
The Part-Time Parliament

Parliament determines 
laws by passing sequence 
of numbered decrees
Legislators can leave and 
enter the chamber at 
arbitrary times
No centralized record of 
approved decrees–instead, 
each legislator carries a 
ledger



Government 101

No two ledgers contain contradictory 
information

If a majority of legislators were in the 
Chamber and no one entered or left the 
Chamber for a sufficiently long time, then 

any decree proposed by a legislator would 
eventually be passed
any passed decree would appear on the 
ledger of every legislator 



Supplies
Each legislator receives

                      

ledger

pen with indelible ink

scratch paper

hourglass

lots of 
messengers



Back to the future

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not 
corrupted



The Game: Consensus

SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen

A process never learns that a value has been 
chosen unless it has been

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it



The Players

Proposers

Acceptors

Learners



Choosing a value

Have a single acceptor



Choosing a value

Have a single acceptor
majority 

of

Using a majority set guarantees 
that at most one value is chosen 



Accepting a value

Suppose only one proposer proposes a single 
value 

assume no failures

that value should be accepted!



Accepting a value

Suppose only one proposer proposes a single 
value 

assume no failures

that value should be accepted!

P1: Acceptors must accept
    first received proposal



Accepting a value

Choosing a value requires a majority of 
acceptors to accept that value

What if we have multiple proposers, each 
proposing a different value?

Acceptors must accept multiple proposals (each 
identified by pair (n, value))

P1: Acceptors must accept
    first received proposal

?



Guaranteeing 
uniqueness

P2. If a proposal with value v is chosen, then 
every higher-numbered proposal that is chosen 
has value v

How do we implement P2?    

What about:      If a proposal with value v is 
chosen, then every higher-numbered proposal 
accepted by any acceptor has value v

It satisfies P1 and P2, but it not implementable 
in an asynchronous system!



Another take on P2

If a proposal with value v is chosen, then 
every higher-numbered proposal accepted by 
any acceptor has value v



Another take on P2

If a proposal with value v is chosen, then 
every higher-numbered proposal accepted by 
any acceptor has value v

If a proposal with value v is chosen, then 
every higher-numbered proposal issued by any 
proposer has value v



Implementing P2

If a proposal with value v is chosen, then 
every higher-numbered proposal issued by 
any proposer has value v

How would we enforce this?  Use as inspiration 
a possible proof!

Assume some (m, v) has been chosen by a set C of acceptors
Assume, by induction, that all proposal issued with numbers in the range 
m..n-1 proposed v
Then, any acceptor that accepts a proposal with number m..n-1 has value 
v
The proposal with number n has value v if the following invariant holds:
Let S be a majority set. of acceptors When a proposer issues a value v 
with number n, either (a) no member of S has accepted a value with 
number less than 



Implementing P2

Achieved by enforcing the following invariant

For any v and n, if a proposal with value v and pid n is 
issued, then there is a majority-set S of acceptors such 
that one of the following holds:

no acceptor in S has accepted any proposal 
numbered less than n

v is the value of the highest-numbered proposal 
among all proposal numbered less than n accepted 
by the acceptors in S

If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v



 The proposer’s protocol

1. A proposer chooses a new n and sends <prepare,n> to 
each member of some set of acceptors, asking it to 
respond with:

a. A promise never again to accept a proposal numbered less 
than n, and

b. The accepted proposal with highest number less than n if 
any.

2. If proposer receives a response from a majority of 
acceptors, then it can issue <accept(n,v)> where v is the 
value of the highest numbered proposal among the 
responses, or is any value selected by the proposer if 
responders returned no proposals



 The acceptor’s protocol

1. Can ignore any request without violating safety

2. Can always respond to prepare messages

3. Can respond to <accept(n,v)> iff it has not 
promised not to–i.e. it has not responded to 
<prepare,n’> with n’ > n   

Acceptor must remember 
highest numbered proposal ever accepted
highest numbered prepare request to which it 
responded 



Learning chosen values

Once a value is chosen, it is forwarded to the 
learners. Many strategies are possible:

i. Each acceptor informs each learner

ii. Acceptors inform a distinguished learner, 
who informs the other learners

iii. Something in between



Liveness

Progress is not guaranteed:

n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e



All proposers are equal, 
but some more so than others

Elect a distinguished proposer

Can’t be done reliably in asynchronous systems, 
so…

real time

randomization



Arbitrary failures with 
message authentication

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Process can send 
conflicting messages 
to different receivers

Messages are signed 
with unforgeable 
signatures



Valid messages

A valid message m has the following form:

in round 1:
 .         (   is signed by the sender)

in round r > 1, if received by p from q:
                         where 

   = sender; 
           are distinct from each other and from p
message  has not been tampered with
p1, . . . , pr

p1 pr = q

< m : s >

<m : p1 : p2 : . . . : pr >

m



AFMA: The Idea

A correct process p discard all non-valid messages 
it receives
If a message is valid, 

it “extracts” the value from the message
it relays the message, with its own signature 
appended

At round f + 1:
if it extracted exactly one message, p delivers it
otherwise, delivers SF 



AFMA: The Protocol
sender s in round 0:
1:  extract m
sender in round 1:
2:   send < m:s > to all 
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message < m:p1: … :pk-1> in round k - 1 and    

     p ≠ sender then
4:   send < m:p1: … :pk-1:p> to all

5:  receive round k messages from all processes
6:  for each valid round k message < m:p1: … :pk-1:pk> received by p

7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly one m then
11:    deliver(m)
12: else deliver(SF)
13: halt



Termination

In round      , every 
correct process delivers 
either    or SF and then 
halts

sender s in round 0:
1: extract m
sender in round 1:
2: send < m:s > to all 
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message <m:p1: … :pk-1> 

in round k - 1 and p ≠ sender then
4: send <m:p1: … :pk-1:p> to all
5: receive round k messages from all processes
6: for each valid round k message < m:p1: … :pk-1:pk>  

received by p
7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly 

one m then
11: deliver(m)
12: else deliver(SF)
13: halt

m

f+1



Agreement

Lemma  If a correct process extracts 
m, then every correct process eventually 
extracts m

Proof
Let r be the earliest round in which some correct 
process extracts m. Let that process be p.
• if p is the sender, then in round 1 p sends a valid 
message to all. All correct processes extract  message in 
round 1
• otherwise, p has received in round r a message

< m:p1:p2: … :pr >

• Claim: p1,  p2, …, pr  are all faulty

– true for p1 = s

– Suppose pj,  1 ≤ j ≤ r,  were correct

• pj  signed and relayed message in round j

• pj extracted message in round j - 1

CONTRADICTION
• If r ≤ f, p will send a valid message 

< m:p1:p2: … :pr:p >

in round r + 1 ≤ f + 1 and every correct process 
will extract it in round r + 1 ≤ f + 1 

• If r = f + 1, by Claim above,  p1, p2, …, pf+1 faulty

– At most f faulty processes 
– CONTRADICTiON

sender s in round 0:
1: extract m
sender in round 1:
2: send < m:s > to all 
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message <m:p1: … :pk-1> 

in round k - 1 and p ≠ sender then
4: send <m:p1: … :pk-1:p> to all
5: receive round k messages from all processes
6: for each valid round k message < m:p1: … :pk-1:pk>  

received by p
7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly 

one m then
11: deliver(m)
12: else deliver(SF)
13: halt



Validity

From Agreement and the 
observation that the 
sender, if correct, 
delivers its own message.

sender s in round 0:
1: extract m
sender in round 1:
2: send < m:s > to all 
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message <m:p1: … :pk-1> 

in round k - 1 and p ≠ sender then
4: send <m:p1: … :pk-1:p> to all
5: receive round k messages from all processes
6: for each valid round k message < m:p1: … :pk-1:pk>  

received by p
7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly 

one m then
11: deliver(m)
12: else deliver(SF)
13: halt



TRB for 
arbitrary failures 

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Srikanth, T.K., Toueg S.
Simulating Authenticated 
Broadcasts to Derive Simple 
Fault-Tolerant Algorithms
Distributed Computing 2 (2), 
80-94



AF: The Idea

Identify the essential properties of message 
authentication that made AFMA work

Implement these properties without using 
message authentication



AF: The Approach

Introduce two primitives
broadcast(p,m,i)  (executed by p in round i)
accept(p,m,i)      (executed by q in round j ≥ i)

Give axiomatic definitions of broadcast and accept
Derive an algorithm that solves TRB for AF using 
these primitives
Show an implementation of these primitives that 
does not use message authentication



Properties of
broadcast and accept

Correctness   If a correct process   executes 
broadcast(p,m,i) in round  , then all correct 
processes will execute accept(p,m,i) in round 

Unforgeability   If a correct process q executes 
accept(p,m,i) in round j ≥ i, and   is correct, then  
did in fact execute broadcast(p,m,i) in round 

Relay   If a correct process q executes 
accept(p,m,i) in round j ≥ i, then all correct 
processes will execute accept(p,m,i) by round j + 1

p

p

i

i

p

i



AF: The Protocol - 1
sender s in round 0:
0: extract m

sender s in round 1:
1: broadcast (s,m,1)
Process p in round k, 1 ≤ k ≤ f + 1
2: if p extracted m in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji)   1 ≤ i ≤ k  in rounds 1 through k

(where  (i) qi distinct from each other and from p, (ii) one qi is s, and    
(iii) 1 ≤ ji ≤ k ) and p has not previously extracted m then

6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly one m then
9:     deliver(m)
10: else deliver(SF)
11:     halt



Termination

In round      , every 
correct process delivers 
either    or SF and then 
halts

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m  in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k  in 

rounds 1 through k
(where  (i) qi distinct from each other and from 
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k )

   and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly 

one m then
9: deliver(m)
10: else deliver(SF)
11: halt

f+1

m



Agreement - 1
Proof

Let r be the earliest round in which some correct 
process extracts m. Let that process be p.

if r = 0, then p = s and p will execute broadcast(s,m,1) 
in round 1.   By CORRECTNESS, all correct processes 
will execute accept (s,m,1) in round 1 and extract m

if r > 0, the sender is faulty.    Since p has extracted 
m in round r, p has accepted at least r triples with 
properties (i), (ii), and (iii) by round r

r ≤ f  By RELAY, all correct processes will have 
accepted those r triples by round r + 1
p will execute broadcast(p,m,r + 1) in round r + 1
By CORRECTNESS, any correct process other than 
p, q1, q2,…,qr will have accepted r + 1 triples 
(qk,m,jk), 1 ≤ jk ≤ r + 1, by round r + 1 

q1, q2,…,qr,p are all distinct

every correct process other than q1, q2,…,qr,p will 
extract m
p has already extracted m; what about q1, q2,…,qr?

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m  in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k  in 

rounds 1 through k
(where  (i) qi distinct from each other and from 
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k )

   and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly 

one m then
9: deliver(m)
10: else deliver(SF)
11: halt

Lemma
If a correct process extracts m, then 

every correct process eventually extracts m



Agreement - 2

  Claim:                are all faulty

Suppose    were correct

p has accepted            in round  

By UNFORGEABILITY,    executed       
broadcast            in round  

   extracted m in round 

CONTRADICTION

Case 2: r = f + 1
Since there are at most f faulty processes, 
some process    in                 is correct

By UNFORGEABILITY,    executed  
broadcast            in round 

   has extracted m in round 

CONTRADICTION

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m  in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k  in 

rounds 1 through k
(where  (i) qi distinct from each other and from 
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k )

   and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly 

one m then
9: deliver(m)
10: else deliver(SF)
11: halt

ql q1, q2, . . . , qf+1

(ql,m, jl) jl ≤ r

ql jl−1 < f + 1

jk−1 < rqk

jk

ql

(qk,m, jk)

qk

qk

(qk,m, jk) jk ≤ r

q1, q2, . . . , qr



Validity

A correct sender executes broadcast      
in round 1

By CORRECTNESS, all correct processes 
execute accept         in round 1 and 
extract 

In order to extract a different message       
.  , a process must execute accept         
in some round 

By UNFORGEABILITY, and because s is 
correct, no correct process can extract      
.

All correct processes will deliver 

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m  in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k  in 

rounds 1 through k
(where  (i) qi distinct from each other and from 
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k )

   and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly 

one m then
9: deliver(m)
10: else deliver(SF)
11: halt m

m
′ != m

i ≤ f + 1

(s,m, 1)
m

(s,m′
, 1)

(s,m, 1)

m
′


