
The Algorithm

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1
1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do
3: receive Sj from pj 

4: V:= V U Sj 
decide(x) occurs as follows:

5:  if k = f+1  then

6:  decide min(V)

Code for process pi :

Termination and 
Integrity

Termination
Every correct process 
reaches round f + 1
Decides on min(V) --- which is well 
defined 

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj 

4: V:= V U Sj 

decide(x) occurs as follows:

5: if k = f+1  then

6: decide min(V)

Integrity
At most one value: 

   – one decide, and min(V) is unique

Only if it was proposed:

  – To be decided upon, must be in V at round f+1
  – if value = vi, then it is proposed in round 1

  – else, suppose received in round k. By induction:
  – k = 1: 
      • by Uniform Integrity of underlying send 
       and receive, it must have been sent in round 1
      • by the protocol and because only crash 
        failures, it must have been proposed
  – Induction Hypothesis: all values received up to   
    round k = j have been proposed
  – k = j+1
      • sent in round j+1 (Uniform Integrity of send 
        and synchronous model)
      • must have been part of V of sender at end     
        of round j
      • by protocol, must have been received by sender 
        by end of round j
      • by induction hypothesis, must have been proposed 

Validity

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj 

4: V:= V U Sj 

decide(x) occurs as follows:

5: if k = f+1  then

6: decide min(V)

Validity

Suppose every process proposes 

Since only crash model, only    can 
be sent

By Uniform Integrity of send and 
receive, only    can be received

By protocol, V={   }

min(V) = 

decide(   )

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj 

4: V:= V U Sj 

decide(x) occurs as follows:

5: if k = f+1  then

6: decide min(V)
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Agreement

Lemma 1 
For any r ! 1, if a process p 
receives a value v in round r, 
then there exists a sequence 
of processes               such 
that    = v’s proponent,      
and in each round             , 
,.    sends v and     receives 
it. Furthermore, all processes 
in the sequence are distinct.

Proof 
By induction on the length of 
the sequence

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj 

4: V:= V U Sj 

decide(x) occurs as follows:

5: if k = f+1  then

6: decide min(V)

p0, p1, ... , pr

pr = p

k, 1 ≤ k ≤ r

pk−1 pk

p0

Agreement
Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj 

4: V:= V U Sj 

decide(x) occurs as follows:

5: if k = f+1  then

6: decide min(V)

Agreement

Lemma 2: 
In every execution, at the end of round f + 1, 
Vi = Vj for every correct processes pi and pj

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj 

4: V:= V U Sj 

decide(x) occurs as follows:

5: if k = f+1  then

6: decide min(V)

Agreement follows from Lemma 2, since 
min is a deterministic function

Agreement

Lemma 2: 
In every execution, at the end of round f + 1, 
Vi = Vj for every correct processes pi and pj

Proof:
• Show that if a correct process has x in its 
V at the end of round f + 1, then every 
correct process has x in its V at the end of 
round f + 1
• Let r be earliest round x is added to the V 
of a correct process. Let that process be p
• If r " f, then  p sends x in round r + 1 " f 
+ 1; every correct process receives x and 
adds x to its V in round r + 1
• What if r = f + 1?
• By Lemma 1, there exists a sequence         
......                 of distinct processes
• Consider processes  
• f + 1 processes; only f faulty
• one of            is correct, and adds x to 
its V before p does it in round r
CONTRADICTION!

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all 

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj 

4: V:= V U Sj 

decide(x) occurs as follows:

5: if k = f+1  then

6: decide min(V)

Agreement follows from Lemma 2, since 
min is a deterministic function

p0, . . . , pf

p0, . . . , pf+1 = p

p0, . . . , pf



A Lower Bound

Theorem

There is no algorithm that solves the 
consensus problem in less than  
rounds in the presence of   crash 
failures, if 

We consider a special case        to 
study proof technique

n ≥ f+2

f+1

f

(f =1)

Views
Let # be an execution. The view of process    in   
.  , denoted by        , is the subsequence of 
computation and message receive events that 
occur in    together with the state of    in the 
initial configuration of 

p1 p2 p3 p4

p1 p2 p3 p4

from p1 from p4

α|p3

α|pi

pipi

pi

α

α

Similarity
Definition Let    and    be 
two executions of consensus 
and let    be a correct process 
in both    and     . Execution    
is similar to execution     with 
respect to   , denoted                     

 if 

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Similarity
Definition Let    and    be 
two executions of consensus 
and let    be a correct process 
in both    and     . Execution    
is similar to execution     with 
respect to   , denoted                     

 if 
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pi

α1 α2 α1
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pi α1 ∼pi
α2

α1|pi = α2|pi

Note  If            then    
decides the same value in 
both executions

α1 ∼pi
α2 pi



Similarity
Definition Let    and    be 
two executions of consensus 
and let    be a correct process 
in both    and     . Execution    
is similar to execution     with 
respect to   , denoted                     

 if 

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note  If            then    
decides the same value in 
both executions

α1 ∼pi
α2 pi

Lemma  If            and    is 
correct, then dec(#1) = dec(#2)

α1 ∼pi
α2 pi

Similarity
Definition Let    and    be 
two executions of consensus 
and let    be a correct process 
in both    and     . Execution    
is similar to execution     with 
respect to   , denoted                     

 if 

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note  If            then    
decides the same value in 
both executions

α1 ∼pi
α2 pi

Lemma  If            and    is 
correct, then dec(#1) = dec(#2)

α1 ∼pi
α2 pi

The transitive closure of           
is denoted      .
We say that      if there exist 
executions such that

α1 ∼pi
α2

α1 ≈ α2

α1 ≈ α2

β1, β2, . . . , βk+1

α1 = β1 ∼pi1
β2 ∼pi2

. . . ,∼pik
βk+1 = α2

Similarity
Definition Let    and    be 
two executions of consensus 
and let    be a correct process 
in both    and     . Execution    
is similar to execution     with 
respect to   , denoted                     

 if 

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note  If            then    
decides the same value in 
both executions

α1 ∼pi
α2 pi

Lemma  If            and    is 
correct, then dec(#1) = dec(#2)

α1 ∼pi
α2 pi

The transitive closure of           
is denoted      .

We say that      if there exist 
executions such that

α1 ∼pi
α2

α1 ≈ α2

α1 ≈ α2

β1, β2, . . . , βk+1

α1 = β1 ∼pi1
β2 ∼pi2

. . . ,∼pik
βk+1 = α2

Lemma  If            then 
dec(#1) = dec(#2)

α1 ≈ α2

Single-Failure Case

There is no algorithm that solves the 
consensus problem in less than two rounds 
in the presence of one crash failure, if   ! 3n



The Idea
By contradiction

Consider a one-round execution in which each 
process proposes 0. What is the decision value?

Consider another one-round execution in which 
each process proposes 1. What is the decision 
value?

Show that there is a chain of similar 
executions that relate the two executions.

So what?

 s
Definition 

     is the execution of the algorithm 
in which

no failures occur

processes              propose 1
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Adjacent    s are similar! 

Starting from   , we build a set of executions  
.   where                as follows:

   is obtained from    after removing the 
messages that    sends to the j-th highest 

numbered processors (excluding itself)
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Indistinguishability
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Terminating
Reliable Broadcast 

Termination  Every correct process eventually delivers 
               some message

Validity    If the sender is correct and broadcasts a 
               message   , then all correct processes 
               eventually deliver   

Agreement   If a correct process delivers a message   , 
               then all correct processes eventually 
               deliver 

Integrity    Every correct process delivers at most one 
               message, and if it delivers    " SF, then 
               some process must have broadcast 

m

m

m

m

m

m

TRB for benign failures

Sender in round 1:

1: send m to all

Process p in round k, 1 ! k ! f+1

1: if delivered m in round k-1 and p " sender then

2: send m to all 

3: halt

4: receive round k messages

5: if received m then

6: deliver(m)

7: if  k = f+1 then halt

8: else if k = f+1

9: deliver(SF)

10: halt

Terminates in   + 1 rounds

 How can we do better?
find a protocol whose 
round complexity is 
proportional to  –the 
number of failures that 
actually occurred–rather 
than to ..–the max 
number of failures that 
may occur

f
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Early stopping: 
the idea

Suppose processes can detect the set of 
processes that have failed by the end of 
round 

Call that set 

If                  there can be no active 
dangerous chains, and   can safely deliver SF

faulty(p, i)

|faulty(p, i)| < i

p

i

Early Stopping:
The Protocol

Let              be the set of processes that have failed to send a message to 
p in any round 1…k

1: if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2:  send value to all 
3:  if value " ? then halt

4:  receive round k values from all

5:                                      {q | p received no value from q in round k}

6: if received value v " ? then

7:   value := v

8:   deliver(value)

9:  else if k = f+1 or                   then

10: value := SF

11: deliver(value)

12: if k = f+1 then halt

|faulty(p, k)| := |faulty(p, k − 1)|∪

|faulty(p, k)| < k

|faulty(p, k)|

Termination

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Termination

If in any round a process 
receives a value, then it 
delivers the value in that 
round

If a process has received 
only “?” for       rounds, 
then it delivers SF in 
round 

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

f+1

f+1



Validity

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Validity

If the sender is correct then it 
sends   to all in round 1

By Validity of the underlying 
send and receive, every correct 
process will receive    by the 
end of round 1

By the protocol, every correct 
process will deliver    by the 
end of round 1

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

m

m

m

Agreement - 1
Lemma 1: 

For any r ! 1, if a process p delivers    
.  $ SF in round r, then there exists a 
sequence of processes               
such that    = sender,        , and in 
each round k, 1 " k " r,       sent  
and    received it. Furthermore, all 
processes in the sequence are distinct, 
unless r = 1 and             sender

Lemma 2: 

For any r ! 1, if a process p sets 
value to SF in round r, then there 
exist some j " r and a sequence of 
distinct processes 

such that    only receives “?” in 

rounds 1 to j,                   , and in 
each round k, j + 1 " k " r,      
sends SF to    and    receives SF

p0, p1, . . . , pr

p0 pr = p

pk−1

pk

p0 = p1 =

m

m

qj , qj+1, . . . , qr = p

qj

qk qk

qk−1

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

|faulty(qj , j)| < j

Agreement - 2
Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Lemma 3: 
It is impossible for p and q, not necessarily 
correct or distinct, to set value in the same 
round r to m and SF, respectively



Agreement - 2
Proof

By contradiction
Suppose p sets value = m and q sets 
value = SF

By Lemmas 1 and 2 there exist

with the appropriate characteristics

Since    did not receive m from 
process       1 " k " j in round k

   must conclude that              
are all faulty processes

But then, 

CONTRADICTION

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Lemma 3: 
It is impossible for p and q, not necessarily 
correct or distinct, to set value in the same 
round r to m and SF, respectively

p0, . . . , pr

qj , . . . , qr

|faulty(qj , j)| ≥ j

p0, . . . , pj−1

pk−1

qj

qj

Agreement - 3
Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Agreement - 3
Let r be the earliest round in which a correct 
process delivers value $ SF

r " f   

By Lemma 3, no (correct) process can set 
value differently in round r
In round r + 1 " f + 1, that  correct process 
sends its value to all
Every correct process receives and delivers 
the value in round r + 1 " f + 1

r =  f + 1
By Lemma 1, there exists a sequence p0, …, 

pf+1 = pr of distinct processes

Consider processes p0, …, pf 

f + 1 processes; only f faulty
one of p0, …, pf is correct-- let it be pc

To send v in round c + 1, pc must have 

set its value to v  and delivered v in 
round c < r

CONTRADICTION

Proof
If no correct process ever receives m, then every 

correct process delivers SF in round f + 1

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Integrity
Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt



Integrity
At most one m

Failures are benign, and 
a process executes at 
most one deliver event 
before halting

If m $ SF, only if m 
was broadcast

From Lemma 1 in the 
proof of Agreement

Let |faulty(p,k)| be the set of processes that have 
failed to send a message to p in any round 1…k

1:    if p = sender then value := m  else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all 
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p  
      received no value from q in round k}
6: if received value v " ?  then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt


