
The Triumph 
of Randomization



The Big Picture

Does randomization make for more powerful 
algorithms?

Does randomization expand the class of problems solvable 
in polynomial time?
Does randomization help compute problems fast in parallel 
in the PRAM model? 

You tell me!



The Triumph of 
Randomization?

Well, at least for distributed computations!

no deterministic 1-crash-resilient solution to 
Consensus

  resilient randomized solution to consensus       
(        ) for crash failures

randomized solution for Consensus exists even 
for Byzantine failures!
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A simple randomized 
algorithm

M. Ben Or.  “Another advantage of free choice: 
completely asynchronous agreement protocols” (PODC 
1983, pp. 27-30)

exponential number of operations per process

BUT more practical protocols exist 

down to             expected operations/process

      resilient

O(n log2n)

n−1



The protocol’s structure
An infinite repetition of asynchronous rounds

in round  ,   only handles messages with 
timestamp 
each round has two phases
in the first, each   broadcasts an a-value 
which is a function of the b-values collected 
in the previous round (the first a-value is 
the input bit)
in the second, each   broadcasts a b-value 
which is a function of the collected a-values 
decide stutters
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Ben Or’s Algorithm
 1:    := input bit;   := 1;

 2: repeat forever
 3: {phase 1}
 4: send        to all
 5: Let   be the multiset of the first       a-values with timestamp   received
 6: if                                then    := 
 7: else    := 
 8: {phase 2}
 9: send        to all
10: Let   be the multiset of the first       b-values with timestamp   received
11: if                                then decide(v);     := 
12: else if                   then    := 
13: else    :=     {  is chosen uniformly at random to be 0 or 1}
14:    := 
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Validity
 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4: send        to all
 5 Let A be the multiset of the first       a values with 

timestamp   received
 6: if                                then    := 
 7: else    := ⊥
 8: {phase 2}
 9: send        to all
10: Let B be the multiset of the first       b values with 

  .......timestamp   received
11: if                                then decide( );     :=
12: else if                   then    := 
13: else     :=     {  is chosen uniformly at random 

to be 0 or 1}
14:    := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)
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Validity
All identical inputs ( )
Each process set a-value :=   and 
broadcasts it to all
Since at most   faulty, every 
correct process receives at least        
.      identical a-values in round 1
Every correct process sets              
b-value :=   and broadcasts it to 
all
Again, every correct process 
receives at least       identical    
b-values in round 1 and decides 
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 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4: send        to all
 5 Let A be the multiset of the first       a values with 

timestamp   received
 6: if                                then    := 
 7: else    := ⊥
 8: {phase 2}
 9: send        to all
10: Let B be the multiset of the first       b values with 

  .......timestamp   received
11: if                                then decide( );     :=
12: else if                   then    := 
13: else     :=     {  is chosen uniformly at random 

to be 0 or 1}
14:    := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)
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A useful observation

Lemma   For all  , either       
.                 for all   or    
.                 for all   

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}
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 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4: send        to all
 5 Let A be the multiset of the first       a values with 

timestamp   received
 6: if                                then    := 
 7: else    := ⊥
 8: {phase 2}
 9: send        to all
10: Let B be the multiset of the first       b values with 

  .......timestamp   received
11: if                                then decide( );     :=
12: else if                   then    := 
13: else     :=     {  is chosen uniformly at random 

to be 0 or 1}
14:    := 
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(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



A useful observation

Lemma   For all  , either       
.                 for all   or    
.                 for all   

Proof      By contradiction.
Suppose   and   at round   such that         

.    = 0 and     = 1

From lines 6,7   received        
distinct 0s,    received         
distinct 1s

Then, 
But this implies          Contradiction

Corollary  It is impossible that 
two processes   and   decide 
on different values at round  

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}
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 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4: send        to all
 5 Let A be the multiset of the first       a values with 

timestamp   received
 6: if                                then    := 
 7: else    := ⊥
 8: {phase 2}
 9: send        to all
10: Let B be the multiset of the first       b values with 

  .......timestamp   received
11: if                                then decide( );     :=
12: else if                   then    := 
13: else     :=     {  is chosen uniformly at random 

to be 0 or 1}
14:    := 

ap
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ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

q r



Agreement
Let   be the first round in which a 
decision is made 
Let   be a process that decides in 
By the Corollary, no other process 
can decide on a different value in 
To decide,   must have received       
“ ” from distinct processes
every other correct process has 
received “ ” from at least
By lines 11 and 12, every correct 
process sets its new a-value to for 
round      to “ ”
By the same argument used to prove 
Validity, every correct process that 
has not decided “ ” in round   will do 
so by the end of round 
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 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4: send        to all
 5 Let A be the multiset of the first       a values with 

timestamp   received
 6: if                                then    := 
 7: else    := ⊥
 8: {phase 2}
 9: send        to all
10: Let B be the multiset of the first       b values with 

  .......timestamp   received
11: if                                then decide( );     :=
12: else if                   then    := 
13: else     :=     {  is chosen uniformly at random 

to be 0 or 1}
14:    := 
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Termination I
Remember that by Validity, if all 
(correct) processes propose the 
same value “ ” in phase 1 of round 
. , then every correct process 
decides “ ” in round  .
The probability of all processes 
proposing the same input value (a 
landslide) in round 1 is

Pr[landslide in round 1] =    .
What can we say about the 
following rounds?

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4: send        to all
 5 Let A be the multiset of the first       a values with 

timestamp   received
 6: if                                then    := 
 7: else    := ⊥
 8: {phase 2}
 9: send        to all
10: Let B be the multiset of the first       b values with 

  .......timestamp   received
11: if                                then decide( );     :=
12: else if                   then    := 
13: else     :=     {  is chosen uniformly at random 

to be 0 or 1}
14:    := 

ap
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Termination II
In round r > 1, the a-values are not 
necessarily chosen at random!
By line 12, some process may set its a-value 
to a non-random value v
By the Lemma, however, all non-random 
values are identical!
Therefore, in every r there is a positive 
probability (at least      ) for a landslide
Hence, for any round r

Pr[no lanslide at round r]                       .
Since coin flips are independent:
Pr[no lanslide for first k rounds]              .
When       , this value is about 1/e; then, if

Pr[landslide within k rounds] ≥ 

which converges quickly to 0 as c grows

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4: send        to all
 5 Let A be the multiset of the first       a values with 

timestamp   received
 6: if                                then    := 
 7: else    := ⊥
 8: {phase 2}
 9: send        to all
10: Let B be the multiset of the first       b values with 

  .......timestamp   received
11: if                                then decide( );     :=
12: else if                   then    := 
13: else     :=     {  is chosen uniformly at random 

to be 0 or 1}
14:    := 
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Unreliable Failure 
Detectors

for Reliable Distributed 
Systems



A different approach

Augment the asynchronous model with an 
unreliable failure detector for crash failures

Define failure detectors in terms of abstract 
properties, not specific implementations

Identify classes of failure detectors that allow 
to solve Consensus



The Model

General
asynchronous system
processes fail by crashing
a failed process does not recover

Failure Detectors
outputs set of processes that it currently 
suspects to have crashed
the set may be different for different 
processes



Completeness

Strong Completeness   Eventually every process 
that crashes is permanently suspected by every 
correct process

Weak Completeness   Eventually every process 
that crashes is permanently suspected by some 
correct process



Accuracy
Strong Accuracy   
No correct process is ever suspected

Weak Accuracy   
Some correct process is never suspected



Accuracy
Strong Accuracy   
No correct process is ever suspected

Weak Accuracy   
Some correct process is never suspected

Eventual Strong Accuracy   
There is a time after which no correct process 
is ever suspected

Eventual Weak Accuracy   
There is a time after which some correct 
process is never suspected



Failure detectors

Completeness
Accuracy

Strong Weak Eventual 
strong

Eventual 
weak

Strong Perfect  . Strong  .

Weak Quasi....... Weak  .

♦P

♦Q

♦S

♦WW

SP

Q



Reducibility

               transforms failure detector  
.         into failure detector 

If we can transform     into    
then we say that    is stronger 
than    and that    is reducible  
to 

If                  and               then we say 
that    and       are equivalent:     

Algorithm A uses     

D

TD→D′

TD→D′

D D
′

D≥D′ D′≥D

D D
′

D

D
′

D
′

D

D D
′

D≡D
′

D
′



Simplify, Simplify!

All weakly complete failure detectors are 
reducible to strongly complete failure detectors

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W



Simplify, Simplify!

All weakly complete failure detectors are 
reducible to strongly complete failure detectors

All strongly complete failure detectors are 
reducible to weakly complete failure detectors (!)

Weakly and strongly complete 
failure detectors are equivalent!

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W

Q≥P, W ≥S, ♦Q≥♦P, ♦W ≥♦S



From Weak Completeness
to Strong Completeness

Every process p executes the following:
        := 0
cobegin
|| Task 1: repeat forever

{   queries its local failure detector module    }
          := 
send (            ) to all

|| Task 2: when receive(            ) from some 
         := (                    ) -

coend 

Dp

Dp

output
p

output
p

output
p
∪ suspects

p

suspects
p

q, suspects
q

p, suspects
p

q

{q}

p



The Theorems

Theorem 1  In an asynchronous system with   , 
consensus can be solved as long as f ≤n−1

W



The Theorems

Theorem 1  In an asynchronous system with   , 
consensus can be solved as long as 
Theorem 2  There is no  -resilient consensus 
protocol using   for 
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The Theorems

Theorem 1  In an asynchronous system with   , 
consensus can be solved as long as 
Theorem 2  There is no  -resilient consensus 
protocol using   for 
Theorem 3  In asynchronous systems in which 
processes can use  , consensus can be solved 
as long as
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The Theorems

Theorem 1  In an asynchronous system with   , 
consensus can be solved as long as 
Theorem 2  There is no  -resilient consensus 
protocol using   for 
Theorem 3  In asynchronous systems in which 
processes can use  , consensus can be solved  
as long as
Theorem 4  A failure detector can solve consensus 
only if it satisfies weak completeness and eventual 
weak accuracy–i.e.      is the weakest failure 
detector that can solve consensus.

 

f ≤n−1

W
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f <n/2

f ≥n/2♦P
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Solving consensus 
using  .   

   : Strong Completeness, Weak Accuracy

at least some correct process   is never 
suspected

Each process   has its own failure detector 

Input values are chosen from the set {0,1}

S

c

p
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Notation
We introduce the operators ⊕, , ⊗  

They operate element-wise on vectors whose entries 
have values from the set {0, 1, ⊥}

v  ⊥ = v   ⊥ v = v
v  v = ⊥   ⊥ ⊥ = ⊥

v ⊕ ⊥ = v   ⊥ ⊕ v = v

v ⊕ v = v    ⊥ ⊕ ⊥ = ⊥

v ⊗ ⊥ = ⊥    ⊥ ⊗ v = ⊥
 v ⊗ v = v    ⊥ ⊗ ⊥ = ⊥

Given two vectors A and B, we write A ≤ B if 
        A[i] ≠ ⊥ implies B[i] ≠ ⊥



Solving Consensus
using any        . 

 1:     :=                                    {p’s estimate of the proposed values}

 2:     := 

 3: {phase 1} {asynchronous rounds   ,                 }

 4:  for    := 1 to 
 5: send           to all
 6: wait until [    : received            or         ] {query the failure detector}

 7:     := 
 8:         := 

 9:      :=              {value is only echoed the first time it is seen} 

10: {phase 2}
11: send           to all
12: wait until [    : received            or         ]
13:     :=       {computes the “intersection”, including    }

14: {phase 3}
15: decide on leftmost non-⊥ coordinate of 

(rp,∆p, p)

Vp (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

∆p (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

rp

∀q (rp,∆q, q) q ∈ Dp

Op Vp

Vp ⊕ (⊕q received ∆q)Vp

∆p

(rp, Vp, p)

(rp, Vq, q) q ∈ Dp∀q

⊗q received VqVp

Vp

Vp

1 ≤ rp ≤ n − 1rp

Vp ! Op

n−1

D ∈ S



A useful Lemma
Lemma 1  After phase 1 is complete,    
.         for all processes   that 
complete phase 1

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp] 

 7: Op := Vp
 8: Vp  := Vp ⊕ (⊕q received Δq)

 9:  Δp := Vp  Op          {value is only echoed first time it 

is seen} 

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp  := ⊗q received Vq {computes the “intersection”, 

including  Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp 

Vc ≤ Vp p



A useful Lemma
Lemma 1  After phase 1 is complete,    
.         for all processes   that 
complete phase 1

Proof   We show that

Let   be the first round when   sees 

.
  will send to all    with    in 
round 
By weak accuracy, all correct 
processes receive    by next round 

.
   has been forwarded      times: 
every other process has seen   

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp] 

 7: Op := Vp
 8: Vp  := Vp ⊕ (⊕q received Δq)

 9:  Δp := Vp  Op          {value is only echoed first time it 

is seen} 

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp  := ⊗q received Vq {computes the “intersection”, 

including  Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp 

Vc[i] = vi ∧ vi "= ⊥ ⇒ ∀p : Vp[i] = vi

vi

Vc ≤ Vp p

∆c
vi

vi

vi n−1

vi

r≤n−2

r=n−1
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Two additional cool 
lemmas

Lemma 2   After phase 2 is 
complete,         for each  
that completes phase 1

Proof

All processes that completed 
phase 2 have received   . Since    
.   is the smallest   vector, 

By the definition of 

after phase 2

Lemma 3

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp] 

 7: Op := Vp
 8: Vp  := Vp ⊕ (⊕q received Δq)

 9:  Δp := Vp  Op          {value is only echoed first time it 

is seen} 

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp  := ⊗q received Vq {computes the “intersection”, 

including  Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp 

Vc = Vp p

Vc

Vc V

Vc[i] != ⊥ ⇒ Vp[i] != ⊥ ∀p

⊗

Vc[i] = ⊥ ⇒ Vp[i] = ⊥ ∀p

Vc != (⊥,⊥,⊥, . . . ,⊥)



Solving consensus

Theorem    The protocol to 
the left satisfies Validity, 
Agreement, and Termination

Proof
Left as an exercise

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp] 

 7: Op := Vp
 8: Vp  := Vp ⊕ (⊕q received Δq)

 9:  Δp := Vp  Op          {value is only echoed first time it 

is seen} 

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp  := ⊗q received Vq {computes the “intersection”, 

including  Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp 



A lower bound - I

Theorem   Consensus with     requires♦P f <n/2



A lower bound - I

Theorem   Consensus with     requires

Proof

Suppose   is even, and a protocol exists  
that solves consensus when  

Divide the set of processes in two sets of 
size         and 

♦P f <n/2

f =n/2

n/2, P1 P2

n



A lower bound - II
Consider three executions:

 

All processes in   .   
crash before they 

can propose

Detectors work 
perfectly

P1←0;P2←0

P2
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A lower bound - II
Consider three executions:

 

All processes in   .   
crash before they 

can propose

Detectors work 
perfectly

 

All processes in  .    
crash before they 

can propose

Detectors work 
perfectly

 

No process crashes

Detectors make 
mistakes:

until            ,   .  
believes    crashed, 

and vice versa

   decides 0

after  .   after  .

P2 decides 1P1

t1 t2

P1←0;P2←0 P1←0;P2←1 P1←1;P2←1

max(t1, t2)
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A lower bound - II
Consider three executions:

 

All processes in   .   
crash before they 

can propose

Detectors work 
perfectly

 

All processes in  .    
crash before they 

can propose

Detectors work 
perfectly

 

No process crashes

Detectors make 
mistakes:

until            ,   .  
believes    crashed, 

and vice versa

   decides 0

after  .   after  .

P2 decides 1   decides 0 
   decides 1

P1 P1

P2
t1 t2

P1←0;P2←0 P1←0;P2←1 P1←1;P2←1

max(t1, t2)

P1

P1

P2

P2



The case of the 
Rotating Coordinator
Solving consensus with     (actually,    )

Asynchronous rounds

In round  , only messages timestamped   are 
sent and processed  (except for DECIDE messages)

Each process   has an opinion 

Each opinion has a time of adoption    (initially, 
.

Each round has a coordinator   such that 

♦W ♦S

r r

p vp ∈ {0, 1}

tp

tp = 0

c

cid = (r mod n)+1



One round, four phases
Phase 1  
Each process, including  , sends its opinion timestamped rc



One round, four phases
Phase 1  
Each process, including  , sends its opinion timestamped 

Phase 2 
  waits for first           opinions with timestamp 
  selects  , one of the most recently adopted opinions
  becomes   ’s suggestion for round 
  sends its suggestion to all

|n/2 + 1|

r
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r

c

c

v

c

v

c
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One round, four phases
Phase 1  
Each process, including  , sends its opinion timestamped 

Phase 2 
  waits for first           opinions with timestamp 
  selects  , one of the most recently adopted opinions
  becomes   ’s suggestion for round 
  sends its suggestion to all

Phase 3
Each   waits for a suggestion, or for failure detector to signal   is faulty
If a suggestion is received, it is adopted:    :=   ;   :=  ; ACK to 
Otherwise, NACK to 

vp tp rv

|n/2 + 1|

r

r

r

c

c
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c
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One round, four phases
Phase 1  
Each process, including  , sends its opinion timestamped 

Phase 2 
  waits for first           opinions with timestamp 
  selects  , one of the most recently adopted opinions
  becomes   ’s suggestion for round 
  sends its suggestion to all

Phase 3
Each   waits for a suggestion, or for failure detector to signal   is faulty
If a suggestion is received, it is adopted:    :=   ;   :=  ; ACK to 
Otherwise, NACK to 

Phase 4
  waits for first           responses
if all ACKs, then   decides on   and sends DECIDE to all

if   receives DECIDE, then   decides on   

vp tp rv

|n/2 + 1|

|n/2 + 1|

r

r

r

c

c

v

c

v

c

p

c

c

c

c

c v

vpp

c



Consensus using 
    := input bit;   := 0;    := 0;        := undecided
 while   undecided do

  := 
  :=            + 1
{phase 1: all processes send opinion to current coordinator}

  sends             to 
  {phase 2: current coordinator gather a majority of opinions}

  waits for first ⎡      ⎤ opinions 
  selects among them the value    with the largest  
  sends          to all 
{phase 3: all processes wait for new suggestions from the current coordinator}

  waits until suggestion         arrives or 
if suggestion is received then {   :=  ;    :=  ;   sends ( , ACK) to  }

else   sends ( , NACK) to 
 {phase 4: coordinator waits for majority of replies. If majority adopted the coordinator’s suggestion, then coordinator sends 

request to decide}

   waits for first ⎡       ⎤ ( , ACK) or ( , NACK)
if   receives ⎡       ⎤ ACKs, then   sends ( , DECIDE,  ) to all

when   delivers ( , DECIDE,  ) then  {   decides   ;        := decided}

vp r tp statep

p

r+1r

(p, r, vp, tp)p c

(q, r, vq, tq)c

c

c (c, r, vq)

vq tq

c (r mod n)

(c, r, v) c ∈ ♦Spp

vp v tp r p c

n/2+1

p

n/2+1

n/2+1

c

r rc

c c r v

vpp vr statep

r

r

♦S



Validity

The value decided upon must 
have been  suggested by the 
coordinator in some round

A coordinator suggests a 
value only by selecting it 
among the participants’ 
opinions

From the algorithm, it is clear 
that each opinion correspond 
to a value proposed by some 
process

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
  {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq 
c sends (c, r, vq) to all 

{phase 3: all processes wait for new suggestions from the current 
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then 

{vp := v; tp := r; p  sends (r, ACK) to c }
else p  sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted 
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then 

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then  

{p decides v ; statep := decided}



Agreement
Strong Agreement   All processes 
that decide, decide the same value

Proof
Trivially true if no process decides
If some process decides, it has 
delivered (-, DECIDE, -) from a 
coordinator
The coordinator has received a 
majority of (-, ACK)
Let r be the earliest round in 
which a majority of (-, ACK) have 
been sent to the coordinator   of 
Let    be the value suggested by  
in Phase 2 of round 
Enter the Locking Lemma!

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
  {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq 
c sends (c, r, vq) to all 

{phase 3: all processes wait for new suggestions from the current 
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then 

{vp := v; tp := r; p  sends (r, ACK) to c }
else p  sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted 
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then 

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then  

{p decides v ; statep := decided}

vc

r

c r

c



The Locking Lemma - I
Locking Lemma   For all rounds   :  
.      if a coordinator    sends   , 
then 

Proof
Trivially holds for 
Assume it holds for all 
Let    be the coordinator for round 
If    suggests    , it must have 
received opinions from a majority of 
processes
There exists some   that sent an ACK 
in Phase 3 of round   and whose 
opinion has been received by 
Consider the time of adoption 
In Phase 3 of round  , 
In Phase 2 of round  , 
For any    collected in round   , 

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
  {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq 
c sends (c, r, vq) to all 

{phase 3: all processes wait for new suggestions from the current 
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then 

{vp := v; tp := r; p  sends (r, ACK) to c }
else p  sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted 
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then 

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then  

{p decides v ; statep := decided}

r
′

r
′≥r c

′
vc

′

vc
′ = vc

r
′
= r

tp

tp = r

tp ≥ r

p

ck

r

ck

ck

vck

r
′
: r ≤ r

′
< k

k

k

k

r

tq tq < k



The Locking Lemma - II
Consider  , the largest time of 
adoption collected by    .  
Clearly, 

   adopted its suggestion from  , 
where   is the process that sent 

The coordinator of round   sent 
its suggestion in Phase 2 of 
round  , where 

By the Induction Hypothesis, 
that coordinator sent   !

Then,    sets     to 

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
  {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq 
c sends (c, r, vq) to all 

{phase 3: all processes wait for new suggestions from the current 
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then 

{vp := v; tp := r; p  sends (r, ACK) to c }
else p  sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted 
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then 

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then  

{p decides v ; statep := decided} Been there, done that?

t

ck

r ≤ t < k

q

q

(q, k, vq, t)

ck

t

t r ≤ t < k

vc

vc
vck

ck



Agreement
All processes that decide, decide 

Proof
Suppose   delivers (  , DECIDE,   )
The coordinator    for round   has sent 
(  , DECIDE,   ) in Phase 4 of round 
To do so    must have received a 
majority of (  ,ACK) in Phase 4 of 
  is the earliest round in which a 
majority of ( , ACK) have been sent to 
a round’s coordinator
Clearly, 
By the locking Lemma, c’ must have 
suggested the locked value:

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
  {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq 
c sends (c, r, vq) to all 

{phase 3: all processes wait for new suggestions from the current 
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then 

{vp := v; tp := r; p  sends (r, ACK) to c }
else p  sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted 
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then 

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then  

{p decides v ; statep := decided}

vc

p

r
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vc
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Termination
No correct process is blocked 
forever at a wait statement

By eventual weak accuracy, there 
is a correct process   and a time  
such that no process suspects   
after 

There is a round   such that:
all correct processes reach    
after time   (no one suspects  )
  is the coordinator for round 

If some correct process decides, 
eventually all do on the same value 
by Agreement

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
  {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq 
c sends (c, r, vq) to all 

{phase 3: all processes wait for new suggestions from the current 
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then 

{vp := v; tp := r; p  sends (r, ACK) to c }
else p  sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted 
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then 

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then  

{p decides v ; statep := decided}

r

c t

t

t

r

r

c

c
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