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Coöperation

Many large problems require multiple 
processes to cooperate on a solution
Cooperation requires shared data

How can we provide efficient 
concurrent access to shared data?



Concurrency Model (Informal)

Asynchronous—concurrent processes 
execute without relative bounds on the 
speed between processes, and a process’s 
speed may vary over time.
Failstop—processes may fail by halting at 
any time.



A concurrent object is a data 
structure shared by concurrent 
processes.

Concurrent Data Structures
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Only allow one operation to act on 
the object at a time

Other operations must wait...

Mutual Exclusion
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Suppose a process falls asleep
Or even fails...

What’s Wrong With Locks?
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Deadlock (no progress)
Priority Inversion (wrong progress)
Convoying (delayed progress)
Inefficiency (wasted concurrency)
Undo Log (required for recovery)

Mutual Exclusion’s Problems
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Wait-Free Concurrent Objects

A wait-free data structure guarantees that 
any process can complete any operation in a 
finite number of steps. (Lamport)



Lesser Freedoms

A lock-free data structure guarantees that 
some process will complete an operation in 
a finite number of steps.

An obstruction-free data structure 
guarantees that a process will complete an 
operation provided there is no contention 
(against the operation) for a sufficient 
number of steps.



Yes, but?

Can we make any object wait-free?
What primitives are necessary / sufficient for 
constructing wait-free objects?

How do we build a wait-free object?
Is there a universal constructor?

How do we know the implementation is 
correct?



You can breathe. Thank Herlihy.

A wait-free implementation of an object can 
be built out of any object with the same 
consensus number.
There is a universal constructor using an 
object of infinite consensus number.
We can verify correctness by showing that 
the implementation is linearizable.



Linearizability In a Nutshell
Each operation of the system appears to take effect 
instantaneously between the invocation and response.
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Linearizability Is...

A local property—a concurrent system is 
linearizable if and only if each individual 
object is linearizable
A non-blocking property—a total operation 
(that is, defined for all object states) is never 
required to block

How does this compare to sequential 
consistency or serializability?



Concurrency Model (Formal)

A concurrent system { P1 ... Pn ; O1 ... Om } is 
a set of processes, Pi, and objects, Oi

Processes and Objects are I/O automata with 
the following events:

INVOKE(P, op, O)—op is an operation of O
RESPOND(P, res, O)—res is a result value

An object’s operations must be total
If the object has a pending operation there is a matching enabled 
response



An I/O Automaton

An I/O automaton A consists of:

1. States(A) – a finite or infinite set of states
2. In(A) – a set of input events (always enabled)
3. Out(A) – a set of output events
4. Int(A) – a set of internal events
5. Step(A) – a transition relation of triples (s’, e, s)

An event e is enabled in state s’ if (s’, e, s) in Step(A) for some s. 

A history is a sequence of enabled events starting at an initial state.

I/O automata can be composed if they are compatible (that is, they share no output 
or internal events)



Implementations

An implementation of an object A is a 
concurrent system {F1... Fr ; R}

the Fi are called front-ends
object R is called the representation object

The external events of the implementation 
are just the external events of A.
The Fi share no events; they only 
communicate through R



A Consensus Protocol is...

A concurrent system { P1 ... Pn ; X1 ... Xm } of n 
processes, where

each Pi starts with an input value from some domain D

the Pi communicate by applying operations to the objects Xi

the processes eventually agree on a common input value and halt

Required to be 
consistent—distinct processes never decide on distinct values
valid—the common decision value is the input to some process
wait-free—each process decides after a finite number of steps



The Consensus Number

The consensus number of a concurrent object 
X is the largest n for which there exists a 
consensus protocol { P1 ... Pn ; W, X }

W is a set of read/write registers
W and X can be initialized to any state 

If no largest n exists, the consensus number is 
said to be infinite



Consensus Number Antics

Theorem: If X has consensus number n, and 
Y has consensus number m < n, then there 
exists no wait-free implementation of X by Y 
in a system of more than m processes.
The theorem implies that there is a 
hierarchy where each level n of the 
hierarchy contains concurrent objects with 
consensus number n



Theorem Proof

By contradiction. Assume X has consensus number n, 
and Y has consensus number m < n. Let k > m, assume 
for contradiction that X = { G1 ... Gk ; Y } has 

consensus number k.

{ P1 ... Pk ; W, X } is a consensus protocol

{ P1 ... Pn ; W, { G1 ... Gn ; Y } } is wait-free
{ P1⋅ G1 ... Pn⋅ Gn ; W, Y } is a consensus 
protocol because composition is associative



Herlihy’s Wait-Free Hierarchy

Consensus 
Number Object

1 atomic read/write registers

2 test&set, fetch&add

2n - 2 n-register assignment

∞ compare&swap, FIFO queue w/ peek



Compare-and-Swap
val CAS( val* addr, val old, val new)
{
   val prev = *addr;
   if (prev == old) { *addr = new; }
   return prev;
}
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CMPXCHG (with “lock”) – Intel x86

Load Linked / Store Conditional – MIPS, PowerPC



Compare&Swap Register

Theorem: A CAS register has infinite 
consensus number.

value_t decision = ⊥;
value_t decide( value_t input) {
    first = CAS( &decision, ⊥, input);
    if ( first == ⊥ )  // CAS succeeded?
        return input;
    else
        return first;
}
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Summary so far...

Wait-free synchronization provides 
guaranteed progress to all correct 
processes
There is a wait-free hierarchy determined 
by an object’s consensus number
Compare&Swap is a universal primitive 
and thus can be used to implement any 
wait-free object



Hierarchy Redux

The wait-free hierarchy states that an 
object with consensus number n (and some 
registers) cannot be used to implement an 
object of consensus number m > n
How useful is this wait-free hierarchy?

Can we use multiple objects of consensus 
number n to implement a higher object?



A Robust Hierarchy

A robust hierarchy requires that an object 
at level n be impossible to implement using 
any set composed of objects at level n-1 or 
lower

Such a hierarchy would imply that there 
are no clever ways to combine inferior 
objects to create superior objects
Is Herlihy’s wait-free hierarchy robust?



The wait-free hierarchy is not 
robust.

The weak-sticky object has the property that 
k objects (together with read/write 
registers) can implement an object with 
consensus number k+1 (Jayanti)
The weak-sticky object is based upon the 
sticky bit object that solves 1-bit consensus



Plotkin’s Sticky Bit

State diagram:

SRSL

(R-op, R-first)(L-op, L-first)

(R-op, R-first)
(L-op, R-first)(L-op, L-first)

(R-op, L-first)

S⊥

The sticky bit provides a global order for 
the first operation only



Apply(Pi, propose bi, On)
  return ( L-first = Apply(Pi, bi = 1 ? L-op : R-op, Os) )

Plotkin’s Sticky Bit

Why does the sticky bit object have consensus 
number ∞?

1-bit consensus object using Os:

(Os is a sticky bit object,

 On is an n-process consensus object)



Weak-Sticky Objects

SRSL

(R-op, R-first)(L-op, L-first)
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(R-op, L-first)

S⊥

Asymmetric version of sticky bit object
Second R-op locks bit to L-first result

Provides a global order to first operation for only 
2 participants

Asymmetry prevents consensus number ∞



Apply(P0, propose v0, O2)
L := v0
w := Apply(P0, L-op, Ows)
if w = L-first
  return (L)
else
  return (R)

Apply(P1, propose v1, O2)
R := v1
w := Apply(P1, R-op, Ows)
if w = L-first
  return (L)
else
  return (R)

Weak-Sticky Objects

Is this valid? agreeable? wait-free?

Consensus object with {Ows,L,R}:
(Ows is a weak-sticky object, L & R are shared registers,

   O2 is a 2-process consensus object)



Apply(Pi, propose vi, On) {0<i<n} 
L := Apply(Pi, propose vi, On-1)
w := Apply(Pi, L-op, Ows)
if w = L-first
  return (L)
else
  return (R)

Apply(Pn, propose vn, On)
R := vn
w := Apply(Pn, R-op, Ows)
if w = L-first
  return (L)
else
  return (R)

Building Consensus

Can other objects be used similarly to build 
objects with higher consensus number?

Consensus object with {Ows,On-1,L,R}:
(Ows, L, R as before, On-1 is an (n-1)-process consensus object, On 
is an n-process consensus object)



Universal Objects

An object is universal if it can be used to 
construct a wait-free implementation of any 
object (that is, it has consensus number ∞).
In a system of n processes, an object is 
universal if and only if the object has  
consensus number n.
CAS has consensus number ∞ and thus is a 
universal object.



How do we build using CAS?

Use CAS to guarantee consistency during 
concurrent operations

CAS can ensure that the update that succeeds is 
consistent with the previous view of the object

Wait-freedom seems to require helping to 
guarantee progress to all threads

Disjoint-set parallel algorithms only help 
operations of other threads that “conflict”



A Simple Stack Object

Push(elem *x)
  do
    old = qhead;
    x->link = old;
    new = x;
    cc = CAS(qhead, old, new);
  until (cc == old);

 struct elem {
   elem *link;
   any  data;
 }

 elem* qhead;

Pop()
  do
    old = qhead;
    new = old->link;
    cc = CAS(qhead, old, new);
  until (cc == old);
  return old;

Is this solution:
   wait-free?
   lock-free?
   obstruction-free?



Is this implementation correct?

Pop()
do
  old = qhead;
  new = old->link;
  cc = CAS(qhead, old, new);
until (cc == old);
return old;

qhead &A

A &B

B 0



Is this implementation correct?

qhead &A

A &B

B 0

old &A

new &B

Pop()
do
  old = qhead;
  new = old->link;
  cc = CAS(qhead, old, new);
until (cc == old);
return old;



Is this implementation correct?

qhead &B

B 0

old &A

new &B

Pop()
do
  old = qhead;
  new = old->link;
  cc = CAS(qhead, old, new);
until (cc == old);
return old;



Is this implementation correct?

qhead 0

old &A

new &B

Pop()
do
  old = qhead;
  new = old->link;
  cc = CAS(qhead, old, new);
until (cc == old);
return old;



Is this implementation correct?

qhead &A

A 0

old &A

new &B

Pop()
do
  old = qhead;
  new = old->link;
  cc = CAS(qhead, old, new);
until (cc == old);
return old;



Is this implementation correct?

qhead &B

???

This is called the “ABA problem”
How do we solve the problem?

Pop()
do
  old = qhead;
  new = old->link;
  cc = CAS(qhead, old, new);
until (cc == old);
return old;



How can we handle ABA?

Use CAS2 (often called DCAS)
boolean CAS2( val*  addr1,  val* addr2, 
        val old1, val old2, val  new1, val new2) {
    if (*addr1 == old1 && *addr2 == old2) {
        *addr1 = new1;  *addr2 = new2;
        return true;
    } else
        return false;
}
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How is this useful?



Proposed Stack with CAS2

Pop()
  do
    old = qhead;
    link_field = &(old->link);
    new = *link_field;
    cc = CAS2(qhead, *link_field, 
              old, new, new, new);
  until (cc);
  return old;

Does it make sense to CAS(link, new, new)?
Is there a more general way to ensure the 
object hasn’t changed?



DWCAS

Double-wide CAS (DWCAS) performs a 
CAS on memory locations comprised of two 
adjacent words
Adding a version number to each location 
ensures the location is the expected version

Update version number when object is modified

Included expected version number in DWCAS



Stack with DWCAS

Push(elem *x)
  do
    old = qhead.link;
    oldseq = qhead.seq;
    x->link = old;
    cc = DWCAS(qhead, 
               <old, oldseq>,
               <x, oldseq+1>);
  until (cc);

Pop()
  do
    old = qhead.link;
    oldseq = qhead.seq;
    new = old->link;
    cc = DWCAS(qhead,
               <old, oldseq>,
               <new, oldseq+1>);
  until (cc);
  return old;

 struct elem {
   elem *link;
   any data;
 }

struct qhead {
  elem *link;
  int seq;
} qhead;



Problems with DWCAS

Requires more memory per object
Does it really solve the problem?

Version representation is finite

Assumes type-stable memory
Restricts reuse to same type

We need lock-free garbage collection
Allows for simpler implementation of lock-free 
objects



Lock-free Garbage Collection

We have to address the garbage collection 
problem while maintaining lock-free access 
to data structures
How do we tell whether an object is really 
garbage?
How do we track memory using lock-free 
data structures?



Hazardous References

A hazardous reference is an address that 
without further validation can be used to 
access a node after it has been deleted
Hazard pointers are used for each thread to 
track hazardous references

Pop()
do
  old = qhead;
  new = old->link;
  cc = CAS(qhead, old, new);
until (cc == old);
return old;ol
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Safe Memory Reclamation

Safe Memory Reclamation (SMR)
Whenever a thread holds a hazardous 
reference, it must guarantee that a hazard 
pointer contains the reference (Michael)



SMR Stack Object

HP is shared array of hazard pointers
hp = &HP[p] (where p is current thread)

Pop( )
  do
    old = qhead;
    *hp = old;
    if (old != qhead) { continue; }
    new = old->link;
    cc = CAS(qhead, old, new);
  until ( cc != old );
  *hp = NULL;
  return old;

Validity check



When is memory “garbage”?

A node can queue an object for deletion 
when the object is semantically dead

When the object is not reachable using 
the current state of all other objects
In lieu of a call to free( object )



Memory Deallocation

Periodically check the list of queued deletes 
to see whether any hazardous references 
exists
If no hazard pointers contain an object in 
the list, the object’s memory may safely be 
deallocated

How can we tell if there are hazard pointers 
to the object?



SMR Algorithm

// constants
int R; // batch size
int N; // # hazard ptrs

// shared variables
Node *HP[N] = { NULL, };

// static private vars
int dcount = 0;
Node *dlist[R];

SMR_free( Node *n )
  dlist[dcount++] = n;
  if( R == dcount )
    Scan();

Scan( )
  // Stage 1: copy hp
  < copy HP to local plist >
  // Stage 2: sort for search
  < sort plist >
  // Stage 3: free garbage
  for( i=0; i<R; ++i )
    if( find(dlist[i],plist) )
      *(new_dlist++) = dlist[i];
    else
      free( dlist[i] );
  // Stage 4: save remainder
  < copy new_dlist to dlist >



Multiple Hazard Pointers

The HP array is 
scanned non-
atomically, 
requiring hazard 
pointers to be 
maintained in the 
same order that the 
HP array is 
scanned

Dequeue( )
  while( true )
    h = qhead;
    *hp0 = h;
    if( h != qhead ) { continue; }
    t = qtail;
    next = h->link;
    *hp1 = next;
    if( h != qhead )
      { *hp0 = NULL; return EMPTY; }
    if( h == t )
      { CAS(&qtail, t, next); continue;
    data = next->data;
    if( h == CAS(&qhead, h, next) )
      break;
  *hp0 = NULL; *hp1 = NULL;
  SMR_free( h );
  return data;



SMR Questions

Does SMR really solve ABA?

Is SMR really wait-free?



SMR Answers

Does SMR really solve ABA?
SMR addresses only reallocation

Is SMR really wait-free?
The operations complete in finite steps

Memory is not guaranteed to be deallocated


