The Algorithm

Code for process pj :

Initially V={vj}
To execute propose(vj)
round Kk, 1 < k < f+l

1: send {v in V : pj has not already sent v} to all
2:forall j,0<j<n-1,j#ido

3:  receive Sj from pj
4 V=V US;

decide(x) occurs as follows:

5. if k = f+1 then
6: decide min(V)

Validity

Initially V={vj}

To execute propose(vj)
round k, 1 < k < f+l
send {v in V : pj has not already sent v} to all

forall ,0<j<n-1,j#ido

1
2:
5: receive Sj from pj
4: Vi=V U Sj

decide(x) occurs as follows:
5: if k = f+1 then
6: decide min(V)

Termination and
Integrity

Initially V={vj}

To execute propose(vj)
round k, 1 < k < f+l
1:  send {vinV : pj has not already sent v} to all
2. forall O0<j<n-1,j#ido
5: receive Sj from pj
4: Vi=V U Sj
decide(x) occurs as follows:

5: if k = f+1 then
6:  decide min(V)

Every correct process
o reaches round f + 1

@ Decides on min(V) --- which is well
defined

At most one value:
- one decide, and min(V) is unique

Only if it was proposed:
— To be decided upon, must be in V at round f+1
- if value = vj, then it is proposed in round 1
- else, suppose received in round k. By induction:
-k=1
® by Uniform Integrity of underlying send
and receive, it must have been sent in round 1
® by the profocol and because only crash
failures, it must have been proposed
Induction Hypothesis: all values received up to
round K = j have been proposed
k = j+1
e sent in round j+1 (Uniform Integrity of send
and synchronous model)
e must have been part of V of sender at end
of round j
® by protocol, must have been received by sender
by end of round j
® by induction hypothesis, must have been proposed

Validity

Initially V={vj}

To execute propose(vj)
round k, 1 < k < f+l
1:  send {vinV : pj has not already sent v} to all
2. forall O0<j<n-1,j#ido
5: receive Sj from pj
4: Vi=V U Sj
decide(x) occurs as follows:

5: if k = f+1 then
6:  decide min(V)

@ Suppose every process proposes v*

@ Since only crash model, only v* can
be sent

@ By Uniform Integrity of send and
receive, only v* can be received

@ By protocol, V={v*}
o min(V) = v*

@ decide(v™*)




Agreement

Initially V={vj}

To execute propose(vj)
round k, 1 < k < f+l
1:  send {vinV : pj has not already sent v} fo all
2. forall O0<j<n-1,j#ido
5: receive Sj from pj
4: Vi=V U Sj
decide(x) occurs as follows:

5: if k = f+1 then
6:  decide min(V)

Lemma 1
For any r = 1, if a process p
receives a value v in round r,
then there exists a sequence
of processes Po,Pi;---;Pr such
that po = Vs proponent, p, =p
and in each round k,1 < k <,
Pr—1Sends v and pr receives
it. Furthermore, all processes
in the sequence are distinct.

Proof

By induction on the length of
the sequence

Agreement

Initially V={vi}

To execute propose(v;)
round k, 1 ¢ k < f+l
send {v in V : pj has not already sent v} to all

forall j, 0 < j¢n-1, j#ido

13
2:
3: receive Sj from pj
4: Vi=V U Sj

decide(x) occurs as follows:
5: if k = f+1 then
6: decide min(V)

Lemma 2:

In every execution, at the end of round f + 1,
Vi = Vj for every correct processes pj and pj

Agreement follows from Lemma 2, since
min is a deterministic function

Agreement

Initially V={v;}

To execute propose(v;)
round k, 1 < k < ftl
1:  send {vinV : pj has not already sent v} to all
2. forall 0<j<n-l j#ido
3: receive Sj from pj
4: Vi=V U Sj

decide(x) occurs as follows:
5: if k = f+1 then
6: decide min(V)

Agreement

Initially V={v;}

To execute propose(v;)
round k, 1 < k < ftl
1:  send {vinV : pj has not already sent v} to all
2. forall j0<j<n-l j#ido
3: receive Sj from pj
4: Vi=V U Sj

decide(x) occurs as follows:
5: if k = f+1 then
6: decide min(V)

Lemma 2:

In every execution, at the end of round f + 1,
Vi = Vj for every correct processes pj and pj

Agreement follows from Lemma 2, since
min is a deterministic function

Proof:
® Show that if a correct process has x in its
V at the end of round f + 1, then every
correct process has x in its V at the end of
round f + 1
® Let r be earliest round x is added to the V
of a correct process. Let that process be p
eIfr=f then psends xinroundr +1=<f
+ 1; every correct process receives x and
adds x to its V in round r + 1
e What if r = f + 1?
® By Lemma 1, there exists a sequence

pr+1 = p of distinct processes
® Consider processes po,...,Df
e f + 1 processes; only f faulty
® one of py,...,ps is correct, and adds x to
its V before p does it in round r




A Lower Bound Views

Let a be an execution. The view of process p; in
«, denoted by a|p;, is the subsequence of
computation and message receive events that
occur in p; together with the state of p; in the
initial configuration of «

Theorem

There is no algorithm that solves the
consensus problem in less than f+1
rounds in the presence of f crash
failures, if n > f+2 P2 ps Pa

o

Ym mw P4
We consider a special case (f=1) to
study proof technique / alps

Similarity Similarity

Definition Let o; and as be Definition Let o; and as be

two executions of consensus two executions of consensus

and let p; be a correct process and let p; be a correct process

in both a; and ay. Execution a; in both a; and as. Execution a;

is to execution as with is to execution as with

respect fo p;, denoted a; ~p, as respect fo p;, denoted a; ~p, as
if a1lp; = oolp; if a1lp; = oolp;

Note If a1 ~p, a2 then p;
decides the same value in
both executions




Similarity

Definition Let o; and as be
two executions of consensus

and let p; be a correct process
in both a; and ay. Execution a;

is to execution as with

respect fo p;, denoted o ~p, as

if a1lp; = oolp;

Note If a1 ~p, a2 then p;
decides the same value in
both executions

Lemma If aj ~p, a2 and p; is

correct, then dec(ay) = dec(a2)

Similarity

Definition Let o; and as be
two executions of consensus
and let p; be a correct process
in both a; and ay. Execution a;
is to execution as with
respect fo p;, denoted a; ~p, as

if a1lp; = oolp;

Note If a1 ~p, a2 then p;
decides the same value in
both executions

Lemma If aj ~p, a2 and p; is
correct, then dec(ay) = dec(a2)

The transitive closure of a; ~,, as
is denoted a7 ~ as.

We say that a; =~ as if there exist
executions 1, B2, . . ., Brk+1 such that

(0= Bl ~piy 52 300 SRR T /8k+1 T

Lemma If a3 = as then
dec(oy) = dec(ap)

Similarity

Definition Let o; and as be

two executions of consensus

and let p; be a correct process

in both a; and as. Execution a;

is to execution as with

respect fo p;, denoted a; ~p, as
if a1lp; = oolp;

Note If a1 ~p, a2 then p;
decides the same value in
both executions

Lemma If aj ~p, a2 and p; is
correct, then dec(ay) = dec(a2)

The transitive closure of a; ~,, as

is denoted a1 =~ as.

We say that a; =~ as if there exist
executions (31, (o, ..., Brr+1 such that

a1 = P ~p,, B2 ~pi, o ~ps, Bl = Q2

Single-Failure Case

There is no algorithm that solves the
consensus problem in less than two rounds
in the presence of one crash failure, if n = 3




The Idea

By contradiction

@ Consider a one-round execution in which each
process proposes 0. What is the decision value?

@ Consider another one-round execution in which
each process proposes 1. What is the decision
value?

® Show that there is a chain of similar
executions that relate the two executions.

So what?

Adjacent o's are similar!

Starting from o’ we build a set of executions

o where 0 <j <n—1 as follows:

ol is obtained from o' after removing the
messages thatp; sends fo the j-th highest
numbered processors (excluding itself)

as
Definition

o' is the execution of the algorithm
in which

@ no failures occur
@ processes P, ---,Pi—1 propose 1
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Indistinguishability Indistinguishability
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Indistinguishability
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Terminating

Reliable Broadcast

Termination Every correct process eventually delivers

Validity

Agreement

Integrity

some message
If the sender is correct and broadcasts a
message m, then all correct processes
eventually deliver m

If a correct process delivers a message m,
then all correct processes eventually
deliver m

Every correct process delivers at most one
message, and if it delivers m , then
some process must have broadcast m

Indistinguishability

TRB for benign failures

Terminates in f + 1 rounds
Sender in round 1:
1: send m to all

How can we do better?
Process p in round Kk, 1 <k < ftl

if delivered m in round k-1 and p # sender then o find a PI"OfOCOl whose

send m fo all H H
an round complexity is

2
34
4: receive round k messages propor’rional tot -the
Sikin ived m th <

T number of failures that
8:

Gk

1
deliver(m)
i if k= il then halt actually occurred-rather
else if k = f+1
ol than to f —-the max
10:  halt number of failures that

may occur




Early stopping: Early Stopping:
the idea The Protocol

Let |faulty(p, k)| be the set of processes that have failed to send a message to
@ Suppose processes can detect the set of p in any round 1..k

Processes that have 'Falled by the end O'F 1: if p = sender then value := m else value:= ?
round i Process p in round Kk, 1 <k < f+1

: send value to all
. if value # ? then halt

@ Call that set faulty(p,i)

2

3

4: receive round k values from all

5: |faulty(p, k)| := |faulty(p,k — 1)|U {q | p received no value from q in round k}
6: if received value v # ? then
7
8
9

@ If |faulty(p,i)| < i there can be no active
dangerous chains, and p can safely deliver SF

value := v
deliver(value)
: else if k = f+1 or |faulty(p, k)| < k then
10:  value := SF
11: deliver(value)
12: if k = f+1 then halt

Termination Termination

Let |faulty(pk)l be the set of processes that have Let |faulty(pk)l be the set of processes that have d IF in any round a Process
failed to send a message to p in any round 1..k failed to send a message to p in any round 1..k : .
receives a value, then it

delivers the value in that
round

1: if p = sender then value := m else value:= ? 1: if p = sender then value := m else value:= ?
Process p in round K, 1 <k < ftl Process p in round K, 1 <k < ftl

send value to all :  send value to all

if value # ? then halt 1 if value # ? then halt

receive round k values from all :  receive round k values from all -] If a prOCGSS has received
Ifaulty(pK)l := Ifaulty(pk - 1)IU {q | p : faulty(pK)l := Ifaulty(pk - DIU {q | p N

received no value from q in round k} received no value from q in round k} Only ?” for f+1 rOUndS,

if received value v # ? then . if received value v # ? then

s L then it delivers SF in

deliver(value) 2 deliver(value)
else if k = f+1 or |faulty(p.k)l < k then :  else if k = f+l or [faulty(pk)| < k then r‘ound f+ 1

value := SF k value := SF
deliver(value) g deliver(value)
if k = f+1 then halt 3 if k = f+1 then halt




Validity

Let |faulty(p k)| be the set of processes that have

failed to send a message to p in any round 1..k

1: if p = sender then value := m else value:= ?

Process p in round K, 1 <k < ftl

send value to all
if value # ? then halt
receive round Kk values from all
Ifaulty(pK)l := Ifaulty(pk - 1)IU {q | p
received no value from q in round k}
if received value v # ? then
value := v
deliver(value)
else if k = f+1 or |faulty(p.k)l < k then
value := SF
deliver(value)
if k = f+1 then halt

Agreement - 1

Let |faulty(p k)| be the set of processes that have
failed to send a message to p in any round 1..k

1: if p = sender then value := m else value:= ?
Process p in round K, 1 <k < ftl

send value to all
if value # ? then halt
receive round Kk values from all
Ifaulty(pK)l := Ifaulty(pk - 1)IU {q | p
received no value from q in round k}
if received value v # ? then
value := v
deliver(value)
else if k = f+1 or |faulty(p.k)l < k then
value := SF
deliver(value)
if k = f+1 then halt

Lemma 1
For any r = 1, if a process p delivers
m = SF in round r, then there exists a
sequence of processes po,pi,.-.;Pr
such that po = sender, pr =p, and in
each round k, 1 <k <, pr—1 sent m
and pji received it. Furthermore, all
processes in the sequence are distinct,
unless r =1 and py = p; = sender

Lemma 2:
For any r = 1, if a process p sets
value to SF in round r, then there
exist some j = r and a sequence of
distinct processes ¢;,q;+1
such that ¢; only receives “?” in
rounds 1 to |, |faulty(g;,j)| < j, and in
eachround k, j+l = k= ¢
sends SF to ¢x and ¢ receives SF

Validity

Let |faulty(p k)| be the set of processes that have . .
failed to send a message to p in any round 1..k ° IF fhe Sender IS CorreCf *hen 'f

1: if p = sender then value := m else value:= ? sends mto all in round 1

Process P/ INGHRd 5 U @ By Validity of the underlying
send value to all send and receive, every correct
if value # ? then halt : .
receive round k values from all process will receive m by the
Ifaulty(pK)l := Ifaulty(pk - 1)IU {q | p
received no value from q in round k} end OF round 1
if received value v # ? then
value := v
deliver(value)

@ By the protocol, every correct
else if k = f+1 or [faulty(pK)l <k then process will deliver m by the
value := SF

deliver(value) end O‘F round 1
if k = f+1 then halt

Agreement - 2

Let |faulty(pk)l be the set of processes that have
failed to send a message to p in any round 1..k

I: if p = sender then value := m else value:= ?
Process p in round Kk, 1<k < f+l

send value to all
if value # ? then halt
receive round k values from all
|faulty(p.K)l := |faulty(pk - 1)IU {q | p
received no value from q in round Kk}
if received value v # ? then
value := v
deliver(value)
else if k = f+1 or [faulty(pk)l < k then
value := SF
deliver(value)
if k = f+1 then halt

Lemma 3:
It is impossible for p and q, not necessarily
correct or distinct, to set value in the same
round r to m and SF, respectively




Agreement - 2

Let |faulty(pk)l be the set of processes that have
failed to send a message to p in any round 1..k

I: if p = sender then value := m else value:= ?
Process p in round Kk, 1<k < f+l

send value to all
if value # ? then halt
receive round Kk values from all
|faulty(p.K)l := |faulty(pk - 1)IU {q | p
received no value from q in round Kk}
if received value v # ? then
value := v
deliver(value)
else if k = f+1 or |faulty(pk)l < k then
value := SF
deliver(value)
if k = f+1 then halt

Lemma 3:
It is impossible for p and g, not necessarily
correct or distinct, to set value in the same
round r to m and SF, respectively

Proof

By contradiction
Suppose p sets value = m and q sets
value = SF

By Lemmas 1 and 2 there exist

Qe+ Gr

with the appropriate characteristics
Since ¢; did not receive m from
process pr—1 1 = K = j in round k

q; must conclude that po,...,pj—1
are all faulty processes

But then, |faulty(q;, j)| > j

Agreement - 3

Let |faulty(pk)| be the set of processes that have
failed to send a message to p in any round 1..k

I: if p = sender then value := m else value:= ?
Process p in round Kk, 1<k < f+l

send value to all
if value # ? then halt
receive round k values from all
|faulty(p.K)l := |faulty(pk - 1)IU {q | p
received no value from q in round Kk}
if received value v # ? then
value := v
deliver(value)
else if k = f+1 or |faulty(pk)l < k then
value := SF
deliver(value)
if k = f+1 then halt

Proof

If no correct process ever receives m, then every
correct process delivers SF in round f + 1

Let r be the earliest round in which a correct
process delivers value = SF
R =kf
0 By Lemma 3, no (correct) process can set
value differently in round r
o Inroundr + 1= f +1, that correct process
sends its value to all
o Every correct process receives and delivers
the value inround r + 1 = f + 1
r=f+1
o By Lemma 1, there exists a sequence PO s
Pf41 = Py of distinct processes
o Consider processes pg, .., Pf
o f + 1 processes; only f faulty
o one of pg, ..., pf is correct-—- let it be p.
o To send v in round ¢ + 1, p. must have

set its value to v and delivered v in
round ¢ < 1

Agreement - 3

Let |faulty(pk)l be the set of processes that have
failed to send a message to p in any round 1..k

I: if p = sender then value := m else value:= ?
Process p in round Kk, 1<k < f+l

send value to all
if value # ? then halt
receive round Kk values from all
|faulty(p.K)l := |faulty(pk - 1)IU {q | p
received no value from q in round Kk}
if received value v # ? then
value := v
deliver(value)
else if k = f+1 or |faulty(pk)l < k then
value := SF
deliver(value)
if k = f+1 then halt

Integrity

Let |faulty(pk)l be the set of processes that have
failed to send a message to p in any round 1..k

I: if p = sender then value := m else value:= ?
Process p in round Kk, 1<k < f+l

send value to all
if value # ? then halt
receive round k values from all
|faulty(p.K)l := |faulty(pk - 1)IU {q | p
received no value from q in round Kk}
if received value v # ? then
value := v
deliver(value)
else if k = f+1 or [faulty(pk)l < k then
value := SF
deliver(value)
if k = f+1 then halt




Integrity

Let |faulty(pk)l be the set of processes that have
failed to send a message to p in any round 1..k =] Af mOSf one m

I: if p = sender then value := m else value:= ?

o Failures are benign, and
a process executes at

send value to all most one deliver event
if value # ? then halt

receive round Kk values from all bef:ore halhng
|faulty(p.K)l := |faulty(pk - 1)IU {q | p
received no value from q in round Kk}

if received value v # ? then I'F m = SF, Only |F m

value := v

deliver(value) was broadcast
else if k = f+1 or |faulty(pk)l < k then

value := SF

b o From Lemma 1 in the
eliver(value)
if k = f+1 then halt proof of Agreement

Process p in round Kk, 1<k < f+l




