
Each p maintains
in volatile memory

• adds m´ to volatile send log

•

• piggybacks on messages to q
all determinants #m " Dp s.t.

• adds to Dp any new
determinant piggybacked on m’

• adds #m’ to Dp
• updates its estimate of |Log(m)|p

for all determinants #m " Dp

On sending a message m´

Dp ≡ {#m : p ∈ Depend(m)}

|Log(m)|p ≤ f ∧ (q #∈ Log(m)p)

On receiving a message m´

 Family-Based Logging Estimating Log(m) and |Log(m)|

Each process p maintains estimates of
Log(m)p

p piggybacks #m on m! to q if

and

|Log(m)|p ≤ f ∧ (q #∈ Log(m)p)

• How accurate should these estimates be?

– inaccurate estimates cause useless piggybacking
– keeping estimates accurate requires extra piggybacking

|Log(m)|p

• How can p estimate and ? |Log(m)|pLog(m)p

The Idea

Because
we can approximate Log(m) from below with:
and then use vector clocks to track Depend(m)!

∀m : (¬stable(m) ⇒ (Depend(m) ⊆ Log(m)))

Log(m) =

{
Depend(m) if |Depend(m)| ≤ f
Any set S : |S| > f otherwise

Dependency Vectors

Dependency Vector (DV): vector clock that tracks
causal dependencies between message delivery events.

deliverp(m) → deliverq(m′) ≡
DVp(deliverp(m))[p] ≤ DVq(deliverq(m′))[p]

Weak Dependency Vectors

(deliverp(m) → deliverq(m′)) ∧ (|Depend(m)| ≤ f) ⇒
WDVp(deliverp(m))[p] ≤ WDVq(deliverq(m′))[p]

WDVp(deliverp(m))[p] ≤ WDVq(deliverq(m′))[p] ⇒
deliverp(m) → deliverq(m′)

Weak Dependency Vector (WDV):
track causal dependencies on deliver(m) as long as

(|Depend(m)| ≤ f)

 Each p keeps a
Dependency Matrix (DMp)

Dependency Matrix

Use WDVs to determine if p " Log(m):

Log(m)p = {p, q, s}

p ∈ Depend(m) ∧ |Depend(m)| ≤ f ⇒

WDVp[m.dest] ≥ m.rsn

WDVp[m.dest] ≥ m.rsn ⇒

p ∈ Depend(m)

source des
t

ssn rsnGiven #m = <u, s, 14, 15>,
s

DMp =

p

s

q
r

t
u

21
16
8

21
12
7

Message Logging at a Glance

Pessimistic
+ No orphans
+ Easy recovery
- Blocks

Optimistic
+ Non-blocking
- Orphans
- Complex recovery

Causal
+ Non-blocking
+ No orphans
- Complex recovery

p1

m1

m2

p2

p3

m3

Over 300 papers in the area
Relatively few implementations
Why?

Performance issues not understood
Hard to integrate recovery protocol with
application
One size doesn’t fit all

Rollback Recovery Protocols:
A Success Story?

• Trasparent
• seamless integration with applications

• Extensible
• easily handles new sources of non-

determinism

• Flexible
• allows to select best protocol for application

• Smart
• don’t want to implement 300 protocols

• Powerful
• a “microscope” to understand rollback

recovery

Egida
All rollback recovery protocols enforce the no-
orphans consistency condition
The challenge is handling non determinism

a process may execute non-deterministic events
a process may interact with other processes or with the environment
and generate dependencies on these events

Characterize a protocol according to how it handles
non-determinism

identify relevant events
specify which actions to take when event occurs

The Unifying Theme

Non-deterministic events
message delivery, file read, clock read, lock acquire

Failure-detection events
time-outs, message delivery

Internal dependency-generating events
message send, file write, lock release

External dependency-generating events
output to printer or screen, file write

Checkpointing events
time-outs, explicit instruction, message delivery

Relevant Events
Event handlers invoked on relevant events
Library of modules

implement core functionalities
(checkpointing, creating determinants, logging, piggybacking,
detecting orphans, restarting a faulty process
provide basic services
(stable storage, failure detection, etc
single interface–multiple implementations

Specification language to select desired modules and
corresponding implementations
Synthesize protocol automatically from specification

The Architecture

Modifications to MPICH:
Replace calls to P4 with call to
Egida’s API

Modifications to P4:
Handle socket-level errors

Allow reconnection of recovering
process

Modification to applications:
NONE

Integration with MPICH
MPICH

• 2 layers architecture
• upper layer exports MPI to application
• lower layer performs data transfer

using application-specific libraries
(e.g. P4)

Application
MPICH

P4

Egida

Communication Induced
Checkpointing

+ Consistent states
+ Autonomy
+ Scalability
+ No useless checkpoints

Really?

CIC Protocols
• Independent local checkpoints
• Forced checkpoints before processing some

messages
• Piggyback information about checkpoints on

application messages

Always a consistent set of checkpoints without
• explicit coordination
• protocol-specific messages

CIC Protocol Families
Index-Based

• Each checkpoint has
an index

• Indices piggybacked on
application messages

• Checkpoints with same
index are consistent

They are equivalent

Pattern-Based
• Detect communication

patterns
• Take checkpoints to

prevent dangerous
patterns

• Avoid useless checkpoints

Example of Index Based

(5)

Local checkpoint

Forced checkpoint

(5)

(6)(5)

(7)

(6)

(6)

(6)

(5)

(6)

(6)

After Briatico, Ciuffoletti &
Simoncini 84

Z-Paths

A Z-Path exists between Cxi and Cyj iff [Netzer & Xu 95]:

C11

C21 C22

C32C31

i < j and x = y or

C12

There exists [m0,m1,…mn] such that:
• Cxi # sendx(m0)
• l < n, either deliverk(ml) # sendk(ml+1) or

 sendk(ml+1) ,deliverk(ml) in same ckpt
interval

• delivery(mn) # Cyj

∀

Z-Cycles

A Z-Cycle is a Z-path that begins and ends
at the same checkpoint

Z-Cycles &
Useless Checkpoints

A checkpoint in a Z-cycle can never be
part of a consistent state

Example of Pattern-Based
Forced

The forced checkpoint breaks the Z-cycle, preventing
the local checkpoint from becoming useless

(Baldoni, Quaglia & Ciciani 98)

Experiment Goals

• How to implement CIC protocols?

• What is the performance?

• How do they scale?

• Which is better, index-based or
pattern-based?

Outline
• Implemented 3 CIC protocols in Egida
• Used NASA NPB 2.3 benchmark applications

•

• For most experiments, direct measures
• Simulation to extrapolate for scale

• Used implementation to validate simulator

Appl. Communication Rate Communication
Pattern

Exec. Time
(sec)Mess/sec Size(KB)

bt 6 50.7 All processes 1530
cg 20 60.7 Two neighbors 1516
lu 62 3.7 Two neighbors 975
sp 22 44.4 All processes 1222

The Three Protocols

Index-Based:
• Briatico, Ciuffoletti & Simoncini

‘84,

• BCS, O(1)/message

• Hélary, Mostefaoui, Netzer &
Raynal ‘97,

• HMNR, O(n)/message

Pattern-based:
• Baldoni, Quaglia & Ciciani ‘98,

• BQC, O(n2)/message

Autonomy?
Processes take independent checkpoints
But:
• Selecting a checkpointing placement policy is hard
• A process has no control over forced checkpoints

Forced
Checkpoint

Local
Checkpoint

Scheduled local
Checkpoint

Problem: Local checkpoint too close
to provide substantial improvement recovery-wise

No Useless Checkpoints?

• Yes, but only if checkpoints are blocking!

p1 may run garbage collection
and discard checkpoint (6)

Checkpoint (6) of p3
can become useless

(5)

(6)

(6)(5)

(6)

(6)

(6)

(6)

p1

p2

p3

(7)

BQC’s Behavior
P

BQC’s Behavior
P

BQC’s Behavior
P

BQC’s Behavior
PMissing

information
leading P to
suspect a
Z-cycle

BQC’s Behavior
PMissing

information
leading P to
suspect a
Z-cycle

BQC’s Behavior
PMissing

information
leading P to
suspect a
Z-cycle

Process Q
has already
broken the
suspect
Z-cycle

P
Forced checkpoint
not really necessary

Q

Scalability: random pattern

4-PROC 8-PROC 16-PROC
0

50

100

150

200

BCS
HMNR
BQC

Simulation with 119 local ckp’s/proc
Low comm. load of 10 msg/ckp, random pattern

Fo
rc

ed
 C

hc
kp

ts
Scalability: uniform pattern

4-PROC 8-PROC 16-PROC
0

1,125

2,250

3,375

4,500

BCS
HMNR
BQC

Simulation with 118 local ckp’s/proc
High comm. load of 500 msg/ckp, uniform pattern

Fo
rc

ed
 C

kp
ts

Summary
• Scalability? Not exactly…

• Autonomy in checkpointing? Not exactly…
• # of forced ckp’s is often greater than twice the # of local ones

• adaptation necessary for good performan ce

• Unpredictable behavior:
• Difficult to plan resources, decide on local ckpts, or estimate overhead

• Performs well for random pattern, low-load communications

• Fewer forced checkpoints with index-based than eager
pattern-based protocols

