave
cannot have drifted by much!

@ Since no upper bound on message delivery, no
certainty of accurate enough reading...

@ .. but very accurate reading can be achieved
by repeated attempts

Client-Server

Processes exchange messages using
Remote Procedure Call (RPC)

A client requests a service by

sending the server a message.

The client blocks while waiting
for a response

Asynchronous systems

® Weakest possible assumptions

o cfr. “finite progress axiom”

® Weak assumptions = less vulnerabilities

@ Asynchronous # slow

@ “Interesting” model wrt failures (ah ah ah!)

Client-Server

Processes exchange messages using
Remote Procedure Call (RPC)

A client requests a service by

sending the server a message.

The client blocks while waiting
for a response

The server computes the
response (possibly asking other
servers) and returns it fo the

client

Deadlock! Goal

b1

o Design a protocol by which a
processor can determine whether
a global predicate (say, deadlock)
holds
P2 Q ©p3

Wait-For Graphs Wait-For Graphs

@ Draw arrow from p; to p; if p; has received @ Draw arrow from p; to p; if p; has received
a request but has not responded yet a request but has not responded yet

@ Cycle in WFG _ deqdlock

@ Deadlock = () cycle in WFG

The protocol An execution

P1 P
@ po sends a message to pi1...p3 Q ‘
® On receipt of po's message, p; replies with its / \ / \
state and wait-for info
pQO ©p3 pz‘ ‘[)3

An execution An execution

P1 P P1 P
/Q\ /‘\ /Q\ /’\
pQO ©p3 pz‘ ‘[)3 sz ©p3 pz‘ ‘[)3

Ag Ghost Deadlock!

Houston,
we have a problem...

@ Asynchronous system

D no centralized clock, etc. etc.
@ Synchrony useful to

> coordinate actions

> order events

@ Mmmmbhhbh...

Ordering events

@ Observation 1:
@ Events in a local history are totally ordered

Pi

@ Observation 2:
@ For every message m, send(m) precedes receive(m)
2

time

Events and Histories

@ Processes execute sequences of

@ Events can be of 3 types: local, send, and receive

@ ¢ is the i-th event of process p

@ The h,, of process p is the sequence
of events executed by process p

@ hl : prefix that contains first k events

o hy : initial, empty sequence

@ The H is the set hy,, Uhp U...hp,

NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

Happened-before
(Lamport[1978])

A binary relation — defined over events
1. ifef el eh;and k <, then e — ¢

2. if e; = send(m) and e; = receive(m),
then e; — ¢;

3. if e >e and ¢ — ¢’ then e — €”

Space-Time diagrams

A graphic representation of a distributed execution

time

@ /O\ ;]\

©p3 p3

@ /O\ ;]\

Space-Time diagrams

A graphic representation of a distributed execution

time

Sy

Space-Time diagrams

A graphic representation of a distributed execution

time

©p3 ps3

Space-Time diagrams

A graphic representation of a distributed execution

time

o,

Space-Time diagrams

A graphic representation of a distributed execution

time

b1

Opl

Op3 p3

H and — impose a partial order

Space-Time diagrams

A graphic representation of a distributed execution

p1\

Opl

Space-Time diagrams

A graphic representation of a distributed execution

pl \ time

Opl

/ LY
Op3 b3 ©

H and — impose a partial order

Op3 ps3

H and — impose a partial order

Space-Time diagrams

A graphic representation of a distributed execution

time

b1

Opl

Op3 ps3

H and — impose a partial order

Runs and
Consistent Runs

@ A run is a total ordering of the events in H
that is consistent with the local histories of
the processors
o Ex: hi,ho,...,h, is a run

@ A run is consistent if the total order imposed
in the run is an extension of the partial
order induced by —

@ A single distributed computation may
correspond to several consistent runs!

Cuts

A cut C is a subset of the global history of H
== [U ol i oo

The frontier of C is the set of events

(&) (€] (&
EiRlD B

n

T
o

D2

Cuts

A cut C is a subset of the global history of H
== [U ol i oo

, LR
L ¢

Global states and cuts

@ The global state of a distributed computation
is an n-tuple of local states

Y= (angtar)

@ To each cut (c;...cy,) corresponds a global
state (o7*,...00")

0

Consistent cuts and
consistent global states

What pg sees

Ve, ey € C Ne; —er= ete C

P
o A cut is consistent if j M \ \
D2 \-Z M

@ A consistent global state is one corresponding 3
to a consistent cut

What po sees
AN N
N

%!

the cut contains
the event corresponding to the receipt of the
last message by ps but not the corresponding
send event

Our approach

@ Develop a simple synchronous protocol
@ Refine protocol as we relax assumptions

@ Record:
> processor states
> channel states

@ Assumptions:
> FIFO channels
> Each m timestamped with with T'(send(m))

Snapshot 1

i. Po selects ts,
ii. po sends “take a snapshot at t.," to all processes

iii. when clock of p; reads t.s then p
a. records its local state o;
b. sends an empty message along its outgoing channels
c. starts recording messages received on each of incoming
channels
. stops recording a channel when it receives first message
with timestamp greater than or equal to ¢,

Snapshot 1

i. Po selects ts,
ii. po sends “take a snapshot at t.," to all processes

iii. when clock of p; reads t.s then p
a. records its local state o;
b. starts recording messages received on each of incoming
channels

. stops recording a channel when it receives first message
with timestamp greater than or equal to ¢,

Correctness

Theorem Snapshot I produces a consistent cut
Proof Need to prove e; € CAe; —ej=¢e €C

< Definition > <0 and 1> <5 and 3>
0. e; € C= T(EJ‘) slos 3. T(ej) Py (0 T(eb) Sy

< Assumption > < Property of real time> < Definition >
it e; € G 4. e; — €e; = T(el) << T(ﬁj) 7.e,€eC

< Assumption > < 2 and 4>

2., — € 5. T'(e;) < T(e;)

Clock Condition Lamport Clocks

Each process maintains a local variable LC
LC(e) =value of LC for event e

7=+1

p

LC(e}) < LO(e5t)

< Property of real time>

Can the Clock Condition be
implemented some other way?

Space-Time Diagrams
Increment Rules and Logical Clocks

TR
VT

LC(e)) = maz(LC(el~), LC(e})) + 1 b3

Timestamp m with T'S(m) = LC(send(m))

A subtle problem

when LC' =t do S doesnt make sense for Lamport
clocks!

@ there is no guarantee that LC will ever be ¢
@ S is anyway executed after L.C =t

Fixes:
@ if e is internal/send and LC =t — 2
o execute e and then S
o if e =receive(m) A (TS(m) >t)AN(LC <t—1)
o put message back in channel

o re-enable e ; set LC =t — 1; execute S

An obvious problem

® No tss!

@ Choose () large enough that it cannot be reached
by applying the update rules of logical clocks

An obvious problem

® No tss!

@ Choose () large enough that it cannot be reached
by applying the update rules of logical clocks

An obvious problem

® No tss!

@ Choose () large enough that it cannot be reached
by applying the update rules of logical clocks

@ Doing so assumes
@ upper bound on message delivery time
@ upper bound relative process speeds

Snapshot 11

@ processor po selects

@ po sends “take a snapshot atQ” to all processes and sets
its logical clock to Q2

@ when clock of p; reads) then p;
o records its local state o;
o sends an empty message along its outgoing channels
o starts recording messages received on each incoming
channel
stops recording a channel when receives first message
with timestamp greater than or equal fo (2

Snapshot 111

processor pg sends itself “take a snapshot *

when p; receives “take a snapshot” for the first time from p;:
records its local state o;
sends “take a snapshot” along its outgoing channels
sets channel from p,to empty

starts recording messages received over each of its other incoming
channels

when p; receives “take a snapshot” beyond the first time from py:
o stops recording channel from p;

when p; has received “take a snapshot” on all channels, it sends
collected state to po and stops.

Relaxing synchrony

empty message:
take a TS(m) > Q
snapshot at

Di
I

s lie
| 1 monitors
! channels

1
|
Process does nothing records ==~ =
for the protocol local state o
during this timel

sends empty message:
TS(m) > Q

Use empty message to announce snapshot!

Snapshots: a perspective

@ The global state ¥° saved by the snapshot
protocol is a consistent global state

Snapshots: a perspective

@ The global state ¥° saved by the snapshot
protocol is a consistent global state

@ But did it ever occur during the computation?

D a distributed computation provides only a
partial order of events

o many total orders (runs) are compatible
with that partial order

o all we know is that ¢ have occurred

An Execution and its
Lattice

Snapshots: a perspective

@ The global state ¥° saved by the snapshot
protocol is a consistent global state

@ But did it ever occur during the computation?

D a distributed computation provides only a
partial order of events

o many total orders (runs) are compatible
with that partial order

o all we know is that ¢ have occurred

@ We are evaluating predicates on states that
may have never occurred!

An Execution and its
Lattice

An Execution and its An Execution and its
Lattice Lattice
2

An Execution and its An Execution and its
Lattice Lattice

An Execution and its An Execution and its

Lattice Lattice

An Execution and its An Execution and its
Lattice Lattice

210 e
\ 02
>5 e

21 2

<
S
W

O
2xfxﬁ ;
1\/ \/ \/,\/
0\/\/\/\/\/
(xfx/\/\/\/

An Execution and its
An Execution and its

/\/\/\/\
/\u /\

An Execution and its
An Execution and its

Reachability

©* is reachable from £ if
there is a path from ©* to %%
in the lattice

©* is reachable from £ if
there is a path from ©* to %%
in the lattice

Reachability

©* is reachable from £ if
there is a path from ©* to ¥
in the lattice

©* is reachable from £ if
there is a path from ©* to ¥
in the lattice

LIRS i

So, why do we care
about X»° again?

@ Deadlock is a stable property

Deadlock = [0 Deadlock

@ If a run R of the snapshot protocol starts
in X% and terminates in %7, then X% ~sp ©f

So, why do we care
about X>° again?

@ Deadlock is a stable property

Deadlock = [0 Deadlock

@ If a run R of the snapshot protocol starts
in ©% and terminates in %7, then X% ~sp ©f

& Deadlock in ¥° implies deadlock in %/

@ No deadlock in X* implies no deadlock in X'

So, why do we care
about X>° again?

@ Deadlock is a stable property

Deadlock = [0 Deadlock

@ If a run R of the snapshot protocol starts
in X% and terminates in %7, then X% ~sp ©f

& Deadlock in ¥° implies deadlock in %/

