
State-Machine
Replication

Solution: replicate server!

The Problem

Clients Server

The Solution
1. Make server deterministic (state machine)

State machine

The Solution
1. Make server deterministic (state machine)

2. Replicate server

State machine

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

Clients

State machine

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients

State machine

The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same
sequence of state transitions

4. Vote on replica outputs for fault-tolerance

Clients

Voter

State machine

A conundrum

. . .

A: voter
and client
share fate!

Consensus and
Reliable Broadcast

Broadcast

If a process sends a message , then every
process eventually delivers

m

m

Broadcast

If a process sends a message , then every
process eventually delivers

p0

p1

p2

p3

m

m

Broadcast

If a process sends a message m, then every
process eventually delivers m

How can we adapt the spec for an environment
where processes can fail?

p0

p1

p2

p3

Reliable Broadcast

Validity If the sender is correct and broadcasts a
 message , then all correct processes
 eventually deliver

Agreement If a correct process delivers a message ,
 then all correct processes eventually
 deliver

Integrity Every correct process delivers at most one
 message, and if it delivers , then some
 process must have broadcast

m

m

m

m

m

m

Terminating
Reliable Broadcast

Termination Every correct process eventually delivers
 some message

Validity If the sender is correct and broadcasts a
 message , then all correct processes
 eventually deliver

Agreement If a correct process delivers a message ,
 then all correct processes eventually
 deliver

Integrity Every correct process delivers at most one
 message, and if it delivers , then
 some process must have broadcast

m

m

m

m

m

m

Terminating
Reliable Broadcast

Termination Every correct process eventually delivers
 some message

Validity If the sender is correct and broadcasts a
 message , then all correct processes
 eventually deliver

Agreement If a correct process delivers a message ,
 then all correct processes eventually
 deliver

Integrity Every correct process delivers at most one
 message, and if it delivers ! SF, then
 some process must have broadcast

m

m

m

m

m

m

Consensus
Termination Every correct process eventually decides

 some value

Validity If all processes that propose a value
 propose , then all correct processes
 eventually decide

Agreement If a correct process decides v, then all
 correct processes eventually decide

Integrity Every correct process decides at most one
 value, and if it decides ! NU, then some

 process must have proposed

v

v

v

v

v

Properties of
send(m) and receive(m)
Benign failures:

Validity If sends to , and , , and
the link between them are correct, then
eventually receives

Uniform* Integrity For any message ,
receives at most once from , and only if
. sent to

* A property is uniform if it applies to both
 correct and faulty processes

m

m

m

m

m

p p

q

qq

q

qp

p

Properties of
send(m) and receive(m)

Arbitrary failures:

Integrity For any message m, if p and q
are correct then q receives m at most once
from p, and only if p sent m to q

Questions, Questions…
Are these problems solvable at all?

Can they be solved independent of the failure
model?

Does solvability depend on the ratio between
faulty and correct processes?

Does solvability depend on assumptions about
the reliability of the network?

Are the problems solvable in both synchronous
and asynchronous systems?

If a solution exists, how expensive is it?

Plan
Synchronous Systems

Consensus for synchronous systems with crash failures

Lower bound on the number of rounds

Early stopping protocols for Reliable Broadcast

Reliable Broadcast for arbitrary failures with message
authentication

Lower bound on the ratio of faulty processes for
Consensus with arbitrary failures

Reliable Broadcast for arbitrary failures

Asynchronous Systems
Impossibility of Consensus for crash failures

Model

Synchronous Message Passing

Execution is a sequence of rounds

In each round every process takes a step
sends messages to neighbors
receives messages sent in that round
changes its state

Network is fully connected (an n-clique)

No communication failures

A simple
Consensus algorithm

Initially V={vi}

To execute propose(vi)

1: send {vi} to all

decide(x) occurs as follows:

2: for all j, 0 " j " n-1, j ! i do

3: receive Sj from pj

4: V:= V U Sj

5: decide min(V)

Process pi:

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

v2

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

v2

v1 v1

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

v2

v1 v1

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

v2

v1 v1

v4

v3v3

Echoing values

A process that receives a proposal in round
1, relays it to others during round 2.

Echoing values

A process that receives a proposal in round
1, relays it to others during round 2.

Suppose hasn’t heard from at the end
of round 2. Can decide?

p3 p2

p3

Echoing values

A process that receives a proposal in round
1, relays it to others during round 2.

Suppose hasn’t heard from at the end
of round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

What is going on

A correct process has not received all
proposals by the end of round . Can
decide?

Another process may have received the
missing proposal at the end of round and
be ready to relay it in round

p
∗

p
∗

i

i + 1

i

Dangerous Chains

Dangerous chain
The last process in the chain is correct, all
others are faulty

round 1

round 2

rounds

round

p
∗

p
∗

p
∗

p
∗

p0

p1

p2

pi−1

pi

3...i − 1

i

Living dangerously

How many rounds can a dangerous chain span?

 faulty processes

at most nodes in the chain

spans at most rounds

It is safe to decide by the end of round !

f

f+1

f

f+1

