

Our Problem

To compute predicates over the state of a distributed application

Model

Message passing

No failures

- Two possible timing assumptions:
 - 1. Synchronous System
 - 2. Asynchronous System
 - No upper bound on message delivery time
 - □ No bound on relative process speeds
 - □ No centralized clock

Clock Synchronization

External Clock Synchronization

keep processor clock within some maximum deviation from an external time source.

- can exchange of info about timing events of different systems
- can take actions at real-time deadlines
- synchronization within 0.1 ms

Internal Clock Synchronization: keep processor clocks within some

maximum deviation from each other.

- can measure duration of distributed activities that start on one process and terminate on another
- can totally order events that occur on a distributed system

Synchronizion clocks: Take 1

- Assume an upper bound max and a lower bound min on message delivery time
- Guarantee that processes stay synchronized within max – min

Synchronizion clocks: Take 1

- Assume an upper bound max and a lower bound min on message delivery time
- Guarantee that processes stay synchronized within max – min

Clock Synchronization: Take 2

- No upper bound on message delivery time...
- ...but lower bound min on message delivery time
- So Use timeout maxp to detect process failures
- Islaves send messages to master
- Master averages slaves value; computes fault-tolerant average

Precision: 4 maxp - min

Probabilistic Clock Synchronization (Cristian)

- @ Master-Slave architecture
- Master is connected to external time source
- Slaves read master's clock and adjust their own

How accurately can a slave read the master's clock?

The Idea

- Clock accuracy depends on message roundtrip time
 - if roundtrip is small, master and slave cannot have drifted by much!
- Since no upper bound on message delivery, no certainty of accurate enough reading...
- ... but very accurate reading can be achieved by repeated attempts

Asynchronous systems

- Weakest possible assumptions
 - ⌀ cfr. "finite progress axiom"
- \odot Weak assumptions \equiv less vulnerabilities
- Asynchronous ≠ slow
- "Interesting" model wrt failures (ah ah ah!)

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

S

A client requests a service by sending the server a message. The client blocks while waiting for a response

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response The server computes the response (possibly asking other servers) and returns it to the client

Goal

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds

Wait-For Graphs

Oraw arrow from p_i to p_j if p_j has received a request but has not responded yet

Wait-For Graphs

- Oraw arrow from p_i to p_j if p_j has received a request but has not responded yet
- Cycle in WFG \Rightarrow deadlock
- Deadlock $\Rightarrow \Diamond$ cycle in WFG

The protocol

- p_0 sends a message to $p_1 \dots p_3$
- ${\ensuremath{ \circ }}$ On receipt of $p_0{\ensuremath{ 's }}$ message, p_i replies with its state and wait-for info

Houston, we have a problem...

- Asynchronous system
 - □ no centralized clock, etc. etc.
- Synchrony useful to
 - > coordinate actions
 - > order events
- Ø Mmmmhhh...

Events and Histories

- Processes execute sequences of events
- Sevents can be of 3 types: local, send, and receive
- $\bullet e_p^i$ is the i-th event of process p
- ${\rm \ref{o}}$ The local history h_p of process p is the sequence of events executed by process p
 - h_n^k : prefix that contains first k events
 - \bullet h_p^0 : initial, empty sequence
- \odot The history H is the set $h_{p_0} \cup h_{p_1} \cup \ldots h_{p_{n-1}}$ NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

Ordering events

Ø Observation 1:

© Events in a local history are totally ordered

Ø Observation 2:

 p_i -

 p_j

 $p_i \longrightarrow$

 \bullet For every message m, send(m) precedes receive(m)

time

Happened-before (Lamport[1978])

A binary relation \rightarrow defined over events

- 1. if $e_i^k, e_i^l \in h_i$ and k < l, then $e_i^k \rightarrow e_i^l$
- 2. if $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$
- 3. if $e \to e'$ and $e' \to e''$ then $e \to e''$

Space-Time diagrams

A graphic representation of a distributed execution

Space-Time diagrams

Space-Time diagrams

A graphic representation of a distributed execution

Space-Time diagrams

Runs and Consistent Runs

- A run is a total ordering of the events in H that is consistent with the local histories of the processors
 - \square Ex: h_1, h_2, \ldots, h_n is a run
- A run is consistent if the total order imposed in the run is an extension of the partial order induced by →
- A single distributed computation may correspond to several consistent runs!

Cuts

A cut C is a subset of the global history of H $C=h_1^{c_1}\cup h_2^{c_2}\cup\dots h_n^{c_n}$

Cuts

A cut C is a subset of the global history of H

 $C = h_1^{c_1} \cup h_2^{c_2} \cup \dots h_n^{c_n}$

The frontier of C is the set of events $e_1^{c_1}, e_2^{c_2}, \dots e_n^{c_n}$

Global states and cuts

 The global state of a distributed computation is an n-tuple of local states

 $\Sigma = (\sigma_1, \dots \sigma_n)$

• To each cut $(c_1 \dots c_n)$ corresponds a global state $(\sigma_1^{c_1}, \dots \sigma_n^{c_n})$

Consistent cuts and consistent global states

A cut is consistent if

 $\forall e_i, e_j : e_j \in C \land e_i \to e_j \Rightarrow e_i \in C$

 A consistent global state is one corresponding to a consistent cut

What p_0 sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event

Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
 - > processor states
 - > channel states

Assumptions:

- > FIFO channels
- > Each m timestamped with with T(send(m))

Snapshot I

i. p_0 selects t_{ss}

ii. p_0 sends "take a snapshot at t_{ss} " to all processes

- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. starts recording messages received on each of incoming channels
 - c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Snapshot I

i. p_0 selects t_{ss}

- ii. p_0 sends "take a snapshot at t_{ss} " to all processes
- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. sends an empty message along its outgoing channels
 - c. starts recording messages received on each of incoming channels
 - d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Snapshot I produces a consistent cut Theorem

Proof Need to prove $e_i \in C \land e_i \rightarrow e_i \Rightarrow e_i \in C$

< Definition > 0. $e_j \in \overline{C} \equiv T(e_j) < t_{ss}$ 3. $T(e_j) < t_{ss}$ < Assumption > 1. $e_i \in C$

< 0 and 1> < Property of real time>

< Assumption > < 2 and 4>

< 5 and 3> 6. $T(e_i) < t_{ss}$ < Definition >

7. $e_i \in C$

5. $T(e_i) < T(e_j)$

Clock Condition

< Property of real time> 4. $e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$

Can the Clock Condition be implemented some other way?

Lamport Clocks

A subtle problem

when LC = t do S doesn't make sense for Lamport clocks!

- $ilde{O}$ there is no guarantee that LC will ever be t
- \odot S is anyway executed <u>after</u> LC = t

Fixes:

- \bullet if e is internal/send and LC = t 2
 - \square execute e and then S
- if $e = receive(m) \land (TS(m) \ge t) \land (LC \le t 1)$
 - 🗅 put message back in channel
 - \square re-enable e ; set LC = t 1; execute S

An obvious problem

o No $t_{ss}!$

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

An obvious problem

o No $t_{ss}!$

 ${\ensuremath{\, o}}$ Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh.

An obvious problem

o No $t_{ss}!$

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

- Doing so assumes
 - ø upper bound on message delivery time
 - o upper bound relative process speeds

We better relax it...

Snapshot II

\circ processor p_0 selects Ω

- ${\it o}$ p_0 sends "take a snapshot at Ω'' to all processes and sets its logical clock to Ω
- ${\boldsymbol{ \circ}}$ when clock of p_i reads Ω then p_i
 - \square records its local state σ_i
 - 🗅 sends an empty message along its outgoing channels
 - starts recording messages received on each incoming channel
 - \square stops recording a channel when receives first message with timestamp greater than or equal to Ω

Relaxing synchrony

Snapshot III

- ø processor p₀ sends itself "take a snapshot "
- when p_i receives "take a snapshot" for the first time from p_j :
 - \square records its local state σ_i
 - □ sends "take a snapshot" along its outgoing channels
 - \square sets channel from p_j to empty
 - starts recording messages received over each of its other incoming channels
- \bullet when p_i receives "take a snapshot" beyond the first time from p_k :
 - \square stops recording channel from p_k
- ${\it @}$ when p_i has received "take a snapshot" on all channels, it sends collected state to p_0 and stops.

Snapshots: a perspective

 ${\ensuremath{ \circ }}$ The global state Σ^s saved by the snapshot protocol is a consistent global state

Snapshots: a perspective

- $\ensuremath{\mathfrak{S}}$ The global state Σ^s saved by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
 - a distributed computation provides only a partial order of events
 - many total orders (runs) are compatible with that partial order
 - \square all we know is that \sum^{s} could have occurred

Snapshots: a perspective

- ${\ensuremath{ \circ }}$ The global state Σ^s saved by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
 - a distributed computation provides only a partial order of events
 - many total orders (runs) are compatible with that partial order
 - \square all we know is that Σ^s could have occurred
- We are evaluating predicates on states that may have never occurred!

So, why do we care about Σ^s again?

Deadlock is a stable property

 $\texttt{Deadlock} \ \Rightarrow \Box \ \texttt{Deadlock}$

• If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \rightsquigarrow_R \Sigma^f$

So, why do we care about Σ^s again?

Deadlock is a stable property

 $Deadlock \Rightarrow \Box Deadlock$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \rightsquigarrow_R \Sigma^f$
- ${\boldsymbol{ \circ}}$ Deadlock in Σ^s implies deadlock in Σ^f

So, why do we care about Σ^s again?

Deadlock is a stable property

 $Deadlock \Rightarrow \Box Deadlock$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \rightsquigarrow_R \Sigma^f$
- ${\it { o} }$ Deadlock in Σ^s implies deadlock in Σ^f
- ${\color{black} \bullet}$ No deadlock in Σ^s implies no deadlock in Σ^i