The Part-Time Parliament

@ Parliament determines
laws by passing sequence
of numbered decrees
Legislators can leave and
enter the chamber at
arbitrary times
No centralized record of
approved decrees-instead,
each legislator carries a
|€dg€l” @ ANTIPAXOS 1§

Government 101

@ No two ledgers contain contradictory
information

o If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

0 any decree proposed by a legislator would
eventually be passed

0 any passed decree would appear on the
ledger of every legislator

Supplies

Each legislator receives

scratch paper

lots of

messengers

pen with indelible ink hourglass

Back to the future

@ A set of processes that can propose values
@ Processes can crash and recover

@ Processes have access to stable storage

@ Asynchronous communication via messages

@ Messages can be lost and duplicated, but not
corrupted

The Game: Consensus

SAFETY

@ Only a value that has been proposed can be chosen
@ Only a single value is chosen

@ A process never learns that a value has been
chosen unless it has been

LIVENESS

@ Some proposed value is eventually chosen

@ If a value is chosen, a process eventually learns it

The Players

@ Proposers
@ Acceptors

@ Learners

Choosing a value

Have a single acceptor

Choosing a value

majority
Have a single—acceptor

of

Using a majority set guarantees
that at most one value is chosen

Accepting a value

@ Suppose only one proposer proposes a single
value

® assume no failures

@ that value should be accepted!

Accepting a value

@ Suppose only one proposer proposes a single
value

® assume no failures

@ that value should be accepted!

Pl: Acceptors must accept
first received proposal

Accepting a value

Pl1: Acceptors must accept
first received proposal

@ Choosing a value requires a majority of
acceptors to accept that value

@ What if we have multiple proposers, each
proposing a different value?

@ Acceptors must accept multiple proposals (each
identified by pair (n, value)) ?

Guaranteeing
uniqueness

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is chosen
has value v

How do we implement P27?

What about: If a proposal with value v is
chosen, then every higher-numbered proposal
accepted by any acceptor has value v

@ It satisfies P1 and P2, but it not implementable
In an asynchronous system!

Another take on P2

@ If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

Another take on P2

@ If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

@ If a proposal with value v is chosen, then
every higher-numbered proposal issued by any
proposer has value v

Implementing P2

@ If a proposal with value v is chosen, then
every higher-numbered proposal issued by
any proposer has value v

How would we enforce this? Use as inspiration
a possible proof!

Assume some (m, v) has been chosen by a set C of acceptors

Assume, by induction, that all proposal issued with numbers in the range
m..n-1 proposed v

Then, any acceptor that accepts a proposal with number m..n-1 has value
1%

The proposal with number n has value v if the following invariant holds:
Let S be a majority set. of acceptors When a proposer issues a value v

Implementing P2

If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Achieved by enforcing the following invariant

For any v and n, if a proposal with value v and pid 7 is
issued, then there is a majority-set S of acceptors such
that one of the following holds:

D no acceptor in S has accepted any proposal
numbered less than »

o v is the value of the highest-numbered proposal
among all proposal numbered less than n accepted
by the acceptors in S

The proposers protocol

1. A proposer chooses a new n and sends <prepare,n> to
each member of some set of acceptors, asking it to

respond with:
a. A promise never again to accept a proposal numbered less
than n, and
b. The accepted proposal with highest number less than # if
any.

If proposer receives a response from a majority of
acceptors, then it can issue <accept(n,v)> where v is the
value of the highest numbered proposal among the
responses, or is any value selected by the proposer if
responders refturned no proposals

The acceptors protocol

. Can ignore any request without violating safety
. Can always respond to prepare messages

. Can respond to <accept(n,v)> iff it has not
promised not to-i.e. it has not responded to

<prepare,n’> With n’> n

Acceptor must remember
@ highest numbered proposal ever accepted
@ highest numbered prepare request to which it
responded

Learning chosen values

Once a value is chosen, it is forwarded to the
learners. Many strategies are possible:

i. Each acceptor informs each learner

ii. Acceptors inform a distinguished learner,
who informs the other learners

lii. Something in between

Liveness

Progress is not guaranteed:

n1<n2<n3<n4<...

P P2

<propose, >
<propose,n,>

<accept(n1,v1)>
<accepl(n2,1/2)>

<propose,n>

<propose,n >

4

All proposers are equal,
but some more so than others

@ Elect a distinguished proposer

@ Cant be done reliably in asynchronous systems,
SO...

@ real time

@& randomization

Arbitrary failures with

message authentication
@. Crash

"

Send Omission @ @ Receive Omission

%Omission

® Process can send

conflicting messages

to different receivers , Arbitrary failures with
message authentication

VL

@ Messages are signed

with unforgeable)
signatures OArbi’rmry (Byzantine) failures

Valid messages

A valid message m has the following form:

in round 1:

<m:s>(mis signed by the sender)

in round r > 1, if received by p from q:
<m:py:ps:...:p-> Where
@ p1 = sender; pr =¢q

@ pi,...,pr are distinct from each other and from p
® message has not been tfampered with

AFMA: The Idea

@ A correct process p discard all non-valid messages
IT receives

o If a message is valid,
nit “extracts” the value from the message

o it relays the message, with its own signature
appended

& At round f + 1:

o if it extracted exactly one message, p delivers it
@ otherwise, delivers SF

AFMA: The Protocol

sender s in round O:

l: extract m

sender in round 1:

2: send < m:s > to all

Process p in round K, 1< K < f+l

3: if p extracted m from a valid message < m:p1: .. :pk-1> in round K - 1 and

p # sender then
send < m:p1: ... :pk-1:p> fo all

: receive round kK messages from all processes
: for each valid round k message < m:p1: ... :pk-1:pk> received by p

extract m
: if k = f+1 then
10: if in the entire execution p has extracted exactly one m then
11: deliver(m)
12: else deliver(SF)
13: halt

A
5
6
7: if p has not previously extracted m then
8
9

Termination

sender s in round O:

I: extract m

sender in round 1:

2: send < m:s > to all

Process p in round Kk, 1<k < f+l

3: if p extracted m from a valid message <m:p1: ... :pk-1>

in round k - 1 and p # sender then
4: send <m:py: ... :pk-1:p> to all In round f—i_ 1 4 every

: receive round k messages from all processes CO]"]"QC‘I‘ P]"OCQSS delivers

: for each valid round k message < m:p1: ... :pk-1:pPk>

received by p ei'l'her m or SF Clnd fhen

if p has not previously extracted m then

: extract m haH'S

: if k = f+1 then
10: if in the entire execution p has extracted exactly

one m then

11: deliver(m)
12: else deliver(SF)
13:5° 8 halk

Agreement

sender s in round O: Proof

l: extract m Let r be the earliest round in which some correct

sender in round l: process extracts m. Let that process be p.

2: send < m:s > to all
Process p in round K, 1<Kk < f+l
3: if p extracted m from a valid message <m:py: ... :pk-1>
in round K - 1 and p # sender then
send <m:p1: ... :pk-1:p> fo all

e if p is the sender, then in round 1 p sends a valid
message to all. All correct processes extract message in
round 1

® otherwise, p has received in round r a message
< M:p:p2: .. Pp >

: receive round k messages from all processes e Claim: py, Pos - Py are all faulty

: for each valid round k message < m:p1: ... :pk-1:pk>
received by p - true for p; ='s
if p has not previously extracted m then - Suppose pj, 1=j =r, were correct
: extract m
: if kK = f+1 then

® pj extracted message in round j - 1
10: if in the entire execution p has extracted exactly
CONTRADICTION
one m then

1 deliver(m) e If r <f, p will send a valid message
12: else deliver(SF) < M:p1:p2: - PriP 2

® pj signed and relayed message in round j

13: halt inround r + 1 <f + 1 and every correct process
Lemma If a correct process extracts pillexiggel SRS aune vt L = fe

e If r=f + 1, by Claim above, NP0 Tass fault
m, then every correct process eventually 7 FEREE e B | Y

- At most f faulty processes
extracts m 7P

Validity

sender s in round O:

l: extract m

sender in round 1:

2: send < m:s > to all

Process p in round Kk, 1<k < f+l

3: if p extracted m from a valid message <m:p1: ... :pk-1>
in round k - 1 and p # sender then

07 cond colNRE From Agreement and the
4 end <m:p1: .. :pk-1:p> to all
: receive round k messages from all processes observation that the

: for each valid round k message < m:p1: ... :pk-1:pk>

received by p Sender, |F Correc'l',

if p has not previously extracted m then . .

| oA delivers itfs own message.

: if kK = f+1 then
10: if in the entire execution p has extracted exactly

one m then

11: deliver(m)
12: else deliver(SF)
13:5° 8 halk

TRB for

arbitrary failures
@. Crash

"

Send Omission @ @ Receive Omission

%Omission

Srikanth, T.K., Toueg S.

‘,L Arbitrary failures with

message authentication

Distributed Computing 2 (2), |
80-94 @ Arbitrary (Byzantine) failures

AF: The ldea

o Identify the essential properties of message
authentication that made AFMA work

@ Implement these properties without using
message authentication

AF: The Approach

@ Introduce two primitives

broadcast(p,m,i) (executed by p in round i)
accept(p,m,i) (executed by q in round j 2> i)

@ Give axiomatic definitions of broadcast and accept

@ Derive an algorithm that solves TRB for AF using
these primitives

@ Show an implementation of these primitives that
does not use message authenftication

Properties of
broadcast and accept

@ Correctness If a correct process p executes
broadcast(p,m,i) in round i, then all correct
processes will execute accept(p,m,i) in round i

@ Unforgeability If a correct process q executes
accept(p,m,i) in round j =i, and p is correct, then p
did in fact execute broadcast(p,m,i) in round ¢

@ Relay If a correct process q executes
accept(p,m,i) in round j =i, then all correct
processes will execute accept(p,m,i) by round j + 1

AF: The Protocol -1

sender s in round O:
0: extract m

sender s in round 1:

1: broadcast (s,m,1)

Process pinround k, 1 < k < f +1

2: if p extracted m in round k - 1 and p # sender then

4: broadcast (p,m,k)

5: if p has executed at least k accept(gj,m,jj) 1 <i <k in rounds 1 through k

(where (i) gj distinct from each other and from p, (ii) one gj is s, and

(iii) 1 < jj ¢ k) and p has not previously extracted m then

6: extract m

7:if K = f+1 then

8: if in the entire execution p has extracted exactly one m then
9: deliver(m)

10: else deliver(SF)

11: halt

Termination

sender s in round O:
0: extract m

sender s in round 1:
1: broadcast (s,m,1)

Process p in round K, 1 < k < f+l

2: if p extracted m in round k - 1 and p # sender then In rOUnd f _I_ 1 / every

4: broadcast (p,m,k)

5: if p has executed at least k accept(qjm,jj) 1 < i < k in CorreC"' Process delivers

rounds 1 through K

(where (i) qj distinct from each other and from e”-her m Or SF and 1.hen

p, (ii) one qj is s, and (i) 1 < jj < k)
and p has not previously extracted m then l
extract m ha 1-5
if k = f+1 then
if in the entire execution p has extracted exactly
one m then

deliver(m)

else deliver(SF)

halt

Agreement - 1

sender s in round O: Proof
0: extract m

sender SinE i Let r be the earliest round in which some correct

1: broadcast (s,m,1) process extracts m. Let that process be p.

Process pinsroundf® | IRBI G £ 9 @ if r =0, then p = s and p will execute broadcast(s,m,1)
2. if p extracted m in round k - 1 and p # sender then in round 1. By CORRECTNESS, all correct processes
7 broadcast (p,m,K) will execute accept (s,m,1) in round 1 and extract m
5: if p has executed at least k accept(qim,jj) 1 < i < k in
rounds 1 through k
(where (i) qj distinct from each other and from
p, (ii) one gj is s, and (iii) 1 < jj < k)

and p has not previously extracted m then or < f By RELAY, all correct processes will have
XTI accepted those r triples by round r + 1

TS TR ill execute broadcast(pm,r + 1) in round r + 1
if in the entire execution p has extracted exactly B P T T L) InTround T 4

one m then n By CORRECTNESS, any correct process other than
deliver(m) P, 91, 92,--.9r Will have accepted r + 1 triples
10: else deliver(SF)
11: halt

@ if r > 0, the sender is faulty. Since p has extracted
m in round r, p has accepted at least r triples with
properties (i), (ii), and (iii) by round r

(qk.M.k), 1 € jk €T + 1, by round r + 1
o 91, 92..-.qrp are all distinct

Lemma o every correct process other than qi, q2,...qnp Wwill

If a correct process extracts m, then
every correct process eventually extracts m

extract m
o P has already extracted m; what about qi, q2,...,q¢?

Agreement - 2

sender s in round O:
0: extract m
sender s in round 1: Qivloss" 5 g aare all FGUH'Y
1: broadcast (s,m,1)

> Suppose ¢, were correct
Process p in round Kk, 1<Kk ¢ f+l

2: if p extracted m in round k - 1 and p # sender then
4 broadcast (le,k) S By UNFORGEABILITY, qr executed

5: if p has executed at least k accept(qjm,jj) 1 <i < k in broadcast (g, m, ji) in round jj
rounds 1 through k
(where (i) qj distinct from each other and from
p, (ii) one gj is s, and (iii) 1 < jj < k)

> p has accepted (g, m, jx) in round ji <7

> g extracted m in round jp_1 <

and p has not previously extracted m then
extract m

if k = f+1 then n Since there are at most f faulty processes,

if in the entire execution p has extracted exactly some process ¢ in qi,q92,...,qf+1 is correct
one m then

deliver(m) n By UNFORGEABILITY, ¢ executed

10: else deliver(SF) broadcast (¢;,m, j;) in round j; <r
11: halt

nCase 2:r=f+1

o ¢ has extracted min round j,_; < f+1

Validity

sender s in round O:
0: extract m

sender s in round 1:
1: broadcast (s,m,1)

Process p in round Kk, 1 <k < f+l
2: if p extracted m in round k - 1 and p # sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qim,jj) 1 <i < k in
rounds 1 through k
(where (i) qj distinct from each other and from
p, (ii) one gj is s, and (iii) 1 < jj < k)
and p has not previously extracted m then
3 extract m
: if k = f+l1 then
if in the entire execution p has extracted exactly
one m then
deliver(m)
10: else deliver(SF)
11: halt

@ A correct sender executes broadcast(s,m,1)
in round 1

@ By CORRECTNESS, all correct processes
execute accept(s,m,1) in round 1 and
extract m

@ In order to extract a different message
m’, a process must execute accept(s,m’,1)
in some round i < f+ 1

@ By UNFORGEABILITY, and because s is
correct, no correct process can extract
m’ #m

@ All correct processes will deliver m

