Do we have a quorum?

Quorum Systems

Given a set U of servers, |U| = n:
A is a set Q C2Y
such that

VQ1,Q2 € Q:Q1NQsy#D

Each @ in Q is a quorum

How quorum systems work:
A read/write shared register

Tl e ¥
5 _;..# A i RE
o Fig i
X .I ATy ‘Lh-

store at each server
a (v,ts) pair

Write(x,d)
e Ask servers in some Q for ts
o Set tsc > max({ts}Uany previous ts¢)

e Update some Q" with (d,ts.)

How quorum systems work:
A read/write shared register

-] e

L1 .ﬂ--d o i, b
B 'y A et
RN

store at each server
a (v,ts) pair

Write(x,d) Read(x)
e Ask servers in some Q for ts e Ask servers in some Q for (v,1s)
o Set ts. > max({ts} Uany previous ts¢) e Select most recent (v,ts)

e Update some Q" with (d,ts.)

How quorum systems work:
A read/write shared register

- R
TR (N,
S .

store at each server
a (v,ts) pair

Write(x,d) Read(x)
e Ask servers in some Q for ts e Ask servers in some Q for (v,1s)
o Set ts. > max({ts} Uany previous ts¢) e Select most recent (v,ts)

e Update some Q" with (d,ts.)

What semantics?

@ Safe:

A read not concurrent with any write
returns the most recently written value

& Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

o

Reads and writes are tfotally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

What semantics?

& Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

@& Atomic:

Reads and writes are tfotally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

What semantics?

& Regular:

Safe + a read that overlaps with a r1(5) rZ(?) r3(?)
write obtains either the old or the new — — ——y

value
w,(6)
o Atomic: °

Reads and writes are tfotally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

What semantics?

@ Safe:

A read not concurrent with any write
returns the most recently written value

@& Atomic:

Reads and writes are tfotally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

What semantics?

@ Safe:

A read not concurrent with any write
returns the most recently written value

@& Atomic:

Reads and writes are tfotally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

What semantics?

@ Safe:

A read not concurrent with any write
returns the most recently written value

& Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

System Model

@ Universe U of servers, |Ul = n
@ Byzantine faulty servers

0 modeled as a non-empty fail-prone system B C 2Y
nno B € B is contained in another
n some B € B contains all faulty servers

@ Clients are correct (can be weakened)
@ Point-to-point authenticated and reliable channels

A correct process q receives a message from
another correct process p if and only if p sent it

Masking Quorum System

[Malkhi and Reiter, 1998]

A quorum system Q is a masking quorum
system for a fail-prone system B if the
following properties hold:

M-Consistency
VQ1,02 € QVB;,Bs € B: (G MQ:)\ B1 € B

M-Availability
VBeBIQeQ:BNQ =1

Dissemination
Quorum System

A masking quorum system for
self-verifying data

client can detect modification by faulty server
D-Consistency
VQ1,Q2 € QVBeB: (Q1NQ2) £ B
D-Availability
VBeBdQe@d:BNE =1

f-threshold
Masking Quorum Systems

M-Consistency D-Consistency

VQ1,Q2€ Q:|QiNQa = 2f+1 VQ1,02 € Q:|Q1NQ2| > f+1

M-Availability D-Availability
QR <n—f Ql <n—f

9

o—{qcv:ja- | L]

n
n>3f+1

A safe read/write protocol

Client ¢ executes:

Write(d)

— Ask all servers for their current timestamp t

< Wait for answer from |Q| different servers
Set tsqc > max({t} U any previous ts¢)

— Send (d,ts¢) to all servers
< Wait for |Q| acknowledgments

Read()

— Ask all servers for latest value/timestamp pair
— Wait for answer from |Q| different servers
Select most recent (v,ts) forwahictza

Reconfigurable quorums

Design a Byzantine data service that
@ monitors environment

DO uses statistical techniques to estimate number
of faulty servers
@ adjusts its tolerance capabilities accordingly:

o fault-tolerance threshold changes within [fmin..
fmax] range
— very efficient when no or few failures
— can cope with new faults as they occur
o does not require read/write operations to block
@ provides strong semantics guarantees

Managing the threshold

@ Keep threshold value in a variable T
@ Refine assumption on failures:

For any operation o, number of failures never exceeds f, the
minimum of:

a) value of T before o
b) any value written to T concurrently with o.

® Which threshold value should we use to read T ?

o Update T by writing to an

A set of servers whose intersection with every quorum (as
defined by f in [fmin--fmax]) contains sufficiently many correct

servers to allow client to determine T’s value unambiguously.

The announce set

@ Intersects all quorums in at least 2f,,.. + 1 servers
%4

@ Conservative announce set size: n — f,,..

o

& Hence: n+ 2fmin +

2

—I_(n_fmax)—nZQfmax_i_l

T s
15 B~ Uin + 1
s -,.‘uu- e e ik | e

Updating T

o Client ¢ (with current threshold f) executes:

Write(d)

— Ask all servers for their current timestamp t

< Wiait for answer from |Q| different servers
Set ts¢ > max({t} U any previous ts.)

— Send (d,tsc) to all servers

— Wait for |Q| acknowledgements

Read()
— Ask all servers for latest value/timestamp pair
— Wait for answer from |Q| different servers
Select most recent (v,ts) for which at least f + 1 answers agree (if any)

Updating T

o Client ¢ (with current threshold f) executes:

Write(d)

— Ask all servers for their current timestamp t

— Wait for answer from 1&i difierent servei's an announce set
Set ts¢ > max({t} U any previous ts.)

— Send (d,tsc) to all servers

— Wait for ¢l acknowledgments from an announce set

Read()
— Ask all servers for latest value/timestamp pair
— Wait for answer from |Q| different servers
Select most recent (v,ts) for which at least f + 1 answers agree (if any)

Updating T

o Client ¢ (with current threshold f) executes:

Write(d)

— Ask all servers for their current timestamp t

— Wait for answer from & different zeivers an announce set
Set ts¢c > max({t} U any previous ts.)

— Send (d,tsc) to all servers

— Wait for il acknowledgments from an announce set

Read()
— Ask all servers for latest value/timestamp pair
— Wait for answer from |Qminl different servers

Select most recent (v,ts) for which at least f,.x + 1 answers agree (if any)

A problem

Initially, T =1

A problem

Threshold write: T = 2

A problem

While a client is performing a threshold
write to set T = 3..

A problem

...another client tries to read T

Countermanding

(v,ts) is countermanded if at least fgx+l servers return a
timestamp greater than ts

Write(f)
— Ask all servers for their current timestamp t
<— Wait for answer from an announce set

Set ts¢ > max({t}U any previous ts¢)

— Send (d,ts¢) to all servers

< Wait for acknowledgements from an announce set

Read()
— Ask all servers for latest value/timestamp pair
< Wait for answer from |Qpinl different servers

Select most recent, (v,ts) for which at least fpgx+ 1 answers agree (if any)

Minimizing quorum size

Who cares? Machines are cheap...

But achieving independent failures is expensive!
@ Independently failing hardware
@ Independently failing software

o Independent implementations of server

o Independent implementation of
underlying OS

o Independent versions to maintain

A simple observation

o Client ¢ (with current threshold f) executes:

— Ask all servers for their current timestamp t Authenticated |
— Wait for answer from |Q| different servers _f_._;f_%eilable Channe,jl§
Set ts. > max({t} U any previous ts.) | ;

Write(d) .(ﬁ;ig;chrc;hous) |

»

— Send (d,tsc) to all servers

\ & Ll e | - 3
— ‘Yait=foptQbaciibwigdgements

VoA T II KT o R

Read()

— Ask all servers for latest value/timestamp pair

«— Wait for answer from |Q| different servers
Select most recent (v,ts) for which at least f + 1 answers
agree (if any)

A-Masking
Quorum Systems

A quorum system Q is an a-masking quorum system for a
fail-prone system B if the following properties hold for
Qr and Qu:

AM-Consistency
VQ, € 9, VQ,, € Q, VB1,By, € B
(Qr mQw)\Bl Z B>
AM-Availability
VB .c B0, & OF = Bipira_"

Tradeoffs

best known n

confirmable

non-confirmable

self-verifying

3f+1

2f+1

generic

4f+1

3f+1

Tradeoffs

best known n confirmable |[non-confirmable

self-verifying

: 3f+l 2f+1
and generic

Lower bound: never two rows again!

The intuition

Trade replication in space for replication in time

v\

Traditional: 4f+1 servers Now: 3f+l servers

The intuition

Trade replication in space for replication in time

v\

\0\ J/ ®

Traditional: 4f+1 servers Now: 3f+l servers

The intuition

Trade replication in space for replication in time

v\

Traditional: 4f+1 servers Now: 3f+l servers

Both cases: wait until 4th server receives write

The protocol

Client ¢ executes:

Write(d)
— Ask all servers for their current ftimestamp t

< Wait for answer from |Q,,|different servers
Set tsc > max({t} U any previous ts.)

— Send (d,ts) to all servers
< Wiait for |Q),| acknowledgments

Read()
— send READ-START to server set Q).

repeat

< receive a reply (D, ts) from s in),
set answer[s,ts] := D

until some A in answer[][] is vouched for by |Q,, | servers
— send READ-sTOP to (),

return A

The Slim-Fast version

1. Whenever ¢ gets first message from a server, it
computes

T = {largest f+l1 timestamps from distinct servers}

2. (D,ts) from answer[s][] is discarded unless either
a) tseT or
b) ts is the latest timestamp received from s

The Goodies

Theorem

The protocol guarantees
atomic semantics

Proof: Safety

Lemma 1: If it is live, it is atomic

a) After write of ts;, no read b) After c reads tsi, no later read
returns earlier ts returns earlier ts
e Suppose write for ts; has completed e c reads ’rsl—»[%ﬂﬂ servers say tsj

. [%f*ﬂ servers acked the write o At least [”_Tfﬂw are correct

e At least {”‘Tf“w are correct e Remaining [%f—ﬂ servers < |Q,]

e Remaining {%f‘ﬂ servers < |Q.] e Any read that starts after tsj returns

ts > ts1

Proof: Liveness

Lemma 2: Every operation eventually terminates

WRITE: trivial, because only waits for |Q,| <n — f

READ:

@ Consider T after ¢ gets first message from last server.

o Let tpax be the largest timestamp from a correct server in T.
o A client never removes tygx from its answers[s][], for a correct s

Eventually, all correct servers see a write with ts = thqx and echo client

Since |Q,| = {”J“?’QHﬂ , 1Quw| < Q| — f and the read terminates

