
Introduction to
fault-tolerance

Availability

The availability of a system is the probability
that the system will perform its required
action

Availability

The availability of a system is the probability
that the system will perform its required
action

Example:
one workstation
crashes once a week
takes 2 minutes to recover

Availability

The availability of a system is the probability
that the system will perform its required
action

Example:
one workstation
crashes once a week
takes 2 minutes to recover

Availability:
1 − pcrash = 1 − 2 · 10

−4
= 0.9998

Availability

The availability of a system is the probability
that the system will perform its required
action

Example:
one workstations
crash once a week
take 2 minutes to recover

Availability:

30

Availability

The availability of a system is the probability
that the system will perform its required
action

Example:
one workstations
crash once a week
take 2 minutes to recover

Availability:

30

(1 − pcrash)30 ≈ 1 − n · pcrash = 0.994

Increasing availability

Avoid a single point of failure
use replication (in time, or space)
replicas communicate through narrow
interface (e.g. send/receive)

Increasing availability

Avoid a single point of failure
use replication (in time, or space)
replicas communicate through narrow
interface (e.g. send/receive)

Example
Replicate the workstation 30 times

Availability:

Increasing availability

Avoid a single point of failure
use replication (in time, or space)
replicas communicate through narrow
interface (e.g. send/receive)

Example
Replicate the workstation 30 times

Availability:

1 − p
n

crash
= 1 − (2 · 10−4)30 = 1 − 10111

Modeling faults

Mean Time To Failure/ Mean Time To Recover

close to hardware

Threshold: out of

makes condition for correct operation
explicit

measures fault-tolerance of architecture,
not single components

Set of explicit failure scenarios

f n

A hierarchy of
failure models

Crash

A hierarchy of
failure models

CrashFail-stop

A hierarchy of
failure models

Crash

Send Omission Receive Omission

Fail-stop

A hierarchy of
failure models

Crash

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

A hierarchy of
failure models

Crash

Arbitrary failures with
message authentication

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

A hierarchy of
failure models

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

Replication in space

Run parallel copies of a unit

Vote on replica output

Failures are masked

High availability, but at high cost

Replication in time

When a replica fails, restart it (or replace it)

Failures are detected, not masked

Lower maintenance, lower availability

Tolerates only benign failures

Better than you think...

Non-determinism

An event is non-deterministic if the state that
it produces is not uniquely determined by the
state in which it is executed

Handling non-deterministic events at different
replicas is challenging

Replication in time requires to reproduce
during recovery the original outcome of all
non-deterministic events
Replication in space requires each replica to
handle non-deterministic events identically

t

Primary-Backup

The Idea

Clients communicate with a single replica (the
primary)

The primary updates the other replicas (backups)

Backups detect the failure of the primary using
a timeout mechanism,

Clients fail over to a backup

Note: Non-deterministic events are executed only
at the primary

Terminology

The failover time of a primary-backup
service is the longest time the service can
be without a primary

The service has a server outage at if some
correct client sends a request at time to the
service, but does not receive a response

A (k,")-bofo service is one in which all
server outages can be grouped into at most
k intervals of time, each of at most length "

t

t

PB: A specification
(Budhiraja, Marzullo, Schneider, Toueg)

PB1: There exists a local
predicate on the state
of each server . At any time,
there is at most one server
whose state satisfies

PB2: Each client maintains a
server identity such
that to make a request, client
. sends a message to

PB4: There exist fixed
values k and " such that
the service behaves like a
single (k,")-bofo server

PB3: If a client request
arrives at a server that is not
the current primary, then that
request is not enqueued (and
therefore is not processed)

Desti

Destii

i

Prmys

Prmys

s

s

A simple example:
system model

point-to-point communication

non-faulty channels

upper bound ! on message delivery time

at most one server crashes

A simple example:
system model

point-to-point communication

non-faulty channels

upper bound ! on message delivery time

at most one server crashes

Two processes:
the primary
the backup

p1

p2

A simple example:
 ‘s protocol

On receipt of a client request, process
consumes request and updates its state
send state update message to
 sends response to client without waiting
for ack from

 sends heartbeat message to every
seconds

p1

p1

p1

p2

p2

p2 τ

A simple example:
 ‘s protocol

Upon receiving a state update from ,
updates its state
If does not receive a heartbeat for
seconds,

 declares itself primary
it informs the clients
it begins consuming subsequent requests
from clients

p2

p1 p2

τ + δp2

p2

It meets the spec

p1

p2

!

"

c

1

2

3

4

Failover: Time during which

PB1: Prmy
p1

∧ Prmy
p2

= false

¬Prmy
p1

∧ ¬Prmy
p2

Prmy
p1

≡ p1 has not crashed

Prmy
p2

≡ p2 has not received
a message from for p1 τ + δ

seconds

It meets the spec

p1

p2

!

"

c

1

2

3

4

Failover: Time during which

PB1: Prmy
p1

∧ Prmy
p2

= false

¬Prmy
p1

∧ ¬Prmy
p2

Prmy
p1

≡ p1 has not crashed

Prmy
p2

≡ p2 has not received
a message from for p1 τ + δ

seconds

It meets the spec

p1

p2

! "

!

"

c

1

2

3

4

Failover: Time during which

PB1: Prmy
p1

∧ Prmy
p2

= false

¬Prmy
p1

∧ ¬Prmy
p2

Prmy
p1

≡ p1 has not crashed

Prmy
p2

≡ p2 has not received
a message from for p1 τ + δ

seconds

It meets the spec...

p1

p2

" ! "

!

"

c

1

2

3

4

Failover: Time during which

PB1: Prmy
p1

∧ Prmy
p2

= false

¬Prmy
p1

∧ ¬Prmy
p2

Prmy
p1

≡ p1 has not crashed

Prmy
p2

≡ p2 has not received
a message from for p1 τ + δ

seconds

It meets the spec

p1

p2

" ! "

!

"

c

1

2

3

4

Failover: Time during which

PB1: Prmy
p1

∧ Prmy
p2

= false

¬Prmy
p1

∧ ¬Prmy
p2

Prmy
p1

≡ p1 has not crashed

Prmy
p2

≡ p2 has not received
a message from for p1 τ + δ

seconds

τ + 2δ

…indeed, it does!

PB2, PB3: Follow immediately
from protocol

PB4: Find k, # to implement
(k,#)-bofo server

!

"

c

1

2

3

4

• k = 1 (since at most one crash)
• " = longest interval during
which a request elicits no
response
– assume crashes at

– any client request sent to at
time or later may be lost

– may not become the new

primary until

– client may not learn that is new

primary for another

p1

p1

p2

p2

tc + τ + 2δ

tc − δ

tc

δ

∆ = τ + 4δ

Some like it hot

Hot Backups process information from the primary
as soon as they receive it

Cold Backups log information received from primary,
and process it only if primary fails

Rollback Recovery implements cold backups cheaply:
the primary logs directly to stable storage the information
needed by backups

if the primary crashes, a newly initialized process is given
content of logs—backups are generated “on demand”

