

Concurrency Model (Informal)

m - * ; o = il o A O Nt e R R e o Py T el - ¥ ._ S N

o Asynchronous—concurrent processes
execute without relative bounds on the
speed between processes, and a process’s
speed may vary over time.

o Failstop—processes may fail by halting at
any time.

e e
(TT1T13

> 2]
AREEED)

> 2]
AREEED)

- - ! . - 3 e B L r L
TR i A ot g e g R * L W R e PR e e

o Deadlock (no progress)

o Priority Inversion (wrong progress)
o Convoying (delayed progress)

o Inefficiency (wasted concurrency)

o Undo Log (required for recovery)

Mutual Exclusion’s Problems

| Q| >

LIFO

Queue

[esser Freedoms

= % ; ; - iy oo el g Ky g i ey gl s % - . ke
TN e A Tt S e AR YA e B L PRI L = e e T

A lock-free data structure guarantees that

some process will complete an operation in
a finite number of steps.

An obstruction-free data structure
guarantees that a process will complete an
operation provided there is no contention

(against the operation) for a sufficient
number of steps.

You can breathe. Thank Herhhy

AT S o Tt A e DA A Py T3 LS St v SRR TR

o A wait-free implementation of an object can
be built out of any object with the same
consensus number.

o There is a universal constructor using an
object of infinite consensus number.

o We can verify correctness by showing that
the implementation is linearizable.

Linearizability Is...

m - * 5 b = il B it~ L 3 PSSR ER Lo e PRl T “W' ¥ m S N

o A local property—a concurrent system is
linearizable if and only if each individual
object is linearizable

o A non-blocking property—a total operation
(that is, defined for all object states) is never
required to block

How does this compare to sequential
consistency or serializability?

Concurrency Model (Formal)

AT R S A Tt AL - e R bt ™ S L e W B PN e e

L

o A concurrent system{ P;... P,; O;... 0, }is
a set of processes, P;, and objects, O,

o Processes and Objects are I/O automata with

the following events:
o INVOKE(P, op, O)—op is an operation of O
o RESPOND(P, res, O)—res is a result value

o An object’s operations must be total

o [fthe object has a pending operation there is a matching enabled
response

Implementations

E = : : - ¥ e i L e
TR i A ot g vanra = IR et W o B PN

o An implementation of an object A is a
concurrent system{F,;... F, ; R}

o the F; are called front-ends
o object R is called the representation object

o The external events of the implementation
are just the external events of A.

o The Fj share no events; they only
communicate through R

A Consensus Protocol 1s...

mm.{m = et Ll AT ke, PR

L

A concurrent system{ P;... P, ; X;... X,, } of

processes, where

o each P starts with an input value from some domain D

TR

n

o the P. communicate by applying operations to the objects X.
o the processes eventually agree on a common input value and halt

Required to be

o consistent—distinct processes never decide on distinct values
o valid—the common decision value is the input to some process

o wait-free—each process decides after a finite number of steps

The Consensus Number

- . . . - 4 ARELE R Y L RN
A A G g gty S AR s b d RN

o The consensus number of a concurrent object
X is the largest n for which there exists a
consensus protocol { P el SW X }

o Wis a set of read/write registers
o Wand X can be initialized to any state

o If no largest n exists, the consensus number is
said to be infinite

Consensus Number Antics

- - ! g - : LR LR S ¥ h i S e
TR St T A P LT DA A et et s SRt 2 Lk kPR

o Theorem: If X has consensus number n, and
Y has consensus number m < n, then there
exists no wait-free implementation of X by Y
in a system of more than m processes.

o The theorem implies that there is a
hierarchy where each level n of the
hierarchy contains concurrent objects with
consensus number n

Theorem Proof

e e e e e P 2 il

By contradiction. Assume X has consensus number n,
and Y has consensus number m < n. Let kK > m, assume

for contradiction that X = { G 7 Gk ; Y } has

consensus number k.
o P e Pk ; W, X }is a consensus protocol
o{ P,...P ;WA{G,..G ;Y}}iswait-free
o{ P G,...P -G, ;WY }isaconsensus

protocol because composition is associative

Summary so far...

e e e e e P 2 il

o Wait-free synchronization provides
guaranteed progress to all correct
processes

o There is a wait-free hierarchy determined
by an object’s consensus number

o Compare&Swap is a universal primitive
and thus can be used to implement any
wait-free object

Hlerarchy Redux

AL ot Tt GBS P A A ety S 3 L a2 LY R il P

Wk o

o The wait-free hierarchy states that an
object with consensus number n (and some
registers) cannot be used to implement an
object of consensus number m > n

o How useful is this wait-free hierarchy?

o Can we use multiple objects of consensus
number n to implement a higher object?

A Robust Hlerarchy

R -t e, . L NS
L] A g i L P

AT et T g

Wk o

o A robust hierarchy requires that an object
at level n be impossible to implement using
any set composed of objects at level n-1 or
lower

o Such a hierarchy would imply that there
are no clever ways to combine inferior
objects to create superior objects

o Is Herlihy's wait-free hierarchy robust?

The wait-free hierarchy 1s not
robust.

P R A A Tt A S P e A e A ey S LT St T

o The weak-sticky object has the property that
k objects (together with read/write
registers) can implement an object with
consensus number k+1 (Jayanti)

o The weak-sticky object is based upon the
sticky bit object that solves 1-bit consensus

Weak- St1cky Objects

AT S o Tt A e DA A Py T3 LS St v B PN o 16 i o it DR i AR

(L-op, L-first) @(R op, R-first)

(L-op, L-first) (L-op, R-first)
(R-op, L-first) (R-op, L-first)

o Asymmetric version of sticky bit object
o Second R-op locks bit to L-first result

o Provides a global order to first operation for only
2 participants

o Asymmetry prevents consensus number o

AT et T g

Weak- Stlcky Objects

. 4” - e ﬂhu!mﬁh

el i o PN ”,Mww

o Consensus object with { OWS,L,R A

(O Pyt is a weak-sticky object, L & R are shared registers,

02 is a 2-process consensus object)

Apply(PO, propose v,, 0,)
L = Vo

w := Apply(P,, L-op, O_,)
if w = L-first

return (L)
else

return (R)

Apply(Pl, propose v, O,)
R = \2

w := Apply(P;, R-op, O_/)
if w = L-first

return (L)
else

return (R)

Is this valid? agreeable? wait-free?

Building Consensus

I S Tt A e PR L e e e T
o Consensus object with { 0 .0 ,LR}:
(Ow 4 L, R as before, O g is an (n-1)-process consensus object, O 3

is an n-process consensus object)

Apply(P,, propose v., O,) {0<i<n} |Apply(P,, propose v_, O_)

L := Apply(Pi, propose v., O, _;) R=g ==V,
w := Apply(P;, L-op, O) w := Apply(P,, R-op, O_.)
if w = L-first if w = L-first
return (L) return (L)
else else
return (R) return (R)

Can other objects be used similarly to build
objects with higher consensus number?

Universal Objects

E = ’ : = ¥ " e i r L
TR i A ot g e g R * L W R e PR e e

o An object is universal if it can be used to
construct a wait-free implementation of any
object (that is, it has consensus number).

o In a system of n processes, an object is
universal if and only if the object has
consensus number n.

o CAS has consensus number © and thus is a
universal object.

How do we build usmg CAS?

AT S o Tt A e DA A Py T3 LS St v SRR TR

o Use CAS to guarantee consistency during
concurrent operations

o CAS can ensure that the update that succeeds is
consistent with the previous view of the object

o Wait-freedom seems to require helping to
guarantee progress to all threads

o Disjoint-set parallel algorithms only help
operations of other threads that “conflict”

DWCAS

i !Hﬂﬂ' - :{' g s - WA Pty oo T L g K g i e L s 1] LT

L

o Double-wide CAS (DWCAS) performs a
CAS on memory locations comprised of two
adjacent words

o Adding a version number to each location
ensures the location is the expected version

o Update version number when object is modified

o Included expected version number in DWCAS

Problems with DWCAS

PR A A it AL e A ATty S ST IR o i Lo laa, PRR PR

o Requires more memory per object
o Does it really solve the problem?
o Version representation is finite

o Assumes type-stable memory

o Restricts reuse to same type

o We need lock-free garbage collection

o Allows for simpler implementation of lock-free
objects

Lock-free Garbage Collection

£ | i “ - ..*. . : " - ‘lﬁ- #Iﬂhﬂ;:ﬂiﬂh._u..n_—ﬁ}:b e [‘-4"‘&:‘ T T - ¥ . _‘- '._'Lm &

o We have to address the garbage collection
problem while maintaining lock-free access
to data structures

o How do we tell whether an object is really
garbage?

o How do we track memory using lock-free
data structures?

Hazardous References

ATk S A, Tt g S i L L PRRSRIIIER s P T S

o A hazardous reference is an address that
without further validation can be used to
access a node after it has been deleted

o Hazard pointers are used for each thread to
track hazardous references

2 Pop ()

S do

S old = ghead;

S new = old->1link;

z cc = CAS(ghead, old, new);
o until (cc == old);

8 return old;

When 1s memory garbage

mm&mw A Pty S L T e L T sk PR

o A node can queue an object for deletion
when the object is semantically dead

o When the object is not reachable using
the current state of all other objects

o In lieu of a call to f r ee(object)

Memory Deallocation

AR S Tt ol - e e i anie . TIPSR e W R R: R R

o Periodically check the list of queued deletes
to see whether any hazardous references
exists

o [If no hazard pointers contain an object in
the list, the object’s memory may safely be
deallocated

How can we tell if there are hazard pointers
to the object?

SMR Algorithm

m - * ; o = il o A O Nt e R R e o Py T el “W' ¥ ._ m S N

// constants Scan()
int R; // batch size // Stage 1l: copy hp
int N; // # hazard ptrs < copy HP to local plist >
// Stage 2: sort for search
// shared variables < sort plist >
Node *HP[N] = { NULL, }; // Stage 3: free garbage
Fort =0 sa<Rs ++1 1)
// static private vars if(find(dlist[i],plist))
int dcount = 0; *(new dlist++) = dlist[i];
Node *dlist[R]; else
free(dlist[i]);
// Stage 4: save remainder
SMR free(Node *n) < copy new dlist to dlist >
dlist[dcount++] = n;
if(R == dcount)

Scan();

Multiple Hazard Pointers

AR S Tt ol - e e i anie . TIPSR e W R R: R R

o D
S Bhe HIP arFayiis: - cnire(teas)

h = ghead;

scanned non- e

. sebitnhcbeaghead -) - .continue;: }
atomically, B

L next = h->1link;
requiring hazard e
pointers to be § oo L ghead)

; . : {*+hpl0 = NULL: . return EMPTY;+}

maintained in the EEESHE ==t)

{ CAS(>ail, t, next); continue;

same order that the data = next->data;

: if(h == CAS(&ghead, h, next))
HP array is break;
Ci *hp0 = NULL; *hpl = NULL;
scanne SMR free(h);

return data;

