
Correctness
Theorem Snapshot I produces a consistent cut

< Assumption >

< Assumption >

< 0 and 1>

Proof Need to prove

< Definition >

< Property of real time>

< 2 and 4>

< 5 and 3>

< Definition >

ej ∈ C ∧ ei → ej ⇒ ei ∈ C

2. ei → ej

1. ej ∈ C

0. ej ∈ C ≡ T (ej) < tss 3. T (ej) < tss

4. ei → ej ⇒ T (ei) < T (ej)

6. T (ei) < tss

5. T (ei) < T (ej)

7. ei ∈ C

Clock Condition

< Property of real time>

Can the Clock Condition be
implemented some other way?

4. ei → ej ⇒ T (ei) < T (ej)

Lamport Clocks

Each process maintains a local variable
 value of for event

LC

LC(e) ≡ LC e

e
i
p e

i+1
p

e
i
p

LC(ei
p) < LC(ei+1

p)

LC(ei
p) < LC(ej

q)
e
j
q

p

q

p

Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q), LC(ei
p)) + 1

Timestamp with m TS(m) = LC(send(m))

Space-Time Diagrams
and Logical Clocks

2

1

3

4 5 6

6

7

7

8

8

9

p1

p2

p3

A subtle problem

when do S
doesn’t make sense for Lamport clocks!

there is no guarantee that will ever be
S is anyway executed after

Fixes:
if is internal/send and

execute and then S

if
put message back in channel
re-enable ; set ; execute S

LC

e

LC = t

LC = t

t

LC = t − 2

LC = t − 1e

e

e = receive(m) ∧ (TS(m) ≥ t) ∧ (LC ≤ t − 1)

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

tss

Ω

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

mmmmhhhh...

tss

Ω

An obvious problem

No !

Choose large enough that it cannot be
reached by applying the update rules of logical
clocks

mmmmhhhh...

Doing so assumes
upper bound on message delivery time
upper bound relative process speeds

We better relax it...

tss

Ω

Snapshot II

processor selects

 sends “take a snapshot at ” to all processes; it waits for
all of them to reply and then sets its logical clock to

when clock of reads then
records its local state
sends an empty message along its outgoing channels
starts recording messages received on each incoming
channel
stops recording a channel when receives first message
with timestamp greater than or equal to

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi

Relaxing synchrony

Process does nothing
for the protocol
during this time!

pi

 take a
snapshot at Ω

empty message:
TS(m) ≥ Ω

monitors
channels records

local state σi

sends empty message:
TS(m) ≥ Ω

Use empty message to announce snapshot!

Snapshot III
processor sends itself “take a snapshot “

when receives “take a snapshot” for the first time from :
records its local state
sends “take a snapshot” along its outgoing channels
sets channel from to empty

starts recording messages received over each of its other incoming
channels

when receives “take a snapshot” beyond the first time from :
stops recording channel from

when has received “take a snapshot” on all channels, it sends
! collected state to and stops.

p0

pi pj

σi

pkpi

pi

pj

pk

p0

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state

Σ
s

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a
partial order of events
many total orders (runs) are compatible
with that partial order
all we know is that could have occurred

Σ
s

Σ
s

Snapshots: a perspective
The global state saved by the snapshot
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a
partial order of events
many total orders (runs) are compatible
with that partial order
all we know is that could have occurred

We are evaluating predicates on states that
may have never occurred!

Σ
s

Σ
s

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

Σ
42

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12Σ

21

Σ
22

Σ
32

Σ
42

An Execution and its
Lattice

p1

p2

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1 e
6

1

e
5

2e
4

2e
3

2e
2

2e
1

2

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
21

Σ
55

Σ
ij

Σ
kl

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
ij

Σ
kl

Σ
55

Σ
21

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
55

Σ
21

Σ
ij

Σ
kl

Σ
kl

Σ
ij

Reachability

 is reachable from if
there is a path from to
in the lattice

Σ
00

Σ
10 Σ

01

Σ
11 Σ

02

Σ
12

Σ
22

Σ
32

Σ
42

Σ
03

Σ
04

Σ
14

Σ
13

Σ
23

Σ
24

Σ
31

Σ
41

Σ
43

Σ
33

Σ
34

Σ
44

Σ
35

Σ
45

Σ
65

Σ
64

Σ
63

Σ
53

Σ
54

Σ
55

Σ
21

Σ
ij

! Σ
kl

Σ
ij

Σ
kl

Σ
kl

Σ
ij

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Deadlock in implies deadlock in

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

Σ
f

Σ
s

So, why do we care
about again?

Deadlock is a stable property

Deadlock Deadlock

If a run of the snapshot protocol starts
in and terminates in , then

Deadlock in implies deadlock in

No deadlock in implies no deadlock in

Σ
s

⇒ !

Σ
i

Σ
f

R

Σ
i
!R Σ

f

Σ
i

Σ
f

Σ
s

Σ
s

Same problem,
different approach

Monitor process does not query explicitly

Instead, it passively collects information and
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the
distributed computation based on the order in
which the receiver is notified of the events.

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1
e
2

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1
e
2

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

To obtain a run, messages must be delivered to
the monitor in FIFO order

p1

e
1

1
e
2

1

p0

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

To obtain a run, messages must be delivered to
the monitor in FIFO order
What about consistent runs?

p1

e
1

1
e
2

1

p0

Causal delivery

FIFO delivery guarantees:
sendi(m) → sendi(m

′) ⇒ deliverj(m) → deliverj(m
′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1 2

Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

∆

Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

DR1: At time , delivers all messages
it received with timestamp up to
in increasing timestamp order

∆

t p0

t−∆

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

4
Should deliver?p0

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection

1
p0

4
Should deliver?p0

Given two events and and their clock
values and — where
determine whether some event exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

Stability

DR2: !Deliver all received stable messages in
increasing (logical clock) timestamp order.

A message received by is stable at if
will never receive a future message s.t.

m

m
′

pp p

TS(m′) < TS(m)

Implementing Stability

Real-time clocks
wait for time units∆

Implementing Stability

Real-time clocks
wait for time units

Lamport clocks
wait on each channel for s.t.

Design better clocks!

∆

m TS(m) > LC(e)

Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

Causal Histories

The causal history of an event in is the sete (H,→)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4
3

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4
3

e → e
′
≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

How to build

Each process :

initializes

if is an internal or send event, then

if is a receive event for message , then

θ(e)

θ : θ := ∅

e
k
i

pi

e
k
i m

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
) ∪ θ(send(m))

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
)

Pruning causal histories

Prune segments of history that are known to
all processes (Peterson, Bucholz and
Schlichting)

Use a more clever way to encode θ(e)

Vector Clocks

Consider , the projection of on

 is a prefix of : – it can be
encoded using

 can be
encoded using

θi(e) θ(e) pi

θi(e) h
i θi(e) = h

ki

i

ki

θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)
k1, k2, . . . , kn

Represent using an -vector such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i

Update rules

pi

pi

ei

m

ei

Message is
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1

Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

Operational
interpretation

=

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

V C(ei)[i]

V C(ei)[j]

Operational
interpretation

= no. of events executed by up to and including

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

Operational
interpretation

= no. of events executed by up to and including

= no. of events executed by that happen before of

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei

VC properties:
event ordering

Given two vectors and , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition:
 Given of and of , where

Concurrency
 Given of and of , where

V V
′

V < V
′ ≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

e → e
′
≡ V C(e) < V C(e′)

VC properties:
consistency

Pairwise inconsistency
Events of and of are pairwise
inconsistent (i.e. can’t be on the frontier of the
same consistent cut) if and only if

Consistent Cut
A cut defined by is consistent if and
only if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i)[i] ≥ VC(e
cj

j)[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej

VC properties:
weak gap detection

Weak gap detection
Given of and of , if
for some , then there exists s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

ei pi pjej

VC properties:
weak gap detection

Weak gap detection
Given of and of , if
for some , then there exists s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

ei pi pjej

[2,1,1]

[0,0,1]

[1,0,1]

VC properties:
strong gap detection
Weak gap detection

Given of and of , if
for some , then there exists s.t

Strong gap detection
Given of and of , if
then there exists s.t.

VC(ei)[i] < VC(ej)[i]ei pi pjej

e
′

i

¬(ek → ei) ∧ (ek → ej)

(ei → e
′

i) ∧ (e′i → ej)

VC(ei)[k] < VC(ej)[k]
k != j ek

ei pi pjej

VCs for Causal Delivery

Each process increments the local component
of its only for events that are notified to
the monitor

Each message notifying event is timestamped
with

The monitor keeps all notification messages in
a set M

e

VC

VC(e)

Stability

Suppose has received from .
When is it safe for to deliver ?

p0 pjmj

p0 mj

Stability

Suppose has received from .
When is it safe for to deliver ?

There is no earlier message in

p0 pjmj

p0 mj

M

∀m ∈ M : ¬(m → mj)

Stability

Suppose has received from .
When is it safe for to deliver ?

There is no earlier message in

There is no earlier message from

p0 pjmj

p0 mj

pj

M

TS(mj)[j] = 1+ no. of messages delivered by pj p0

∀m ∈ M : ¬(m → mj)

Stability

Suppose has received from .
When is it safe for to deliver ?

There is no earlier message in

There is no earlier message from

There is no earlier message from ,

p0 pjmj

p0 mj

m
′′

k

pj

pk k != j

M

TS(mj)[j] = 1+ no. of messages delivered by pj p0

see next slide...

∀m ∈ M : ¬(m → mj)

Checking for .

Let be the last message delivered from

By strong gap detection, exists only if

Hence, deliver as soon as

m
′

k p0 pk

m
′′

k

m
′′

k

TS(m′

k)[k] < TS(mj)[k]

∀k : TS(m′

k)[k] ≥ TS(mj)[k]

mj

The protocol

 maintains an array of counters

 where is the last
message delivered from

DR3: Deliver from as soon as both of the
following conditions are satisfied:

2.

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k #= j

m pj

Properties

Property: a predicate that is evaluated over a
run of the program

“every message that is received was
previously sent”

Not everything you may want to say about a
program is a property:

 “the program sends an average of 50
messages in a run”

Safety properties
“nothing bad happens”

no more than k processes are
simultaneously in the critical section
messages that are delivered are delivered
in causal order
Windows never crashes

A safety property is “prefix closed”:
if it holds in a run, it holds in every prefix

Liveness properties
“something good eventually happens”

a process that wishes to enter the critical
section eventually does so
some message is eventually delivered
Windows eventually boots

Every run can be extended to satisfy a
liveness property

if it does not hold in a prefix of a run, it
does not mean it may not hold eventually

A really cool theorem

Every property is a combination of a safety
property and a liveness property

(Alpern & Schneider)

