
Epidemics

Context

“This course is designed to cover some of the key ideas that have

proved useful or are expected to be useful for designing and

building tomorrow's distributed systems. The course focuses on

fundamentals.”

Some fundamentals

Atomic Commit

Reliable Broadcast

Consensus

Isis Toolkit [Birman, van Renesse et al.]

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system for high availability.

In Proc. 22nd Annual International Symposium on Fault-Tolerant Computing, pages 76--84, July 1992.

Scalability

Long message delays

Unreliable communication

Network partitions

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database
maintenance. In Proceedings of the 6th Annual ACM Symposium on Principles
of Distributed Computing, Vancouver, BC, August 1987, pp. 1-12.

Setup

Database replicated at thousands of sites

across the nation

Unreliable point-to-point links

Crash failure model

Updates injected at a single site

Updates must propagate to all other sites

Want contents of all replicas to be identical if

updates stop and system left alone

Notation

S is a set of n sites (replicas)

Pretend there is only one database entry

v is the value of the database entry

t is the timestamp associated with v

Timestamps are totally ordered

All sites are consistent iff

 s, s’ S : s.v = s’.v

Broadcast

Idea: If an update is injected at site s, then s mails the
update to every other site in S

Upon an update at site s:
 for each s’ S \ {s} do

send (Update, s.v, s.t) to s’

 endloop

Upon receiving (Update, v’, t’):

 if s.t < t’ then

s.v := v’

s.t := t’

 endif

Weakness: send is unreliable

 what if crashes occur

Anti-entropy

Idea: Every site regularly chooses another site at random

and exchanges database contents with it to resolve

differences.

Each server s periodically executes:
 for some s’ S \ {s} do

ResolveDifference(s,s’)

 endloop

Push:

 ResolveDifference(s,s’) {

 if s.t > s’.t then

 s’.v := s.v

s’.t = s.t

 endif

Pull:

 ResolveDifference(s,s’) {

 if s.t < s’.t then

 s.v := s’.v

s.t := s’.t

 endif

Push vs. pull analysis

Let pi be the probability that a site still has not

been updated by the ith try at anti-entropy

For large values of n:

Push: pi+1 = pi e
-1

Pull: pi+1 = (pi)
2

Converges much faster for small pi

Example using pull mechanism

s1

s2

s3

s4

(v, 1)

Update

broadcast

(v, 1)

anti-entropy

(v, 1)

(v, 2)

broadcast

(v, 2)

(v, 2)

(v, 2)

Anti-entropy facts

Guaranteed to eventually propagate update

to everyone with probability 1

Anti-entropy infects everyone in O(log n)

time for uniformly chosen sites

Good backup mechanism for direct mail

Weakness: must go through entire database

Epidemics

Complex epidemics

Sites can become “cured”

Terminology: susceptible, infective, removed

Strengths: sites do not mail everyone and do not

have to enumerate entire database

Weakness: some may be left susceptible

Resilient against unreliable communication

Anti-entropy is a simple epidemic

Rumor mongering (informal)

All sites start out susceptible

When a site s receives a new update, it

becomes infective

s periodically chooses another site s’

If s’ does not know the rumor, then it

receives the update and also becomes

infective

If s’ already knows the rumor, then s

becomes removed with some probability

Rumor mongering protocol

For a site s:

let L be a list of (initially empty) infective updates

periodically:
for some s’ S \ {s} do

 for each update u L

 send u to s’

if s’ already knows about u then

 remove u from L with probability 1/k

 end loop

end loop

upon receiving new update u:

insert u into L

Analysis of rumor mongering

i = fraction of infective sites

s = fraction of susceptible sites

r = fraction of removed sites

si
dt

ds
=

is
k

si
dt

di
)1(

1
+=

ksk

k

ds

di 11
+

+
=

ds
ksk

k
di +

+
=

11

c
k

s
s

k

k
si ++

+
=

ln1
)(

k

k
c

1+
=

()
k

s
s

k

k
si

ln
1

1
)(+

+
=

()()sk
es

+= 11

Rumor mongering facts

Expected fraction of susceptible sites

s = e-(k+1)(1-s)

Back up mongering with anti-entropy

Redistribution of update

Rumor mongering vs. broadcast

Consider case when half of sites receive update

Old rumors die fast

Death and its consequences

Replace deleted item with a death

certificate = (NIL, tnow)

Provided no further updates, a death

certificate eventually “deletes” all copies of

an item…but when?

Problem: what if a single site is down?

Death certificates

Death certificate contains two values

t – time of deletion

t1 – threshold value, all servers discard death

certificate after time t + t1

Dormant death certificates

Death certificate contains four values

R – set of sites that keep a dormant death certificate

after t + t1

t – time of deletion

t1 – all servers not in R discard death certificate after

time t + t1

t2 – all servers discard the certificate after t + t2

Interaction with anti-entropy?

Dormant death certificates

Death certificate contains five values

R – set of sites that keep a dormant death certificate

after ta + t1

t – time of deletion

ta – time of activation

t1 – all servers not in R discard certificate after ta + t1

t2 – all servers discard the certificate after ta + t2

Bimodal multicast

K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal

Multicast. ACM Transactions on Computer Systems. 17(2): 41-88. May 1999

Class I – Strong reliability

Properties: agreement, validity, termination, integrity

Expensive and limited scalability

Unpredictable performance under

congestion

Degraded throughput under transient

failures

Why?

Full buffers and flow control

Class II – Best effort reliability

“If a participating process discovers a failure,

a reasonable effort is made to overcome it.”

Better scalability than Class I protocols

Difficult to reason about systems without

concrete guarantees

Bimodal multicast claims

Provides predictable reliability and steady

throughput under highly perturbed conditions

Very small probability only a few processes

deliver

High probability almost everyone delivers

“Vanishingly small probability” in between

System assumptions

At least 75% of healthy processes will

respond to incoming messages within a

known bound

75% of messages will get through the

network

Crash failure model

Protocol details

Consists of two subprotocols

Unreliable multicast (i.e. – IP multicast)

Anti-entropy that operates in rounds

Each round contains two phases

Phase 1: randomly choose another process and

send message history to it

Phase 2: upon receiving a message history,

solicit any messages you may be missing

Bimodal multicast example

p0

p1

p2

p3

M0
M1

Anti-entropy

Phase 1 Phase 2

M0

Optimizations

Reducing unnecessary communication

Service only recent solicitations

Retransmission limit

Most recent first transmission

Multicast some retransmissions

What’s new about this?

To save space, keep a message for anti-

entropy only for a fixed number of rounds

Processes try to achieve a common prefix

If a process cannot recover a message, it

gives up and notifies application

suffix

A problem to our solution

Applications that need high throughput

(frequent updates) and can tolerate small

inconsistencies

Examples: flight telemetry, stock trading,

video conferencing

Recovery from delivery failures

In previous protocols, a lagging process

could drag the system down

In bimodal multicast, a lagging process is

effectively partitioned from the rest of the

system

Maintain a few very large buffers

Employ a state transfer technique

Back to scalability
Each server s periodically executes:
 for some s’ S \ {s} do

ResolveDifference(s,s’)

 endloop

periodically:
for some s’ S \ {s} do

 for each update u L

 send u to s’

if s’ already knows about u then

 remove u from L with probability 1/k

 end loop

end loop

P. Th. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, A.-M. Kermarrec.
Lightweight Probabilistic Broadcast. ACM Transactions on Computer Systems (TOCS)
21(4):341-374, November 2003

