
Wait-Free Synchronization
Lecture 1

CS380D—Distributed Computing
The University of Texas at Austin

Coöperation

Many large problems require multiple
processes to cooperate on a solution
Cooperation requires shared data

How can we provide efficient
concurrent access to shared data?

Concurrency Model (Informal)

Asynchronous—concurrent processes
execute without relative bounds on the
speed between processes, and a process’s
speed may vary over time.
Failstop—processes may fail by halting at
any time.

A concurrent object is a data
structure shared by concurrent
processes.

Concurrent Data Structures

pop()
A

ok

push(F)

push(E)
ok

A

LIFO
Queue

G
B
D

Only allow one operation to act on
the object at a time

Other operations must wait...

Mutual Exclusion

push(E)

ok

A

LIFO
Queue

G
B
D

tap,
tap,
tap,
tap...

Suppose a process falls asleep
Or even fails...

What’s Wrong With Locks?

A

LIFO
Queue

G
B
D

Zzzzzzzzzz

tap,
tap,
tap,
tap...

Deadlock (no progress)
Priority Inversion (wrong progress)
Convoying (delayed progress)
Inefficiency (wasted concurrency)
Undo Log (required for recovery)

Mutual Exclusion’s Problems

A

LIFO
Queue

G
B
D

Wait-Free Concurrent Objects

A wait-free data structure guarantees that
any process can complete any operation in a
finite number of steps. (Lamport)

Lesser Freedoms

A lock-free data structure guarantees that
some process will complete an operation in
a finite number of steps.

An obstruction-free data structure
guarantees that a process will complete an
operation provided there is no contention
(against the operation) for a sufficient
number of steps.

Yes, but?

Can we make any object wait-free?
What primitives are necessary / sufficient for
constructing wait-free objects?

How do we build a wait-free object?
Is there a universal constructor?

How do we know the implementation is
correct?

You can breathe. Thank Herlihy.

A wait-free implementation of an object can
be built out of any object with the same
consensus number.
There is a universal constructor using an
object of infinite consensus number.
We can verify correctness by showing that
the implementation is linearizable.

Linearizability In a Nutshell
Each operation of the system appears to take effect
instantaneously between the invocation and response.

A

LIFO
Queue

G
B
D

pop()

E

ok

push(F)

push(E)

ok
pop()

E

ok
push(F)

push(E)
ok

Linearizability Is...

A local property—a concurrent system is
linearizable if and only if each individual
object is linearizable
A non-blocking property—a total operation
(that is, defined for all object states) is never
required to block

How does this compare to sequential
consistency or serializability?

Concurrency Model (Formal)

A concurrent system { P1 ... Pn ; O1 ... Om } is
a set of processes, Pi, and objects, Oi

Processes and Objects are I/O automata with
the following events:

INVOKE(P, op, O)—op is an operation of O
RESPOND(P, res, O)—res is a result value

An object’s operations must be total
If the object has a pending operation there is a matching enabled
response

An I/O Automaton

An I/O automaton A consists of:

1. States(A) – a finite or infinite set of states
2. In(A) – a set of input events (always enabled)
3. Out(A) – a set of output events
4. Int(A) – a set of internal events
5. Step(A) – a transition relation of triples (s’, e, s)

An event e is enabled in state s’ if (s’, e, s) in Step(A) for some s.

A history is a sequence of enabled events starting at an initial state.

I/O automata can be composed if they are compatible (that is, they share no output
or internal events)

Implementations

An implementation of an object A is a
concurrent system {F1... Fr ; R}

the Fi are called front-ends
object R is called the representation object

The external events of the implementation
are just the external events of A.
The Fi share no events; they only
communicate through R

A Consensus Protocol is...

A concurrent system { P1 ... Pn ; X1 ... Xm } of n
processes, where

each Pi starts with an input value from some domain D

the Pi communicate by applying operations to the objects Xi

the processes eventually agree on a common input value and halt

Required to be
consistent—distinct processes never decide on distinct values
valid—the common decision value is the input to some process
wait-free—each process decides after a finite number of steps

The Consensus Number

The consensus number of a concurrent object
X is the largest n for which there exists a
consensus protocol { P1 ... Pn ; W, X }

W is a set of read/write registers
W and X can be initialized to any state

If no largest n exists, the consensus number is
said to be infinite

Consensus Number Antics

Theorem: If X has consensus number n, and
Y has consensus number m < n, then there
exists no wait-free implementation of X by Y
in a system of more than m processes.
The theorem implies that there is a
hierarchy where each level n of the
hierarchy contains concurrent objects with
consensus number n

Theorem Proof

By contradiction. Assume X has consensus number n,
and Y has consensus number m < n. Let k > m, assume
for contradiction that X = { G1 ... Gk ; Y } has

consensus number k.

{ P1 ... Pk ; W, X } is a consensus protocol

{ P1 ... Pn ; W, { G1 ... Gn ; Y } } is wait-free
{ P1⋅ G1 ... Pn⋅ Gn ; W, Y } is a consensus
protocol because composition is associative

Herlihy’s Wait-Free Hierarchy

Consensus
Number Object

1 atomic read/write registers

2 test&set, fetch&add

2n - 2 n-register assignment

∞ compare&swap, FIFO queue w/ peek

Compare-and-Swap
val CAS(val* addr, val old, val new)
{
 val prev = *addr;
 if (prev == old) { *addr = new; }
 return prev;
}

at
om

ic
al

ly

CMPXCHG (with “lock”) – Intel x86

Load Linked / Store Conditional – MIPS, PowerPC

Compare&Swap Register

Theorem: A CAS register has infinite
consensus number.

value_t decision = ⊥;
value_t decide(value_t input) {
 first = CAS(&decision, ⊥, input);
 if (first == ⊥) // CAS succeeded?
 return input;
 else
 return first;
}

Wait-Free Synchronization
Lecture 2

CS380D—Distributed Computing
The University of Texas at Austin

Summary so far...

Wait-free synchronization provides
guaranteed progress to all correct
processes
There is a wait-free hierarchy determined
by an object’s consensus number
Compare&Swap is a universal primitive
and thus can be used to implement any
wait-free object

Hierarchy Redux

The wait-free hierarchy states that an
object with consensus number n (and some
registers) cannot be used to implement an
object of consensus number m > n
How useful is this wait-free hierarchy?

Can we use multiple objects of consensus
number n to implement a higher object?

A Robust Hierarchy

A robust hierarchy requires that an object
at level n be impossible to implement using
any set composed of objects at level n-1 or
lower

Such a hierarchy would imply that there
are no clever ways to combine inferior
objects to create superior objects
Is Herlihy’s wait-free hierarchy robust?

The wait-free hierarchy is not
robust.

The weak-sticky object has the property that
k objects (together with read/write
registers) can implement an object with
consensus number k+1 (Jayanti)
The weak-sticky object is based upon the
sticky bit object that solves 1-bit consensus

Plotkin’s Sticky Bit

State diagram:

SRSL

(R-op, R-first)(L-op, L-first)

(R-op, R-first)
(L-op, R-first)(L-op, L-first)

(R-op, L-first)

S⊥

The sticky bit provides a global order for
the first operation only

Apply(Pi, propose bi, On)
 return (L-first = Apply(Pi, bi = 1 ? L-op : R-op, Os))

Plotkin’s Sticky Bit

Why does the sticky bit object have consensus
number ∞?

1-bit consensus object using Os:

(Os is a sticky bit object,

 On is an n-process consensus object)

Weak-Sticky Objects

SRSL

(R-op, R-first)(L-op, L-first)

(R-op, L-first)
(L-op, R-first)(L-op, L-first)

(R-op, L-first)

S⊥

Asymmetric version of sticky bit object
Second R-op locks bit to L-first result

Provides a global order to first operation for only
2 participants

Asymmetry prevents consensus number ∞

Apply(P0, propose v0, O2)
L := v0
w := Apply(P0, L-op, Ows)
if w = L-first
 return (L)
else
 return (R)

Apply(P1, propose v1, O2)
R := v1
w := Apply(P1, R-op, Ows)
if w = L-first
 return (L)
else
 return (R)

Weak-Sticky Objects

Is this valid? agreeable? wait-free?

Consensus object with {Ows,L,R}:
(Ows is a weak-sticky object, L & R are shared registers,

 O2 is a 2-process consensus object)

Apply(Pi, propose vi, On) {0<i<n}
L := Apply(Pi, propose vi, On-1)
w := Apply(Pi, L-op, Ows)
if w = L-first
 return (L)
else
 return (R)

Apply(Pn, propose vn, On)
R := vn
w := Apply(Pn, R-op, Ows)
if w = L-first
 return (L)
else
 return (R)

Building Consensus

Can other objects be used similarly to build
objects with higher consensus number?

Consensus object with {Ows,On-1,L,R}:
(Ows, L, R as before, On-1 is an (n-1)-process consensus object, On
is an n-process consensus object)

Universal Objects

An object is universal if it can be used to
construct a wait-free implementation of any
object (that is, it has consensus number ∞).
In a system of n processes, an object is
universal if and only if the object has
consensus number n.
CAS has consensus number ∞ and thus is a
universal object.

How do we build using CAS?

Use CAS to guarantee consistency during
concurrent operations

CAS can ensure that the update that succeeds is
consistent with the previous view of the object

Wait-freedom seems to require helping to
guarantee progress to all threads

Disjoint-set parallel algorithms only help
operations of other threads that “conflict”

A Simple Stack Object

Push(elem *x)
 do
 old = qhead;
 x->link = old;
 new = x;
 cc = CAS(qhead, old, new);
 until (cc == old);

 struct elem {
 elem *link;
 any data;
 }

 elem* qhead;

Pop()
 do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
 until (cc == old);
 return old;

Is this solution:
 wait-free?
 lock-free?
 obstruction-free?

Is this implementation correct?

Pop()
do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
until (cc == old);
return old;

qhead &A

A &B

B 0

Is this implementation correct?

qhead &A

A &B

B 0

old &A

new &B

Pop()
do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
until (cc == old);
return old;

Is this implementation correct?

qhead &B

B 0

old &A

new &B

Pop()
do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
until (cc == old);
return old;

Is this implementation correct?

qhead 0

old &A

new &B

Pop()
do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
until (cc == old);
return old;

Is this implementation correct?

qhead &A

A 0

old &A

new &B

Pop()
do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
until (cc == old);
return old;

Is this implementation correct?

qhead &B

???

This is called the “ABA problem”
How do we solve the problem?

Pop()
do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
until (cc == old);
return old;

How can we handle ABA?

Use CAS2 (often called DCAS)
boolean CAS2(val* addr1, val* addr2,
 val old1, val old2, val new1, val new2) {
 if (*addr1 == old1 && *addr2 == old2) {
 *addr1 = new1; *addr2 = new2;
 return true;
 } else
 return false;
}

at
om

ic
al

ly

How is this useful?

Proposed Stack with CAS2

Pop()
 do
 old = qhead;
 link_field = &(old->link);
 new = *link_field;
 cc = CAS2(qhead, *link_field,
 old, new, new, new);
 until (cc);
 return old;

Does it make sense to CAS(link, new, new)?
Is there a more general way to ensure the
object hasn’t changed?

DWCAS

Double-wide CAS (DWCAS) performs a
CAS on memory locations comprised of two
adjacent words
Adding a version number to each location
ensures the location is the expected version

Update version number when object is modified

Included expected version number in DWCAS

Stack with DWCAS

Push(elem *x)
 do
 old = qhead.link;
 oldseq = qhead.seq;
 x->link = old;
 cc = DWCAS(qhead,
 <old, oldseq>,
 <x, oldseq+1>);
 until (cc);

Pop()
 do
 old = qhead.link;
 oldseq = qhead.seq;
 new = old->link;
 cc = DWCAS(qhead,
 <old, oldseq>,
 <new, oldseq+1>);
 until (cc);
 return old;

 struct elem {
 elem *link;
 any data;
 }

struct qhead {
 elem *link;
 int seq;
} qhead;

Problems with DWCAS

Requires more memory per object
Does it really solve the problem?

Version representation is finite

Assumes type-stable memory
Restricts reuse to same type

We need lock-free garbage collection
Allows for simpler implementation of lock-free
objects

Lock-free Garbage Collection

We have to address the garbage collection
problem while maintaining lock-free access
to data structures
How do we tell whether an object is really
garbage?
How do we track memory using lock-free
data structures?

Hazardous References

A hazardous reference is an address that
without further validation can be used to
access a node after it has been deleted
Hazard pointers are used for each thread to
track hazardous references

Pop()
do
 old = qhead;
 new = old->link;
 cc = CAS(qhead, old, new);
until (cc == old);
return old;ol

d
is

ha
za

rd
ou

s

Safe Memory Reclamation

Safe Memory Reclamation (SMR)
Whenever a thread holds a hazardous
reference, it must guarantee that a hazard
pointer contains the reference (Michael)

SMR Stack Object

HP is shared array of hazard pointers
hp = &HP[p] (where p is current thread)

Pop()
 do
 old = qhead;
 *hp = old;
 if (old != qhead) { continue; }
 new = old->link;
 cc = CAS(qhead, old, new);
 until (cc != old);
 *hp = NULL;
 return old;

Validity check

When is memory “garbage”?

A node can queue an object for deletion
when the object is semantically dead

When the object is not reachable using
the current state of all other objects
In lieu of a call to free(object)

Memory Deallocation

Periodically check the list of queued deletes
to see whether any hazardous references
exists
If no hazard pointers contain an object in
the list, the object’s memory may safely be
deallocated

How can we tell if there are hazard pointers
to the object?

SMR Algorithm

// constants
int R; // batch size
int N; // # hazard ptrs

// shared variables
Node *HP[N] = { NULL, };

// static private vars
int dcount = 0;
Node *dlist[R];

SMR_free(Node *n)
 dlist[dcount++] = n;
 if(R == dcount)
 Scan();

Scan()
 // Stage 1: copy hp
 < copy HP to local plist >
 // Stage 2: sort for search
 < sort plist >
 // Stage 3: free garbage
 for(i=0; i<R; ++i)
 if(find(dlist[i],plist))
 *(new_dlist++) = dlist[i];
 else
 free(dlist[i]);
 // Stage 4: save remainder
 < copy new_dlist to dlist >

Multiple Hazard Pointers

The HP array is
scanned non-
atomically,
requiring hazard
pointers to be
maintained in the
same order that the
HP array is
scanned

Dequeue()
 while(true)
 h = qhead;
 *hp0 = h;
 if(h != qhead) { continue; }
 t = qtail;
 next = h->link;
 *hp1 = next;
 if(h != qhead)
 { *hp0 = NULL; return EMPTY; }
 if(h == t)
 { CAS(&qtail, t, next); continue;
 data = next->data;
 if(h == CAS(&qhead, h, next))
 break;
 *hp0 = NULL; *hp1 = NULL;
 SMR_free(h);
 return data;

SMR Questions

Does SMR really solve ABA?

Is SMR really wait-free?

SMR Answers

Does SMR really solve ABA?
SMR addresses only reallocation

Is SMR really wait-free?
The operations complete in finite steps

Memory is not guaranteed to be deallocated

