
november 2008  |   vol.  51  |   no.  11   |   communications of the acm     86

doi:10.1145/1400214.1400236

Abstract
A longstanding vision in distributed systems is to build reliable 
systems from unreliable components. An enticing formulation 
of this vision is Byzantine fault-tolerant (BFT) state machine 
replication, in which a group of servers collectively act as a cor-
rect server even if some of the servers misbehave or malfunc-
tion in arbitrary (“Byzantine”) ways. Despite this promise, prac-
titioners hesitate to deploy BFT systems at least partly because 
of the perception that BFT must impose high overheads.

In this article, we present Zyzzyva, a protocol that uses 
speculation to reduce the cost of BFT replication. In Zyzzyva, 
replicas reply to a client’s request without first running an 
expensive three-phase commit protocol to agree on the order 
to process requests. Instead, they optimistically adopt the 
order proposed by a primary server, process the request, and 
reply immediately to the client. If the primary is faulty, rep-
licas can become temporarily inconsistent with one anoth-
er, but clients detect inconsistencies, help correct replicas 
converge on a single total ordering of requests, and only rely 
on responses that are consistent with this total order. This 
approach allows Zyzzyva to reduce replication overheads to 
near their theoretical minima and to achieve throughputs of 
tens of thousands of requests per second, making BFT repli-
cation practical for a broad range of demanding services.

1. INTRODUCTION
Mounting evidence suggests that real systems must contend 
not only with simple crashes but also with more complex fail-
ures ranging from hardware data corruption22 to nondeter-
ministic software errors25 to security breaches. Such failures 
can cause even highly engineered services to become unavail-
able or to lose data. For example, a single corrupted bit in a 
handful of messages recently brought down the Amazon S3 
storage service for several hours,3 and several well-known e-
mail service providers have occasionally lost customer data.14

Byzantine fault-tolerant (BFT) state machine replication 
is a promising approach to masking many such failures and 
constructing highly reliable and available services. In BFT 
replication, n ≥ 3f + 1 servers collectively act as a correct serv-
er even if up to f servers misbehave or malfunction in arbi-
trary (“Byzantine”) ways.15,16

Today, three trends make real-world deployment of BFT 
increasingly attractive. First, as noted above, there is mount-
ing evidence of non-fail-stop behaviors in real systems, mo-
tivating the use of new techniques to improve robustness. 
Second, the growing value of data and the falling costs of 
hardware make it advantageous for service providers to 
trade increasingly inexpensive hardware for the peace of 

mind potentially provided by BFT replication. Third, im-
provements to the state of the art in BFT algorithms1,4,6,13,23,26 
have narrowed the gap between BFT replication costs and 
the costs already being paid for non-BFT replication by many 
commercial services. For example, by default, the Google 
file system uses three-way replication of storage,9 which is 
roughly the cost of tolerating one Byzantine failure by using 
three full replicas plus one additional lightweight node to 
help the replicas coordinate their actions.26

Unfortunately, practitioners hesitate to deploy BFT sys-
tems at least partly because of the perception that BFT must 
impose high overheads. This concern motivates our work, 
which seeks to answer a simple question: Can we build a sys-
tem that tolerates a broad range of faults while meeting the de-
mands of high-performance services?

To answer this question, this article presents Zyzzyva.† 
Zyzzyva seeks to make BFT replication deployable for the 
widest range of practical services by implementing the ex-
tremely general abstraction of a replicated state machine at 
an extremely low cost.

The basic idea of BFT state machine replication is sim-
ple: a client sends a request to a replicated service and the 
service’s distributed agreement protocol ensures that cor-
rect servers execute the same requests in the same order.24 
If the service is deterministic, each correct replica thus tra-
verses the same series of states and produces the same reply 
to each request. The servers send their replies back to the 
client, and the client accepts a reply that matches across a 
sufficient number of servers.

Zyzzyva builds on this basic approach, but reduces its 
cost through speculation. As is common in existing BFT rep-
lication protocols, an elected primary server proposes an or-
der on client requests to the other server replicas.4 However, 
unlike in traditional protocols, Zyzzyva replicas then imme-
diately execute requests speculatively, without running an 
expensive agreement protocol to definitively establish the 
order. As a result, if the primary is faulty, correct replicas’ 
states may diverge, and they may send different responses to 
a client. Nonetheless, Zyzzyva preserves correctness because 
a correct client detects such divergence and avoids acting 
on a reply until the reply and the sequence of preceding re-
quests are stable and guaranteed to eventually be adopted 
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by all correct servers. Thus, applications at correct clients 
observe the traditional abstraction of a replicated state ma-
chine that executes requests in a linearizable10 order.

Essentially, Zyzzyva “rethinks the sync”19 for BFT. Where-
as past BFT systems have pessimistically enforced the con-
dition that a correct server only emits replies that are stable, 
Zyzzyva recognizes that this condition is stronger than re-
quired. Instead, Zyzzyva enforces the weaker condition: 
a correct client only acts on replies that are stable. This change 
allows us to move the output commit from the servers to the 
client, which in the optimized case allows servers to avoid 
expensive all-to-all communication that they would other-
wise require to ensure the stronger condition.

Leveraging the client in this way allows us to minimize 
server overheads and maximize throughputs in the opti-
mized, failure-free case. As a result, Zyzzyva’s peak measured 
throughput of over 86K requests/second on 3.0 GHz 
Pentium-IV machines makes it feasible to utilize BFT repli-
cation in a broad range of demanding services. Despite this 
aggressive optimization to the fault-free case, Zyzzyva retains 
good performance of over 82K requests/second even when 
up to f backup replicas crash. In fact, Zyzzyva’s replication 
costs, processing overheads, and communication latencies 
approach their theoretical lower bounds.

2. SYSTEM MODEL
To maximize fault tolerance, BFT replication assumes what 
is essentially an adversarial failure model. Under this mod-
el, faulty nodes (servers or clients) may deviate from their 
intended behavior in arbitrary ways, representing problems 
such as hardware faults, software faults, node misconfigu-
rations, or even malicious attacks. This model further as-
sumes a strong adversary that can coordinate faulty nodes to 
compromise the replicated service. Note, however, that our 
model assumes the adversary cannot break cryptographic 
techniques like collision-resistant hashes, encryption, and 
signatures; we denote a message m signed by principal q’s 
public key as 〈m〉sq

. Zyzzyva ensures its safety and liveness 
properties if at most f replicas are faulty, and it assumes a 
finite client population, any number of which may be faulty.

It makes little sense to build a system that can tolerate Byz-
antine replicas/servers‡ and clients but that can be corrupted 
by an unexpectedly slow node or network link, hence we design 
Zyzzyva so that its safety properties hold in any asynchronous 
distributed system where nodes operate at arbitrary speeds 
and are connected by a network that may fail to deliver mes-
sages, corrupt them, delay them, or deliver them out of order.

Unfortunately, ensuring both safety and liveness for consen-
sus in an asynchronous distributed system is impossible if any 
server can crash,8 let alone if servers can be Byzantine. Zyzzyva’s 
liveness, therefore, is ensured only during intervals in which 
messages sent to correct nodes are processed within some ar-
bitrarily large fixed (but potentially unknown) worst-case delay 
from when they are sent. This assumption appears easy to meet 
in practice if broken links are eventually repaired.

Zyzzyva implements a BFT service using state machine rep-
lication.16,24 Traditional state machine replication techniques 

can be applied only to deterministic services. Zyzzyva copes with 
the nondeterminism present in many real-world applications 
such as file systems and databases using standard techniques 
to abstract the observable application state at the replicas and 
to resolve nondeterministic choices via the agreement stage.23

If a client of a service issues an erroneous or malicious re-
quest, Zyzzyva’s job is to ensure that the request is processed 
consistently at all correct replicas; the replicated service, it-
self, is responsible for protecting its application state from 
such erroneous requests. Services typically limit the damage 
by authenticating clients and enforcing access control. For 
example, in a replicated file system, if a client tries to write 
a file without appropriate credentials, correct replicas could 
all process the request by returning an error code.

3. AGREEMENT PROTOCOL
Zyzzyva is a state machine replication protocol executed by 
3f  + 1 replicas and based on three subprotocols: (1) agree-
ment, (2) view change, and (3) checkpoint. The agreement 
subprotocol orders requests for execution by the replicas. 
Agreement operates within a sequence of views, and in each 
view a single replica, designated the primary, is responsible 
for leading the agreement subprotocol. The view change sub-
protocol coordinates the election of a new primary when the 
current primary is faulty or the system is running slowly. The 
checkpoint subprotocol limits the state that must be stored by 
replicas and reduces the cost of performing view changes.

For simplicity, this article focuses on the agreement sub-
protocol. The view change and execution subprotocols are 
similar to those used previously.4,26 Interested readers may 
refer to Kotla et al.11 for the full protocol.

Figure 1 shows the communication pattern for a single in-
stance of Zyzzyva’s agreement subprotocol. In the fast, no-fault 
case (Figure 1a), a client simply sends a request to the primary, 
the primary forward the request to the replicas, and the replicas 

‡ We use the terms replica and server interchangeably.

Figure 1: Protocol communication pattern for agreement within a 
view for (a) the fast case and (b) the two-phase faulty replica case. 
The numbers refer to the main steps of the protocol in the text.
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execute the request and send their responses to the client.
A request completes at a client when the client has a suf-

ficient number of matching responses to ensure that all cor-
rect replicas will eventually execute the request and all pre-
ceding requests in the same order, thus guaranteeing that all 
correct replicas process the request in the same way, issue 
the same reply, and transition to the same subsequent sys-
tem state. To allow a client to determine when a request com-
pletes, a client receives from replicas responses that include 
both an application-level reply and the history on which the 
reply depends. The history is the sequence of all requests ex-
ecuted by a replica prior to and including this request.

As Figure 1 illustrates, a request completes at a client in 
one of two ways. First, if the client receives 3f + 1 matching 
responses (Figure 1a), then the client considers the request 
complete and acts on it. Second, if the client receives between 
2f + 1 and 3f matching responses (Figure 1b), then the client 
gathers 2f + 1 matching responses and distributes this com-
mit certificate to the replicas. A commit certificate includes 
cryptographic proof that 2f + 1 servers agree on a lineariz-
able order for the request and all preceding requests, and 
successfully storing a commit certificate to 2f + 1 servers 
(and thus at least f + 1 correct servers) ensures that no other 
ordering can muster a quorum of 2f + 1 servers to contradict 
this order. Therefore, once 2f + 1 replicas acknowledge re-
ceiving a commit certificate, the client considers the request 
complete and acts on the corresponding reply.

Zyzzyva then ensures the following safety condition:

saf � If a request with sequence number n and history hn 
completes, then any request that completes with a 
higher sequence number n� ≥ n has a history hn� that 
includes hn as a prefix.

If fewer than 2f + 1 responses match, then to ensure live-
ness the client retransmits the request to all replicas at in-
creasing intervals, and replicas demand that the primary or-
ders retransmitted requests. If the primary orders requests 
too slowly or orders requests inconsistently, a replica will 
suspect that the primary is faulty. If a sufficient number of 
replicas suspect that the primary is faulty, then a view change 
occurs and a new primary is elected.

Zyzzyva thereby ensures the following liveness condition 
assuming eventual synchrony§:

liv � Any request issued by a correct client eventually 
completes.

In the rest of this section, we detail Zyzzyva’s agreement 
subprotocol by considering three cases: (1) the fast case when 
all nodes act correctly and no timeouts occur, (2) the two-
phase case that can occur when a nonprimary replica is faulty 
or some timeouts occur, and (3) the view change case that can 
occur when the primary is faulty or more serious timeouts 
occur. Table 1 summarizes the labels we give to fields in mes-
sages. Most readers will be happier if on their first reading 
they skip the text marked “Additional Pedantic Details.”

3.1. Fast case
Figure 1a illustrates the basic flow of messages in the fast 
case. We trace these messages through the system to explain 
the protocol, with the numbers in the figure corresponding 
to the numbers of major steps in the text. As the figure illus-
trates, the fast case proceeds in four major steps:

To ensure correctness, the messages are carefully con-
structed to carry sufficient information to link these steps 
with one another and with past system actions. We now 
detail the contents of each message and describe the steps 
each node takes to process each message.

3.1.1. Message processing details

1.  Client sends request to the primary.

A client c requests an operation o be performed by the repli-
cated service by sending a message 〈request, o, t, c〉sc

 to the 
replica it believes to be the primary (i.e., the primary for the 
last response the client received).

§ In practice, eventual synchrony7 can be achieved by using exponentially in-
creasing timeouts.4

1.  Client sends request to the primary.

2.  Primary receives request, assigns sequence 
number, and forward ordered request to replicas.

3.  Replica receives ordered request, speculatively 
executes it, and responds to the client.

4a.  Client receives 3f + 1 matching responses and 
completes the request.

Table 1: Labels given to fields in messages.

Label  Meaning

c Client ID

CC Commit certificate

d Digest (cryptographic one-way hash) of client request message: 

d = H(m)

i, j Server IDs

hn History through sequence number hn encoded as cryptographic 

one-way hash: hn = H(hn−1, d)

m Message containing client request

maxn Maximum sequence number accepted by replica

n Sequence number

ND Selection of nondeterministic values needed to execute a 

request

o Operation requested by client

OR Order request message

POM Proof of misbehavior

r Application reply to a client operation

t Time stamp assigned to an operation by a client

u View number
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Additional Pedantic Details: If the client guesses the wrong 
primary, the retransmission mechanisms discussed in step 
4c below forward the request to the current primary. The cli-
ent’s time stamp t is included to ensure exactly once seman-
tics of execution of requests.4

2.  Primary receives request, assigns sequence 
number, and forwards ordered request to replicas.

A view’s primary has the authority to propose the order in 
which the system should execute requests. It does so by pro-
ducing order-req messages in response to client request 
messages.

In particular, when the primary p receives message m = 
〈request, o, t, c〉sc

 from client c, the primary assigns to the 
request a sequence number n in the current view u and re-
lays a message 〈〈order-req, u, n, hn, d, ND〉sp

, m〉 to the back-
up replicas where n and u indicate the proposed sequence 
number and view number for m, digest d = H(m) is the cryp-
tographic one-way hash of m, hn = H(hn−1, d) is a cryptographic 
hash summarizing the history, and ND is a set of values for 
nondeterministic application variables (time in file systems, 
locks in databases, etc.) required for executing the request.

Additional Pedantic Details: The primary only takes the above 
actions if t > tc where tc is the highest time stamp previously 
received from c.

3.  Replica receives ordered request, speculatively 
executes it, and responds to the client.

When a replica receives an order-req message, it opti-
mistically assumes that the primary is correct and that other 
correct replicas will receive the same request with the same 
proposed order. It therefore speculatively executes requests 
in the order proposed by the primary and produces a spec-
response message that it sends to the client.

In particular, upon receipt of a message 〈〈order-req, u, 
n, hn, d, ND〉sp

, m〉 from the primary p, replica i accepts the 
ordered request if m is a well-formed request message, d 
is a correct cryptographic hash of m, u is the current view, 
n = maxn + 1 where maxn is the largest sequence number in 
i’s history, and hn = H(hn−1, d). Upon accepting the message, 
i appends the ordered request to its history, executes the re-
quest using the current application state to produce a reply 
r, and sends to c a message 〈〈spec-response, u, n, hn, H(r), c, 
t〉si

, i, r, OR〉 where OR = 〈order-req, u, n, hn, d, ND〉sp
.

Additional Pedantic Details: A replica may only accept and 
speculatively execute requests in sequence-number order, but 
message loss or a faulty primary can introduce holes in the 
sequence number space. Replica i discards the order-req 
message if n ≤ maxn. If n > maxn + 1, then i discards the message, 
sends a message 〈fill-hole, u, maxn + 1, n, i〉si

 to the primary, 
and starts a timer. Upon receipt of a message 〈fill-hole, u, k, 
n, i〉si

 from replica i, the primary p sends a 〈〈order-req, u, n', 
hn', d, ND〉sp

, m'〉 to i for each request m’ that p ordered in k ≤ n’ ≤ 
n during the current view; the primary ignores fill-hole requests 
from other views. If  i receives the valid order-req messages 

needed to fill the holes, it cancels the timer. Otherwise, the rep-
lica broadcasts the fill-hole message to all other replicas and 
initiates a view change when the timer fires. Any replica j that 
receives a fill-hole message from i sends the corresponding 
order-req message, if it has received one. If, in the process of 
filling in holes in the replica sequence, replica i receives conflict-
ing order-req messages, then the conflicting messages form a 
proof of misbehavior (POM) as described in protocol step 4d.

4a.  Client receives 3f + 1 matching responses and 
completes the request.

In the absence of faults and timeouts, the client receives 
matching spec-response messages from all 3f + 1 replicas. 
The client can then consider the request and its history to be 
complete and delivers the reply r to the application.

3f + 1 identical replies with identical histories suffice to en-
sure that a client can rely on a response. In particular, 3f + 1 
matching responses means all correct servers have executed 
the request and all preceding requests in the same order, so 
correct servers can always form a majority to vote to keep this 
response, even across view changes.11 In particular, the view 
change subprotocol executes across 2f + 1 responsive servers, 
but any group of 2f + 1 servers must include at least  f + 1 correct 
servers and at most f faulty servers. Thus, the correct servers 
are always able to vote to keep this response, including both 
the application reply and the history of previous actions.

Therefore, upon receiving 3f + 1 distinct messages 
〈〈spec-response, u, n, hn, H(r), c, t〉si

, i, r, OR〉, where i iden-
tifies the replica issuing the response, a client determines 
if they match. spec-response messages from distinct rep-
licas match if they have identical u, n, hn, H(r), c, t, OR, and r 
fields.

3.2. Two-phase case
If the network, primary, or some replicas are slow or faulty, the 
client c may not receive matching responses from all 3f + 1 rep-
licas. The two-phase case applies when the client receives be-
tween 2f + 1 and 3f matching responses. As Figure 1b illustrates, 
steps 1–3 occur as described above, but step 4 is different:

4b.  Client receives between 2f + 1 and 3f matching 
responses, assembles a commit certificate, and 
transmits the commit certificate to the replicas.

The commit certificate is cryptographic proof that a ma-
jority of correct servers agree on the ordering of requests up 
to and including the client’s request. Protocol steps 5 and 6 
complete the second phase of agreement by ensuring that 
enough servers have this proof.

5.  Replica receives a commit message from a client 
containing a commit certificate and acknowledges 
with a local-commit message.

6.  Client receives a local-commit messages from 
2f + 1 replicas and completes the request.

Again, the details of message construction and processing 
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are designed to allow clients and replicas to link the system’s 
actions together into a single linearizable history.

3.2.1. Message processing details

4b.  Client receives between 2f + 1 and 3f matching 
responses, assembles a commit certificate, and 
transmits the commit certificate to the replicas.

A client c sets a timer when it first issues a request. When 
this timer expires, if c has received matching speculative 
responses from between 2f + 1 and 3f replicas, then c has a 
proof that a majority of correct replicas agree on the order in 
which the request should be processed. Unfortunately, the 
replicas, themselves, are unaware of this quorum of match-
ing responses—they only know of their local decision, which 
may not be enough to guarantee that the request completes 
in this order.

Figure 2 illustrates the problem. A client receives 2f + 1 
matching speculative responses indicating that a request req 
was executed as the nth operation in view u. Let these respons-
es come from  f + 1 correct servers C; and  f faulty servers F; and 
assume the remaining  f correct servers C' received an order-
req message from a faulty primary proposing to execute a dif-
ferent request req’ at sequence number n in view u. Suppose 
a view change occurs at this time. The view change subproto-
col must determine what requests were executed with what 
sequence numbers in view u so that the state in view u + 1 is 
consistent with the state in view u. Furthermore, since up to 
f  replicas may be faulty, the view change subprotocol must be 
able to complete using information from only 2f + 1 replicas. 
Suppose now that the 2f + 1 replicas contributing state to a view 
change operation are one correct server from C, f faulty servers 
from F, and f correct but misled servers from C'. In this case, 
only one of the replicas initializing the new view is guaranteed 
to vote to execute req as operation n in the new view, while as 
many as 2f replicas may vote to execute req’ in that position. 
Thus, the system cannot ensure that view u + 1’s state reflects 
the execution of req as the operation with sequence number 
n.

Before client c can rely on this response, it must take addi-
tional steps to ensure the stability of this response. The client 

therefore sends a message 〈commit, c, CC〉sc
 where CC is a com-

mit certificate consisting of a list of 2f + 1 replicas, the replica-
signed portions of the 2f + 1 matching spec-response mes-
sages from those replicas, and the corresponding 2f + 1 replica 
signatures.

Additional Pedantic Details: CC contains 2f + 1 signatures on 
the spec-response message and a list of 2f + 1 nodes, but, 
since all the responses received by c from replicas are iden-
tical, c only needs to include one replica-signed portion of 
the spec-response message. Also note that, for efficiency, 
CC does not include the body r of the reply but only the hash 
H(r).

5.  Replica receives a commit message from a client 
containing a commit certificate and acknowledges 
with a local-commit message.

When a replica i receives a message 〈commit, c, CC〉sc
 

containing a valid commit certificate CC proving that a re-
quest should be executed with a specified sequence number 
and history in the current view, the replica first ensures that 
its local history is consistent with the one certified by CC. If 
so, replica i (1) stores CC if CC’s sequence number exceeds 
the stored certificate’s sequence number and (2) sends a 
message 〈local-commit, u, d, h, i, c〉si

 to c.

Additional Pedantic Details: If the local history simply has 
holes encompassed by CC’s history, then i fills them as de-
scribed in 3. If, however, the two histories contain different 
requests for the same sequence number, then i initiates the 
view change subprotocol. Note that as the view change pro-
tocol executes, correct replicas converge on a single com-
mon history, and those replicas whose local state reflect the 
“wrong” history (e.g., because they speculatively executed 
the “wrong” requests) restore their state from a cryptograph-
ically signed distributed checkpoint.11

6.  Client receives a local-commit messages from 
2f + 1 replicas and completes the request.

The client resends the commit message until it receives 
corresponding local-commit messages from 2f + 1 dis-
tinct replicas. The client then considers the request to be 
complete and delivers the reply r to the application.

2f + 1 local commit messages suffice to ensure that a 
client can rely on a response. In particular, at least f + 1 cor-
rect servers store a commit certificate for the response, and 
since any commit or view change requires participation by at 
least 2f + 1 of the 3f + 1 servers, any subsequent committed re-
quest or view change includes information from at least one 
correct server that holds this commit certificate. Since the 
commit certificate includes 2f + 1 signatures vouching for 
the response, even a single correct server can use the com-
mit certificate to convince all correct servers to accept this 
response (including the application reply and the history.)

Additional Pedantic Details: When the client first sends the 
commit message to the replicas it starts a timer. If this timer 
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rely on just 2f + 1 matching responses without depositing a commit 
certificate with the servers.
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expires before the client receives 2f + 1 local-commit mes-
sages then the client moves on to protocol steps described in 
the next subsection.

3.2.2. Client trust
At first glance, it may appear imprudent to rely on clients to 
transmit commit certificates to replicas (4b): what if a faulty 
client sends an altered commit certificate (threatening safety) 
or fails to send a commit certificate (imperiling liveness)?

Safety is ensured even if clients are faulty because com-
mit certificates are authenticated by 2f + 1 replicas. If 
a  client alters a commit certificate, correct replicas will 
ignore it.

Liveness is ensured for correct clients because commit cer-
tificates are cumulative: successfully storing a commit cer-
tificate for request n at 2f + 1 replicas commits those replicas 
to a linearizable total order for all requests up to request n. 
So, if a faulty client fails to deposit a commit certificate, that 
client may not learn when its request completes, and a rep-
lica whose state has diverged from its peers may not imme-
diately discover this fact. However, if at any future time a cor-
rect client issues a request, that request (and a linearizable 
history of earlier requests on which it depends) will either 
(1) complete via 3f + 1 matching responses (4a), (2) complete 
via successfully storing a commit certificate at 2f + 1 replicas 
(4b–6), or (3) trigger a view change (4c or 4d below).

3.3. Timeout and view change cases
Cases 4a and 4b allow a client c’s request to complete with 
2f + 1 to 3f + 1 matching responses. However, if the primary 
or network is faulty, c may not receive matching spec-re-
sponse or local-commit messages from even 2f + 1 repli-
cas. Cases 4c and 4d therefore ensure that a client’s request 
either completes in the current view or that a new view with 
a new primary is initiated. In particular, case 4c is triggered 
when a client receives fewer than 2f + 1 matching responses 
and case 4c occurs when a client receives responses indicat-
ing inconsistent ordering by the primary.¶

4c.  Client receives fewer than 2f + 1 matching 
spec-response messages and resends its request to 
all replicas, which forward the request to the pri-
mary in order to ensure that the request is assigned 
a sequence number and eventually executed.

A client sets a second timer when it first issues a request. 
If the second timer expires before the request completes, 
the client suspects that the primary may not be ordering 
requests as intended, so it resends its request message 
through the remaining replicas so that they can track the re-
quest’s progress and, if progress is not satisfactory, initiate a 
view change. This case can be understood by examining the 
behavior of a nonprimary replica and of the primary.

Replica. When nonprimary replica i receives a message 
〈request, o, t, c〉sc

 from client c, then if the request has a 
higher time stamp than the currently cached response for 

that client, i sends a message 〈confirm-req, u, m, i〉si
 where 

m = 〈request, o, t, c〉sc
 to the primary p and starts a timer. If 

the replica accepts an order-req message for this request 
before the timeout, it processes the order-req message as 
described above. If the timer fires before the primary orders 
the request, the replica initiates a view change.

Primary. Upon receiving the message 〈confirm-req, u, 
m, i〉si

 from replica i, the primary p checks the client’s time 
stamp for the request. If the request is new, p sends a new 
order-req message using a new sequence number as de-
scribed in step 2.

Additional Pedantic Details: If replica i does not receive the 
order-req message from the primary, the replica sends the 
confirm-req message to all other replicas. Upon receipt 
of a confirm-req message from another replica j, replica 
i sends the corresponding order-req message it received 
from the primary to j; if i did not receive the request from the 
client, i acts as if the request came from the client itself. To 
ensure eventual progress, a replica doubles its current tim-
eout in each new view and resets it to a default value if a view 
succeeds in executing a request.

Additionally, to retain exactly once semantics, replicas main-
tain a cache that stores the reply to each client’s most recent 
request. If a replica i receives a request from a client and the 
request matches or has a lower client-supplied time stamp than 
the currently cached request for client c, then i simply resends 
the cached response to c. Similarly, if the primary p receives an 
old client request from replica i, p sends to i the cached order-
req message for the most recent request from c. Furthermore, 
if replica i has received a commit certificate or stable check-
point for a subsequent request, then the replica sends a local-
commit to the client even if the client has not transmitted a 
commit certificate for the retransmitted request.

4d.  Client receives responses indicating inconsis-
tent ordering by the primary and sends a proof of 
misbehavior to the replicas, which initiate a view 
change to oust the faulty primary.

If client c receives a pair of spec-response messages 
containing valid messages OR = 〈order-req, u, n, hn, d, ND〉
sj for the same request (d = H(m) ) in the same view u with dif-
fering sequence number n or history hn or ND, then the pair 
of order-req messages constitutes a proof of misbehavior2 
(POM) against the primary. Upon receipt of a POM, c sends a 
message 〈pom, u, POM〉sc

 to all replicas. Upon receipt of a valid 
pom message, a replica initiates a view change and forward 
the pom message to all other replicas.

4. EVALUATION
This section examines the performance of Zyzzyva and com-
pares it with existing approaches. We run our experiments 
on 3.0 GHz Pentium-4 machines with the Linux 2.6 kernel. 
We use MD5 for hashing and UMAC4 for message authen-
tication codes (MACs). MD5 is known to be vulnerable, but 
we use it to make our results comparable with those in the 
literature. Since Zyzzyva uses fewer MACs per request than 
any of the competing algorithms, our advantages over other 

¶ Note that cases 4b and 4c are not exclusive of 4d; a client may receive mes-
sages that are both sufficient to complete a request and also a proof a misbe-
havior against the primary.
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algorithms would be increased if we were to use the more 
secure, but more expensive, SHA-256.

For comparison, we run Castro and Liskov’s implemen-
tation of Practical Byzantine Fault Tolerance (PBFT)4 and 
Cowling et al.’s implementation of hybrid quorum (HQ)6; we 
scale-up HQ’s measured throughput for the small request/
response benchmark by 9% to account for their use of SHA-
1 rather than MD5. We include published throughput mea-
surements for Q/U1; we scale Q/U’s reported performance up 
by 7.5% to account for our use of 3.0 GHz rather than 2.8GHz 
machines. We also compare against the measured perfor-
mance of an unreplicated server.

To stress-test Zyzzyva we use the microbenchmarks de-
vised by Castro and Liskov4 In the 0/0 benchmark, clients 
send null requests and receive null replies. In the 4/0 bench-
mark, clients send 4KB requests and receive a null replies. 
In the 0/4 benchmark, clients send null requests and re-
ceive 4KB replies. In all experiments, we configure all BFT 
systems to tolerate f = 1 faults; we examine performance for 
other configurations elsewhere.11

In the preceding sections, we describe a simplified ver-
sion of the protocol. In our extended paper,12 we detail a 
number of optimizations, all implemented in the prototype 
measured here, that (1) reduce encryption costs by replac-
ing public key signatures with MACs,4 (2) improve through-
put by agreeing on the order of batches of requests,4 (3) re-
duce the impact of lost messages by caching out-of-order 
messages, (4) improve read performance by optimizing 
read-only requests,4 reduce bandwidth by allowing most 
replicas to send hashes rather than full replies to clients,4 
(5) improve the performance of Zyzzyva’s two-phase case by 
using a commit optimization in which replicas use a client 
hint to initiate and complete the second phase to commit 
the request before they execute the request and send the re-
sponse (with the committed history) back to the client, and 
(6) reduce overheads by including MACs only for a preferred 
quorum.6 In the extended paper we also describe Zyzzyva5, 
a variation of the protocol that requires 5f + 1 agreement 
replicas but that improves performance in the presence of 
faulty replicas by completing in three one-way message ex-
changes as in Figure 1a even when up to f nonprimary rep-
licas are faulty.

In the following experiments, unless noted otherwise, we use 
all of the optimizations other than preferred quorums for Zyzzy-
va. PBFT4 does not implement the preferred quorum optimiza-
tion, but HQ does.6 We do not use the read-only optimization 
for Zyzzyva and PBFT unless we state so explicitly.

4.1. Cost model
Our evaluation focuses on three metrics that BFT replica-
tion must optimize to be practical for a broad range of 
services: replication cost, throughput, and latency. Before 
we dive into experimental evaluation in the following sec-
tions, Table 2 puts our results in perspective by providing 
a high-level analytic model of Zyzzyva and of several other 
recent BFT protocols. The table also shows lower bounds on 
BFT state machine replication overheads for each of these 
dimensions.

In the first row of the table body, replication cost refers 
to the number of replicas required to construct a system 
that tolerates f Byzantine faults. The importance of mini-
mizing this metric for practical services is readily appar-
ent. We show two values: replicas with application state in-
dicates the number of replicas that must both participate 
in the coordination protocol and also maintain application 
state for executing application requests. Conversely, total 
replicas indicates the total number of machines that must 
participate in the protocol including, for some protocols, 
“witness nodes” that do not maintain application state or 
execute application requests. This distinction is important 
because witness nodes may be simpler or less expensive 
than nodes that must also execute requests to run the rep-
licated service.

Zyzzyva and PBFT (with Yin et al.’s optimization for sepa-
rating agreement and execution26) meet the replication cost 
lower bounds of 2f + 1 application replicas (so a majority of 
nodes are correct)24 and 3f + 1 total replicas (so agreement 
on request order can be reached).21

In the next row of the table body, throughput is deter-
mined by the processing overhead per request. Our simple 
model focuses on CPU intensive cryptographic operations. 
All of the systems we examine use Castro’s MAC authentica-
tor construct4 to avoid using expensive asymmetric cryptog-
raphy operations.

Table 2: Properties of state-of-the-art and optimal Byzantine fault-tolerant (BFT) service replication systems tolerating f faults, using MACS for 
authentication,4 assuming preferred quorum optimization, and using a batch size of b.4

PBFT4 Q/U1 HQ6 Zyzzyva

State Machine 

Replication 

Lower Bound

Cost Total replicas 3f + 1 5f + 1 3f + 1 3f + 1 3f + 121

Replicas with application state 2f + 126 5f + 1 3f + 1 2f + 1 2f + 124

Throughput MAC ops at bottleneck server 2 + (8f + 1)/b 2 + 8f 4 + 4f 2 + 3f/b 2a

Latency NW one-way latencies on critical path 4 2 4 3 2 or 3b

Bold entries denote protocols that match known lower bounds or those with the lowest known cost.
a It is not clear that this trivial lower bound is achievable.
b �The distributed systems literature typically considers three one-way latencies to be the lower bound for agreement on client requests17; two one-way laten-
cies is achievable if no request contention is assumed.
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The (trivial) lower bound on processing overhead is for 
each server to process two MAC operations per client re-
quest: one to verify the client’s request and one to authen-
ticate its reply. Zyzzyva and PBFT approach this bound by 
using a  batching optimization in which the primary accu-
mulates a batch of b client requests and leads agreement on 
that batch rather than on each individual request. Zyzzyva’s 
speculative execution allows it to avoid several rounds of all-
to-all communication among servers, so it requires fewer 
MAC operations per batch than PBFT.

In the last row of the table body, latency counts the num-
ber of one-way message delays from when a client issues a re-
quest until it receives a reply. In the general case, agreement 
requires three message delays,17 and Zyzzyva matches this 
bound by having requests go from the client to the primary 
to the replicas to the client. Q/U circumvents this bound by 
optimizing for the case of no request contention so that re-
quests go directly from the client to the replicas to the cli-
ent. We chose to retain the extra hop through the primary in 
Zyzzyva because it facilitates batching, which we consider to 
be an important throughput optimization.

The models described in this subsection focus on what 
we regard as important factors for understanding the perfor-
mance trade-offs of different algorithms, but they necessarily 
omit details present in implementations. Also, as is custom-
ary,1,4,6,23,26 Table 2 compares the protocols’ performance dur-
ing the optimized case of fault-free, timeout-free execution. In 
the rest of this section we experimentally examine these proto-
cols’ throughput, latency, and performance during failures.

4.2. Throughput
Figure 3 shows the throughput measured for the 0/0 bench-
mark for Zyzzyva, Zyzzyva5,11 PBFT, and HQ (scaled as noted 
above). For reference, we also show the peak throughput re-
ported for Q/U1 in the f = 1 configuration, scaled to our envi-
ronment as described above.

Zyzzyva executes over 50K requests/second without 
batching, and this number rises to 86K requests/second 
when batching is activated with 10 requests per batch. As the 

figure illustrates, Zyzzyva enjoys a significant throughput ad-
vantage over the other protocols.

It is also worth noting that when batching is enabled, 
Zyzzyva’s throughput is within 35% of the throughput of an 
unreplicated server that simply replies to client requests 
over an authenticated channel. Furthermore, this gap would 
fall if the service being replicated were more demanding 
than the null service examined here. Overall, we speculate 
that Zyzzyva’s throughput is sufficient to support BFT repli-
cation for a broad range of demanding services.

4.3. Latency
Figure 4 shows the latencies of Zyzzyva, Zyzzyva5, HQ, and 
PBFT for the 0/0, 0/4, and 4/0 workloads with a single client is-
suing one request at a time. We examine both the default read/
write requests that use the full protocol and read-only requests 
that can exploit Zyzzyva and PBFT’s read-only optimization.4

We did not succeed in getting Abd-El-Malek et al.’s im-
plementation of Q/U running in our environment. However, 
because Table 2 suggests that Q/U may have a latency advan-
tage over other protocols, for comparison we implement an 
idealized model of Q/U designed to provide an optimistic 
estimate of Q/U’s latency in our environment. In our ideal-
ized implementation, a client simply generates and sends 
4f + 1 MACs with a request, each replica verifies 4f + 1 MACs 
(1 to authenticate the client and 4f + 1 to validate the report-
ed state), each replica in a preferred quorum6 generates and 
sends 4f + 1 MACs (1 to authenticate the reply to the client 
and 4f to authenticate the new state) with a reply to the cli-
ent, and the client verifies 4f + 1 MACs.

For the read/write 0/0 and 4/0 benchmarks, Q/U does 
have a modest latency advantage over Zyzzyva as predicted 
by Table 2. For the read-only benchmarks, the situation is re-
versed with Zyzzyva exhibiting modestly lower latency than 
Q/U because Zyzzyva’s read-only optimization completes 
read-only requests in two message delays (like Q/U) but uses 
fewer cryptographic operations.

Figure 5 shows latency and throughput as we vary offered 
load for the 0/0 benchmark. As the figure illustrates, batching in 
Zyzzyva, Zyzzyva5, and PBFT increases latency but also increases 

0

 20

 40

 60

 80

 100

 120

140

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (

K
op

s/
s)

Number of clients

Unreplicated

Zyzzyva (b=10)

Zyzzyva5 (b=10)

PBFT (b=10)

Zyzzyva5

PBFT

HQ

Q/U max throughput

Zyzzyva

Figure 3: Realized throughput for the 0/0 benchmark as the number 
of client varies. Q/U throughput is scaled from1. Figure 4: Latency for 0/0, 0/4, and 4/0 benchmarks.

0

0.2

0.4

0.6

0.8

1

0/0 0/0 (r/o) 0/4 0/4 (r/o) 4/0 4/0 (r/o)

Ti
m

e 
(m

s)

U
nr

ep
lic

at
ed

Zy
zz

yv
a

Zy
zz

yv
a5

P
B

FT
Q

/U
 (

Id
ea

liz
ed

 m
od

el
)

H
Q

U
nr

ep
lic

at
ed

Zy
zz

yv
a

Zy
zz

yv
a5

P
B

FT Q
/U

 (
Id

ea
liz

ed
 m

od
el

)
H

Q

U
nr

ep
lic

at
ed

Zy
zz

yv
a

Zy
zz

yv
a5

P
B

FT
Q

/U
 (

Id
ea

liz
ed

 m
od

el
)

H
Q

U
nr

ep
lic

at
ed

Zy
zz

yv
a

Zy
zz

yv
a5

P
B

FT
Q

/U
 (

Id
ea

liz
ed

 m
od

el
)

H
Q

U
nr

ep
lic

at
ed

Zy
zz

yv
a

Zy
zz

yv
a5

P
B

FT
Q

/U
 (

Id
ea

liz
ed

 m
od

el
)

H
Q

U
nr

ep
lic

at
ed

Zy
zz

yv
a

Zy
zz

yv
a5

P
B

FT
Q

/U
 (

Id
ea

liz
ed

 m
od

el
)

H
Q



november 2008  |   vol.  51  |   no.  11   |   communications of the acm     94

peak throughput. Adaptively setting the batch size in response 
to workload characteristics is an avenue for future work.

Overall, all of the BFT protocols do add service latency 
compared to an unreplicated server, but Zyzzyva is generally 
competitive with the best protocols by this metric. We spec-
ulate that the additional 120 to 250 microseconds that Zyzzy-
va requires compared to an unreplicated server will be a sig-
nificant barrier for only the most demanding services, and 
we note that the relative gap would shrink for services that 
do more than execute the null request.

4.4. Performance during failures
Zyzzyva guarantees correct execution with any number of 
faulty clients and up to f faulty replicas. However, its perfor-
mance is optimized for the case of failure-free operation, 
and a single faulty replica can force Zyzzyva to execute the 
slower two-phase protocol.

One solution is to buttress Zyzzyva’s fast one-phase path 
by employing additional servers. Zyzzyva511 uses a total of 
5f + 1 servers (2f + 1 full replicas and 3f additional witnesses) 
to allow the system to complete requests via the fast commu-
nication pattern shown in Figure 1a when the client receives 
4f + 1 (out of 5f + 1) matching replies.

Surprisingly, however, even when running with 3f + 1 rep-
licas, Zyzzyva remains competitive with existing protocols 
even when it falls back on two-phase operation. In particu-
lar, Zyzzyva’s cryptographic overhead at the bottleneck rep-
lica increases from 2 + ( (3f + 1)/b) to 3 + ( (5f + 1)/b) operations 
per request if we simply execute the two-phase algorithm 
described above.** Furthermore, our implementation also 
includes a commit optimization12 that reduces cryptographic 
overheads to 2 + ( (5f + 1)/b) cryptographic operations per re-
quest by having replicas that suspect a faulty primary initi-
ate and complete the second phase to commit the request 
before they execute the request and send the response (with 

the committed history) back to the client.
Figure 6 compares throughputs of Zyzzyva, Zyzzyva5, 

PBFT, and HQ in the presence of f nonprimary-server fail-
stop failures. We do not include a discussion of Q/U in this 
section as the throughput numbers of Q/U with failures are 
not reported,1 but we would not expect a fail-stop failure by 
a replica to significantly reduce the performance shown for 
Q/U in Figure 3. Also, we do not include a line for the unrep-
licated server case as the throughput falls to zero when the 
only server suffers a fail-stop failure.

As Figure 6 shows, without the commit optimization, 
falling back on two-phase operation reduces Zyzzyva’s maxi-
mum throughput from 86K requests/second (Figure 3) to 
52K requests/second. Despite this extra overhead, Zyzzyva’s 
“slow case” performance remains within 13% of PBFT’s per-
formance, which is less highly tuned for the failure-free case 
and which suffers no slowdown in this scenario. Zyzzyva’s 
commit optimization repairs most of the damage caused by a 
fail-stop replica, maintaining a throughput of 82 K requests/
second which is within 5% of the peak throughput achieved 
for the failure-free case. For systems that can afford extra 
witness replicas, Zyzzyva5’s throughput is not significantly 
affected by the fail-stop failure of a replica, as expected.

5. RELATED WORK
Zyzzyva stands on the shoulders of recent efforts that have 
dramatically cut the costs and improved the practicality of 
BFT replication. Castro and Liskov’s PBFT protocol4 devised 
techniques to eliminate expensive signatures and poten-
tially fragile timing assumptions, and it demonstrated high 
throughputs of over 10K requests/second. This surprising 
result jump started an arms race in which researchers re-
duced replication costs,26 and improved performance1,6,13 
of BFT service replication. Zyzzyva incorporates many of the 
ideas developed in these protocols and folds in the new idea 
of speculative execution to construct an optimized fast path 
that significantly outperforms existing protocols and that 
has replication cost, processing overhead, and latency that 
approach the theoretical minima for these metrics.

Figure 5: Latency versus throughput for the 0/0 benchmark. Q/U 
throughput is scaled from1. Q/U best latency is the measured latency 
for our idealized model implementation of Q/U under low offered load.
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Numerous BFT agreement protocols4,6,13,18,23,26 have used 
tentative execution to reduce the latency experienced by cli-
ents. This optimization allows replicas to execute a request 
tentatively as soon as they have collected the equivalent of a 
Zyzzyva commit certificate for that request. This optimiza-
tion may appear similar to Zyzzyva’s support for speculative 
execution, but there are two fundamental differences. First, 
Zyzzyva’s speculative execution allows requests to complete 
at a client after a single phase, without the need to compute 
a commit certificate: this reduction in latency is not possible 
with traditional tentative executions. Second, and more im-
portantly, in traditional BFT systems a replica can execute a re-
quest tentatively only after the replica knows that all previous 
requests have been committed. In Zyzzyva, replicas continue 
to execute requests speculatively, without waiting to know 
that requests with lower sequence numbers have completed. 
This difference is what lets Zyzzyva leverage speculation to 
achieve not just lower latency but also higher throughput.

Speculator20 allows clients to speculatively complete op-
erations at the application level and perform client-level roll-
back. A similar approach could be used in conjunction with 
Zyzzyva to support clients that want to act on a reply optimis-
tically rather than waiting on the specified set of responses.

Zyzzyva’s focus is on maximizing the peak performance of 
BFT replication. Conversely, Clement et al.5 argue that BFT 
systems should seek not only to ensure safety but also good 
performance in the presence of Byzantine faults, and their 
Aardvark system eliminates fragile optimizations that maxi-
mize best-case performance but that can allow a faulty client 
or server to drive the system down expensive execution paths.

6. CONCLUSION
By systematically exploiting speculation, Zyzzyva exhibits 
significant performance improvements over existing BFT 
protocols. The throughput overheads and latency of Zyzzyva 
approach the theoretical lower bounds for any BFT state ma-
chine replication protocol.

Looking forward, although we expect continued progress 
in improving the performance (for example, by making ad-
ditional assumptions about the application characteristics) 
and robustness (in the presence of broader range of failure 
scenarios) of BFT replication, we believe that Zyzzyva dem-
onstrates that BFT overheads should no longer be regarded 
as a barrier to using BFT replication for even many highly 
demanding services. acknowledgments
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