
Correctness
Theorem     Snapshot I produces a consistent cut

< Assumption >

< Assumption >

< 0 and 1>

Proof Need to prove  

< Definition >

< Property of real time>

< 2 and 4>

< 5 and 3>

< Definition >

ej ∈ C ∧ ei → ej ⇒ ei ∈ C

2. ei → ej

1. ej ∈ C

0. ej ∈ C ≡ T (ej) < tss 3. T (ej) < tss

4. ei → ej ⇒ T (ei) < T (ej)

6. T (ei) < tss

5. T (ei) < T (ej)

7. ei ∈ C

Clock Condition

< Property of real time>

Can the Clock Condition be 
implemented some other way?

4. ei → ej ⇒ T (ei) < T (ej)

Lamport Clocks

Each process maintains a local variable
                 value of     for event 

LC

LC(e) ≡ LC e
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LC(ei
p) < LC(ei+1

p )

LC(ei
p) < LC(ej

q)
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j
q
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Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p ) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q ), LC(ei
p)) + 1

Timestamp    with m TS(m) = LC(send(m))



Space-Time Diagrams             
and Logical Clocks
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A subtle problem

when          do S   
doesn’t make sense for Lamport clocks! 

there is no guarantee that     will ever be 
S is anyway executed after 

Fixes: 
if   is internal/send and                   

execute    and then S

if
put message back in channel
re-enable   ; set              ; execute S

LC

e

LC = t

LC = t

t

LC = t − 2

LC = t − 1e

e

e = receive(m) ∧ (TS(m) ≥ t) ∧ (LC ≤ t − 1)

An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

tss

Ω

An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

mmmmhhhh...

tss

Ω



An obvious problem

No    ! 

Choose     large enough that it cannot be 
reached by applying the update rules of logical 
clocks

mmmmhhhh...

Doing so assumes 
upper bound on message delivery time
upper bound relative process speeds

We better relax it...

tss

Ω

Snapshot II

processor    selects 

    sends “take a snapshot at  ” to all processes; it waits for 
all of them to reply and then sets its logical clock to 

when clock of    reads    then 
records its local state 
sends an empty message along its outgoing channels
starts recording messages received on each incoming 
channel
stops recording a channel when receives first message 
with timestamp greater than or equal to 

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi

Relaxing synchrony

Process does nothing 
for the protocol 
during this time!

pi

 take a 
snapshot at   Ω

empty message: 
TS(m) ≥ Ω

monitors
channels records 

local state σi

sends empty message: 
TS(m) ≥ Ω

Use empty message to announce snapshot!

Snapshot III
processor    sends itself “take a snapshot “

when   receives “take a snapshot” for the first time from    :
records its local state 
sends “take a snapshot” along its outgoing channels
sets channel from    to empty

starts recording messages received over each of its other incoming 
channels

when   receives “take a snapshot” beyond the first time from    :
stops recording channel from  

when    has received “take a snapshot” on all channels, it sends 
! collected state to    and stops. 

p0

pi pj

σi

pkpi

pi

pj

pk

p0



Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state
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protocol is a consistent global state
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a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred
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Snapshots: a perspective
The global state    saved by the snapshot 
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred

We are evaluating predicates on states that 
may have never occurred!  
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Reachability

    is reachable from     if 
there is a path from     to 
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Reachability
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in the lattice 

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
55

Σ
21

Σ
ij

! Σ
kl

Σ
ij

Σ
kl

Σ
kl

Σ
ij

So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then

Deadlock in    implies deadlock in 

No deadlock in    implies no deadlock in 
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Same problem,   
different approach

Monitor process does not query explicitly

Instead, it passively collects information and 
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the 
distributed computation based on  the order in 
which the receiver is notified of the events.

Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications
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Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications

To obtain a run, messages must be delivered to 
the monitor in FIFO order
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Observations: 
a few observations

An observation puts no constraint on the order 
in which the monitor receives notifications

To obtain a run, messages must be delivered to 
the monitor in FIFO order
What about consistent runs?

p1

e
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1
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Causal delivery

FIFO delivery guarantees:
sendi(m) → sendi(m

′) ⇒ deliverj(m) → deliverj(m
′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)



Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:
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FIFO delivery guarantees:

Causal delivery generalizes FIFO:
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FIFO delivery guarantees:

Causal delivery generalizes FIFO:
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Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1 2

Causal Delivery
in Synchronous Systems

We use the upper bound    on 
message delivery time

∆

Causal Delivery
in Synchronous Systems

We use the upper bound    on 
message delivery time

DR1: At time   ,    delivers all messages 
it received with timestamp up to        
in increasing timestamp order

∆

t p0

t−∆

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.



Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.

1
p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.

1
p0

4
Should    deliver?p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in 
! increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection

1
p0

4
Should    deliver?p0

Given two events   and    and their clock
values        and          — where
determine whether some event   exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

Stability

DR2: !Deliver all received stable messages in 
increasing (logical clock) timestamp order.

A message    received by   is stable at   if   
will never receive a future message    s.t.

m

m
′

pp p

TS(m′) < TS(m)



Implementing Stability

Real-time clocks
wait for   time units∆

Implementing Stability

Real-time clocks
wait for   time units

Lamport clocks
wait on each channel for    s.t.

Design better clocks!

∆

m TS(m) > LC(e)

Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the 
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

Causal Histories

The causal history of an event   in         is the sete (H,→)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}
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Causal Histories

The causal history of an event   in         is the sete (H,→)
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e → e
′
≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

How to build   

Each process   :

initializes

if    is an internal or send event, then 

if    is a receive event for message   , then    

θ(e)

θ : θ := ∅

e
k
i

pi

e
k
i m

θ(ek
i ) :={ek

i } ∪ θ(ek−1

i
) ∪ θ(send(m))

θ(ek
i ) :={ek

i } ∪ θ(ek−1

i
)

Pruning causal histories

Prune segments of history that are known to  
all processes (Peterson, Bucholz and 
Schlichting)

Use a more clever way to encode θ(e)



Vector Clocks

Consider      , the projection of      on   

      is a prefix of   :             – it can be 
encoded using 

                                      can be 
encoded using 

θi(e) θ(e) pi

θi(e) h
i θi(e) = h

ki

i

ki

θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)
k1, k2, . . . , kn

Represent   using an  -vector     such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i

Update rules

pi

pi

ei

m

ei

Message    is 
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1

Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

Operational 
interpretation

=

=  

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

V C(ei)[i]

V C(ei)[j]



Operational 
interpretation

= no. of events executed by      up to and including

=  

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

Operational 
interpretation

= no. of events executed by      up to and including

= no. of events executed by    that happen before    of  

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei

VC properties:
event ordering

Given two vectors  and  , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition: 
   Given     of   and   of   , where   

Concurrency
   Given    of   and   of   , where   

V V
′

V < V
′ ≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

e → e
′
≡ V C(e) < V C(e′)

VC properties: 
consistency

Pairwise inconsistency
Events   of   and   of            are pairwise 
inconsistent (i.e. can’t be on the frontier of the 
same consistent cut) if and only if

Consistent Cut
A cut defined by               is consistent if and 
only if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i )[i] ≥ VC(e
cj

j )[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej



VC properties:
weak gap detection

Weak gap detection
Given   of    and   of   , if                     
for some       , then there exists    s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk
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Weak gap detection
Given   of    and   of   , if                     
for some       , then there exists    s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi
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pk

[0,0,2]
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VC properties:
strong gap detection
Weak gap detection

Given   of    and   of   , if                       
for some       , then there exists    s.t 

Strong gap detection
Given   of    and   of   , if                     
then there exists   s.t.

VC(ei)[i] < VC(ej)[i]ei pi pjej

e
′

i

¬(ek → ei) ∧ (ek → ej)

(ei → e
′

i) ∧ (e′i → ej)

VC(ei)[k] < VC(ej)[k]
k != j ek

ei pi pjej

VCs for Causal Delivery

Each process increments the local component 
of its     only for events that are notified to 
the monitor

Each message notifying event   is timestamped 
with 

The monitor keeps all notification messages in 
a set  M

e

VC

VC(e)
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Stability

Suppose     has received     from   .
When is it safe for    to deliver    ?

There is no earlier message in 

There is no earlier message from 

There is no earlier message    from   , 

p0 pjmj

p0 mj

m
′′

k

pj

pk k != j

M

TS(mj)[j] = 1+ no. of   messages delivered by pj p0

see next slide...

∀m ∈ M : ¬(m → mj)



Checking for     .     

Let     be the last message    delivered from

By strong gap detection,     exists only if

Hence, deliver    as soon as  

m
′

k p0 pk

m
′′

k

m
′′

k

TS(m′

k)[k] < TS(mj)[k]

∀k : TS(m′

k)[k] ≥ TS(mj)[k]

mj

The protocol

   maintains an array             of counters

                   where     is the last 
message delivered from 

DR3: Deliver   from    as soon as both of the 
following conditions are satisfied:

2.

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k #= j

m pj

Properties

Property: a predicate that is evaluated over a 
run of the program 

“every message that is received was 
previously sent”

Not everything you may want to say about a 
program is a property:

 “the program sends an average of 50 
messages in a run”

Safety properties
“nothing bad happens”

no more than k processes are 
simultaneously in the critical section
messages that are delivered are delivered 
in causal order
Windows never crashes

A safety property is “prefix closed”:
if it holds in a run, it holds in every prefix



Liveness properties
“something good eventually happens”

a process that wishes to enter the critical 
section eventually does so
some message is eventually delivered 
Windows eventually boots

Every run can be extended to satisfy a 
liveness property 

if it does not hold in a prefix of a run, it 
does not mean it may not hold eventually

A really cool theorem

Every property is a combination of a safety 
property and a liveness property

(Alpern & Schneider)


