
The Triumph
of Randomization

The Big Picture

Does randomization make for more powerful
algorithms?

Does randomization expand the class of problems solvable
in polynomial time?
Does randomization help compute problems fast in parallel
in the PRAM model?

You tell me!

The Triumph of
Randomization?

Well, at least for distributed computations!

no deterministic 1-crash-resilient solution to
Consensus

 resilient randomized solution to consensus
() for crash failures

randomized solution for Consensus exists even
for Byzantine failures!

f

f <n/2

A simple randomized
algorithm

M. Ben Or. “Another advantage of free choice:
completely asynchronous agreement protocols” (PODC
1983, pp. 27-30)

exponential number of operations per process

BUT more practical protocols exist

down to expected operations/process

 resilient

O(n log2n)

n−1

The protocol’s structure
An infinite repetition of asynchronous rounds

in round , only handles messages with
timestamp
each round has two phases
in the first, each broadcasts an a-value
which is a function of the b-values collected
in the previous round (the first a-value is
the input bit)
in the second, each broadcasts a b-value
which is a function of the collected a-values
decide stutters

r

pr

p

p

Ben Or’s Algorithm
 1: := input bit; := 1;

 2: repeat forever
 3: {phase 1}
 4: send to all
 5: Let be the multiset of the first a-values with timestamp received
 6: if then :=
 7: else :=
 8: {phase 2}
 9: send to all
10: Let be the multiset of the first b-values with timestamp received
11: if then decide(v); :=
12: else if then :=
13: else := { is chosen uniformly at random to be 0 or 1}
14: :=

ap r

(ap, r)

r

bp v

A

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

⊥bp

(bp, r)

n−f

n−f rB

(∃v ∈ {0, 1} : ∀b ∈ B : b = v) ap v

(∃b ∈ B : b #= ⊥) ap

ap

r+1r

b

$ $

Validity
 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4: send to all
 5 Let A be the multiset of the first a values with

timestamp received
 6: if then :=
 7: else := ⊥
 8: {phase 2}
 9: send to all
10: Let B be the multiset of the first b values with

 timestamp received
11: if then decide(); :=
12: else if then :=
13: else := { is chosen uniformly at random

to be 0 or 1}
14: :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Validity
All identical inputs ()
Each process set a-value := and
broadcasts it to all
Since at most faulty, every
correct process receives at least
. identical a-values in round 1
Every correct process sets
b-value := and broadcasts it to
all
Again, every correct process
receives at least identical
b-values in round 1 and decides

n−f

n−f

f

i

i

i

i

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4: send to all
 5 Let A be the multiset of the first a values with

timestamp received
 6: if then :=
 7: else := ⊥
 8: {phase 2}
 9: send to all
10: Let B be the multiset of the first b values with

 timestamp received
11: if then decide(); :=
12: else if then :=
13: else := { is chosen uniformly at random

to be 0 or 1}
14: :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

A useful observation

Lemma For all , either
. for all or
. for all

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4: send to all
 5 Let A be the multiset of the first a values with

timestamp received
 6: if then :=
 7: else := ⊥
 8: {phase 2}
 9: send to all
10: Let B be the multiset of the first b values with

 timestamp received
11: if then decide(); :=
12: else if then :=
13: else := { is chosen uniformly at random

to be 0 or 1}
14: :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

A useful observation

Lemma For all , either
. for all or
. for all

Proof By contradiction.
Suppose and at round such that

. = 0 and = 1

From lines 6,7 received
distinct 0s, received
distinct 1s

Then,
But this implies Contradiction

Corollary It is impossible that
two processes and decide
on different values at round

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

p q

r

2(n−f)≤n

n−f

n−f

p

p

q

bp,r bq,r

n≤2f

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4: send to all
 5 Let A be the multiset of the first a values with

timestamp received
 6: if then :=
 7: else := ⊥
 8: {phase 2}
 9: send to all
10: Let B be the multiset of the first b values with

 timestamp received
11: if then decide(); :=
12: else if then :=
13: else := { is chosen uniformly at random

to be 0 or 1}
14: :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

q r

Agreement
Let be the first round in which a
decision is made
Let be a process that decides in
By the Corollary, no other process
can decide on a different value in
To decide, must have received
“ ” from distinct processes
every other correct process has
received “ ” from at least
By lines 11 and 12, every correct
process sets its new a-value to for
round to “ ”
By the same argument used to prove
Validity, every correct process that
has not decided “ ” in round will do
so by the end of round

r

p r

r

p n−f

n−2f ≥ 1

r+1

r+1

r

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4: send to all
 5 Let A be the multiset of the first a values with

timestamp received
 6: if then :=
 7: else := ⊥
 8: {phase 2}
 9: send to all
10: Let B be the multiset of the first b values with

 timestamp received
11: if then decide(); :=
12: else if then :=
13: else := { is chosen uniformly at random

to be 0 or 1}
14: :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

i

i

i

i

Termination I
Remember that by Validity, if all
(correct) processes propose the
same value “ ” in phase 1 of round
. , then every correct process
decides “ ” in round .
The probability of all processes
proposing the same input value (a
landslide) in round 1 is

Pr[landslide in round 1] = .
What can we say about the
following rounds?

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4: send to all
 5 Let A be the multiset of the first a values with

timestamp received
 6: if then :=
 7: else := ⊥
 8: {phase 2}
 9: send to all
10: Let B be the multiset of the first b values with

 timestamp received
11: if then decide(); :=
12: else if then :=
13: else := { is chosen uniformly at random

to be 0 or 1}
14: :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

1/2
n

r

i

i

r

Termination II
In round r > 1, the a-values are not
necessarily chosen at random!
By line 12, some process may set its a-value
to a non-random value v
By the Lemma, however, all non-random
values are identical!
Therefore, in every r there is a positive
probability (at least) for a landslide
Hence, for any round r

Pr[no lanslide at round r] .
Since coin flips are independent:
Pr[no lanslide for first k rounds] .
When , this value is about 1/e; then, if

Pr[landslide within k rounds] ≥

which converges quickly to 0 as c grows

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4: send to all
 5 Let A be the multiset of the first a values with

timestamp received
 6: if then :=
 7: else := ⊥
 8: {phase 2}
 9: send to all
10: Let B be the multiset of the first b values with

 timestamp received
11: if then decide(); :=
12: else if then :=
13: else := { is chosen uniformly at random

to be 0 or 1}
14: :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

k = 2
n

k = c2
n

1−(1−1/2n)k ≥ 1−(1−1/ec)

1/2
n

≤ (1 − 1/2n)k

≤ 1 − 1/2
n

Unreliable Failure
Detectors

for Reliable Distributed
Systems

A different approach

Augment the asynchronous model with an
unreliable failure detector for crash failures

Define failure detectors in terms of abstract
properties, not specific implementations

Identify classes of failure detectors that allow
to solve Consensus

The Model

General
asynchronous system
processes fail by crashing
a failed process does not recover

Failure Detectors
outputs set of processes that it currently
suspects to have crashed
the set may be different for different
processes

Completeness

Strong Completeness Eventually every process
that crashes is permanently suspected by every
correct process

Weak Completeness Eventually every process
that crashes is permanently suspected by some
correct process

Accuracy
Strong Accuracy
No correct process is ever suspected

Weak Accuracy
Some correct process is never suspected

Accuracy
Strong Accuracy
No correct process is ever suspected

Weak Accuracy
Some correct process is never suspected

Eventual Strong Accuracy
There is a time after which no correct process
is ever suspected

Eventual Weak Accuracy
There is a time after which some correct
process is never suspected

Failure detectors

Completeness
Accuracy

Strong Weak Eventual
strong

Eventual
weak

Strong Perfect . Strong .

Weak Quasi....... Weak .

♦P

♦Q

♦S

♦WW

SP

Q

Reducibility

 transforms failure detector
. into failure detector

If we can transform into
then we say that is stronger
than and that is reducible
to

If and then we say
that and are equivalent:

Algorithm A uses

D

TD→D′

TD→D′

D D
′

D≥D′ D′≥D

D D
′

D

D
′

D
′

D

D D
′

D≡D
′

D
′

Simplify, Simplify!

All weakly complete failure detectors are
reducible to strongly complete failure detectors

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W

Simplify, Simplify!

All weakly complete failure detectors are
reducible to strongly complete failure detectors

All strongly complete failure detectors are
reducible to weakly complete failure detectors (!)

Weakly and strongly complete
failure detectors are equivalent!

P ≥Q, S≥W, ♦P ≥♦Q, ♦S≥♦W

Q≥P, W ≥S, ♦Q≥♦P, ♦W ≥♦S

From Weak Completeness
to Strong Completeness

Every process p executes the following:
 := 0
cobegin
|| Task 1: repeat forever

{ queries its local failure detector module }
 :=
send () to all

|| Task 2: when receive() from some
 := () -

coend

Dp

Dp

output
p

output
p

output
p
∪ suspects

p

suspects
p

q, suspects
q

p, suspects
p

q

{q}

p

The Theorems

Theorem 1 In an asynchronous system with ,
consensus can be solved as long as f ≤n−1

W

The Theorems

Theorem 1 In an asynchronous system with ,
consensus can be solved as long as
Theorem 2 There is no -resilient consensus
protocol using for

f ≤n−1

W

f ≥n/2♦P

f

The Theorems

Theorem 1 In an asynchronous system with ,
consensus can be solved as long as
Theorem 2 There is no -resilient consensus
protocol using for
Theorem 3 In asynchronous systems in which
processes can use , consensus can be solved
as long as

f ≤n−1

W

♦W

f <n/2

f ≥n/2♦P

f

The Theorems

Theorem 1 In an asynchronous system with ,
consensus can be solved as long as
Theorem 2 There is no -resilient consensus
protocol using for
Theorem 3 In asynchronous systems in which
processes can use , consensus can be solved
as long as
Theorem 4 A failure detector can solve consensus
only if it satisfies weak completeness and eventual
weak accuracy–i.e. is the weakest failure
detector that can solve consensus.

f ≤n−1

W

♦W

f <n/2

f ≥n/2♦P

f

♦W

Solving consensus
using .

 : Strong Completeness, Weak Accuracy

at least some correct process is never
suspected

Each process has its own failure detector

Input values are chosen from the set {0,1}

S

c

p

S

Notation
We introduce the operators ⊕, , ⊗

They operate element-wise on vectors whose entries
have values from the set {0, 1, ⊥}

v  ⊥ = v ⊥ v = v
v  v = ⊥ ⊥ ⊥ = ⊥

v ⊕ ⊥ = v ⊥ ⊕ v = v

v ⊕ v = v ⊥ ⊕ ⊥ = ⊥

v ⊗ ⊥ = ⊥ ⊥ ⊗ v = ⊥
 v ⊗ v = v ⊥ ⊗ ⊥ = ⊥

Given two vectors A and B, we write A ≤ B if
 A[i] ≠ ⊥ implies B[i] ≠ ⊥

Solving Consensus
using any .

 1: := {p’s estimate of the proposed values}

 2: :=

 3: {phase 1} {asynchronous rounds , }

 4: for := 1 to
 5: send to all
 6: wait until [: received or] {query the failure detector}

 7: :=
 8: :=

 9: := {value is only echoed the first time it is seen}

10: {phase 2}
11: send to all
12: wait until [: received or]
13: := {computes the “intersection”, including }

14: {phase 3}
15: decide on leftmost non-⊥ coordinate of

(rp,∆p, p)

Vp (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

∆p (⊥, . . . ,⊥, vp,⊥, . . . ,⊥)

rp

∀q (rp,∆q, q) q ∈ Dp

Op Vp

Vp ⊕ (⊕q received ∆q)Vp

∆p

(rp, Vp, p)

(rp, Vq, q) q ∈ Dp∀q

⊗q received VqVp

Vp

Vp

1 ≤ rp ≤ n − 1rp

Vp ! Op

n−1

D ∈ S

A useful Lemma
Lemma 1 After phase 1 is complete,
. for all processes that
complete phase 1

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp]

 7: Op := Vp
 8: Vp := Vp ⊕ (⊕q received Δq)

 9: Δp := Vp  Op {value is only echoed first time it

is seen}

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp := ⊗q received Vq {computes the “intersection”,

including Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp

Vc ≤ Vp p

A useful Lemma
Lemma 1 After phase 1 is complete,
. for all processes that
complete phase 1

Proof We show that

Let be the first round when sees

.
 will send to all with in
round
By weak accuracy, all correct
processes receive by next round

.
 has been forwarded times:
every other process has seen

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp]

 7: Op := Vp
 8: Vp := Vp ⊕ (⊕q received Δq)

 9: Δp := Vp  Op {value is only echoed first time it

is seen}

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp := ⊗q received Vq {computes the “intersection”,

including Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp

Vc[i] = vi ∧ vi "= ⊥ ⇒ ∀p : Vp[i] = vi

vi

Vc ≤ Vp p

∆c
vi

vi

vi n−1

vi

r≤n−2

r=n−1

c

r

r

Two additional cool
lemmas

Lemma 2 After phase 2 is
complete, for each
that completes phase 1

Proof

All processes that completed
phase 2 have received . Since
. is the smallest vector,

By the definition of

after phase 2

Lemma 3

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp]

 7: Op := Vp
 8: Vp := Vp ⊕ (⊕q received Δq)

 9: Δp := Vp  Op {value is only echoed first time it

is seen}

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp := ⊗q received Vq {computes the “intersection”,

including Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp

Vc = Vp p

Vc

Vc V

Vc[i] != ⊥ ⇒ Vp[i] != ⊥ ∀p

⊗

Vc[i] = ⊥ ⇒ Vp[i] = ⊥ ∀p

Vc != (⊥,⊥,⊥, . . . ,⊥)

Solving consensus

Theorem The protocol to
the left satisfies Validity,
Agreement, and Termination

Proof
Left as an exercise

 1: Vp := (⊥, …, ⊥, vp, ⊥, …, ⊥)
{p’s estimate of the proposed values}

 2: Δp := (⊥, …, ⊥, vp, ⊥, …, ⊥)

 3: {phase 1}
{asynchronous rounds rp, 1≤ rp ≤ n – 1}

 4: for rp := 1 to n-1

 5: send (rp, Δp ,p) to all

 6: wait until [∀q: received (rp, Δq ,q) or q ∈ Dp]

 7: Op := Vp
 8: Vp := Vp ⊕ (⊕q received Δq)

 9: Δp := Vp  Op {value is only echoed first time it

is seen}

10: {phase 2}
11: send (rp, Vp ,p) to all

12: wait until [∀q: received (rp, Vq ,q) or q ∈ Dp]

13: Vp := ⊗q received Vq {computes the “intersection”,

including Vp}

14: {phase 3}
15: decide on leftmost non- ⊥ coordinate of Vp

A lower bound - I

Theorem Consensus with requires♦P f <n/2

A lower bound - I

Theorem Consensus with requires

Proof

Suppose is even, and a protocol exists
that solves consensus when

Divide the set of processes in two sets of
size and

♦P f <n/2

f =n/2

n/2, P1 P2

n

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

P1←0;P2←0

P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

 decides 0

after .

P1

t1

P1←0;P2←0

P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

 decides 0

after .

P1

t1

P1←0;P2←0 P1←1;P2←1

P1P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

 decides 0

after . after .

P2 decides 1P1

t1 t2

P1←0;P2←0 P1←1;P2←1

P1P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

No process crashes

Detectors make
mistakes:

until , .
believes crashed,

and vice versa

 decides 0

after . after .

P2 decides 1P1

t1 t2

P1←0;P2←0 P1←0;P2←1 P1←1;P2←1

max(t1, t2)

P1

P1

P2

P2

A lower bound - II
Consider three executions:

All processes in .
crash before they

can propose

Detectors work
perfectly

All processes in .
crash before they

can propose

Detectors work
perfectly

No process crashes

Detectors make
mistakes:

until , .
believes crashed,

and vice versa

 decides 0

after . after .

P2 decides 1 decides 0
 decides 1

P1 P1

P2
t1 t2

P1←0;P2←0 P1←0;P2←1 P1←1;P2←1

max(t1, t2)

P1

P1

P2

P2

The case of the
Rotating Coordinator
Solving consensus with (actually,)

Asynchronous rounds

In round , only messages timestamped are
sent and processed (except for DECIDE messages)

Each process has an opinion

Each opinion has a time of adoption (initially,
.

Each round has a coordinator such that

♦W ♦S

r r

p vp ∈ {0, 1}

tp

tp = 0

c

cid = (r mod n)+1

One round, four phases
Phase 1
Each process, including , sends its opinion timestamped rc

One round, four phases
Phase 1
Each process, including , sends its opinion timestamped

Phase 2
 waits for first opinions with timestamp
 selects , one of the most recently adopted opinions
 becomes ’s suggestion for round
 sends its suggestion to all

|n/2 + 1|

r

r

r

c

c

v

c

v

c

c

One round, four phases
Phase 1
Each process, including , sends its opinion timestamped

Phase 2
 waits for first opinions with timestamp
 selects , one of the most recently adopted opinions
 becomes ’s suggestion for round
 sends its suggestion to all

Phase 3
Each waits for a suggestion, or for failure detector to signal is faulty
If a suggestion is received, it is adopted: := ; := ; ACK to
Otherwise, NACK to

vp tp rv

|n/2 + 1|

r

r

r

c

c

v

c

v

c

p

c

c

c

c

One round, four phases
Phase 1
Each process, including , sends its opinion timestamped

Phase 2
 waits for first opinions with timestamp
 selects , one of the most recently adopted opinions
 becomes ’s suggestion for round
 sends its suggestion to all

Phase 3
Each waits for a suggestion, or for failure detector to signal is faulty
If a suggestion is received, it is adopted: := ; := ; ACK to
Otherwise, NACK to

Phase 4
 waits for first responses
if all ACKs, then decides on and sends DECIDE to all

if receives DECIDE, then decides on

vp tp rv

|n/2 + 1|

|n/2 + 1|

r

r

r

c

c

v

c

v

c

p

c

c

c

c

c v

vpp

c

Consensus using
 := input bit; := 0; := 0; := undecided
 while undecided do

 :=
 := + 1
{phase 1: all processes send opinion to current coordinator}

 sends to
 {phase 2: current coordinator gather a majority of opinions}

 waits for first ⎡ ⎤ opinions
 selects among them the value with the largest
 sends to all
{phase 3: all processes wait for new suggestions from the current coordinator}

 waits until suggestion arrives or
if suggestion is received then { := ; := ; sends (, ACK) to }

else sends (, NACK) to
 {phase 4: coordinator waits for majority of replies. If majority adopted the coordinator’s suggestion, then coordinator sends

request to decide}

 waits for first ⎡ ⎤ (, ACK) or (, NACK)
if receives ⎡ ⎤ ACKs, then sends (, DECIDE,) to all

when delivers (, DECIDE,) then { decides ; := decided}

vp r tp statep

p

r+1r

(p, r, vp, tp)p c

(q, r, vq, tq)c

c

c (c, r, vq)

vq tq

c (r mod n)

(c, r, v) c ∈ ♦Spp

vp v tp r p c

n/2+1

p

n/2+1

n/2+1

c

r rc

c c r v

vpp vr statep

r

r

♦S

Validity

The value decided upon must
have been suggested by the
coordinator in some round

A coordinator suggests a
value only by selecting it
among the participants’
opinions

From the algorithm, it is clear
that each opinion correspond
to a value proposed by some
process

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
 {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq
c sends (c, r, vq) to all

{phase 3: all processes wait for new suggestions from the current
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then

{vp := v; tp := r; p sends (r, ACK) to c }
else p sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then

{p decides v ; statep := decided}

Agreement
Strong Agreement All processes
that decide, decide the same value

Proof
Trivially true if no process decides
If some process decides, it has
delivered (-, DECIDE, -) from a
coordinator
The coordinator has received a
majority of (-, ACK)
Let r be the earliest round in
which a majority of (-, ACK) have
been sent to the coordinator of
Let be the value suggested by
in Phase 2 of round
Enter the Locking Lemma!

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
 {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq
c sends (c, r, vq) to all

{phase 3: all processes wait for new suggestions from the current
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then

{vp := v; tp := r; p sends (r, ACK) to c }
else p sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then

{p decides v ; statep := decided}

vc

r

c r

c

The Locking Lemma - I
Locking Lemma For all rounds :
. if a coordinator sends ,
then

Proof
Trivially holds for
Assume it holds for all
Let be the coordinator for round
If suggests , it must have
received opinions from a majority of
processes
There exists some that sent an ACK
in Phase 3 of round and whose
opinion has been received by
Consider the time of adoption
In Phase 3 of round ,
In Phase 2 of round ,
For any collected in round ,

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
 {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq
c sends (c, r, vq) to all

{phase 3: all processes wait for new suggestions from the current
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then

{vp := v; tp := r; p sends (r, ACK) to c }
else p sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then

{p decides v ; statep := decided}

r
′

r
′≥r c

′
vc

′

vc
′ = vc

r
′
= r

tp

tp = r

tp ≥ r

p

ck

r

ck

ck

vck

r
′
: r ≤ r

′
< k

k

k

k

r

tq tq < k

The Locking Lemma - II
Consider , the largest time of
adoption collected by .
Clearly,

 adopted its suggestion from ,
where is the process that sent

The coordinator of round sent
its suggestion in Phase 2 of
round , where

By the Induction Hypothesis,
that coordinator sent !

Then, sets to

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
 {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq
c sends (c, r, vq) to all

{phase 3: all processes wait for new suggestions from the current
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then

{vp := v; tp := r; p sends (r, ACK) to c }
else p sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then

{p decides v ; statep := decided} Been there, done that?

t

ck

r ≤ t < k

q

q

(q, k, vq, t)

ck

t

t r ≤ t < k

vc

vc
vck

ck

Agreement
All processes that decide, decide

Proof
Suppose delivers (, DECIDE,)
The coordinator for round has sent
(, DECIDE,) in Phase 4 of round
To do so must have received a
majority of (,ACK) in Phase 4 of
 is the earliest round in which a
majority of (, ACK) have been sent to
a round’s coordinator
Clearly,
By the locking Lemma, c’ must have
suggested the locked value:

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
 {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq
c sends (c, r, vq) to all

{phase 3: all processes wait for new suggestions from the current
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then

{vp := v; tp := r; p sends (r, ACK) to c }
else p sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then

{p decides v ; statep := decided}

vc

p

r
∗

vc
∗

c
∗

r
∗

r
∗

r
∗

vc
∗

c
∗

r
∗

r
∗

r

r

r ≤ r
∗

vc
∗ = vc

Termination
No correct process is blocked
forever at a wait statement

By eventual weak accuracy, there
is a correct process and a time
such that no process suspects
after

There is a round such that:
all correct processes reach
after time (no one suspects)
 is the coordinator for round

If some correct process decides,
eventually all do on the same value
by Agreement

vp := input bit; r := 0; tp := 0; statep:= undecided
while p undecided do
r := r+1
c := (r mod n) + 1
{phase 1: all processes send their opinion to current coordinator}

p sends (p, r, vp, tp) to c
 {phase 2: current coordinator gather a majority of opinions}

c waits for first ⎡n/2+1⎤ opinions (q, r, vq, tq)
c selects among them the value vq with largest tq
c sends (c, r, vq) to all

{phase 3: all processes wait for new suggestions from the current
coordinator}

p waits until suggestion (c, r, v) arrives or c ∈ Sp
if the suggestion is received then

{vp := v; tp := r; p sends (r, ACK) to c }
else p sends (r, NACK) to c

 {phase 4: coordinator waits for majority of replies. If majority adopted
the coordinator’s suggestion, then coordinator sends request to decide}

 c waits for first ⎡n/2+1⎤ (r, ACK) or (r, NACK)
if c receives ⎡n/2+1⎤ ACKs, then

c sends (r, DECIDE, v) to all
when p delivers (r, DECIDE, v) then

{p decides v ; statep := decided}

r

c t

t

t

r

r

c

c

c

