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Abstract
This paper presents Exalt, a library that gives back to

researchers the ability to test the scalability of today’s
large storage systems. To that end, we introduce Tar-
dis, a data representation scheme that allows data to be
identified and efficiently compressed even at low-level
storage layers that are not aware of the semantics and
formatting used by higher levels of the system. This
compression enables a high degree of node colocation,
which makes it possible to run large-scale experiments
on as few as a hundred machines. Our experience with
HDFS and HBase shows that, by allowing us to run the
real system code at an unprecedented scale, Exalt can
help identify scalability problems that are not observable
at lower scales: in particular, Exalt helped us pinpoint
and resolve issues in HDFS that improved its aggregate
throughput by an order of magnitude.

1 Introduction

This paper presents Exalt, a library that gives back
to researchers the ability to verify the scalability claims
of today’s large storage systems, which, ironically, have
become hard to corroborate precisely because of the scale
of these systems.

The advent of Big Data has strained the scalability of
traditional storage systems, and several new architectures
have been proposed to respond to this challenge [2–4, 7,
12, 13, 17, 22] by supporting up to hundreds of petabytes
of storage and tens of thousands of storage nodes. Testing
systems at such scale, however, requires access to tens
of thousands of machines and at least as many disks, and
few researchers have access to resources that plentiful:
the rest of us have to design systems that are supposed
to operate at a scale much larger than the infrastructure
available to test them. Nor are such resource limitations
affecting only academia: even industrial researchers who
are within reach of clusters of the necessary size may not
be able to reserve them for large scale experiments, since

these clusters are a primary source of revenue.
These limitations are typically sidestepped in one of

two ways. The first is to run experiments on a medium-
sized cluster (100-200 machines) and extrapolate the re-
sults to larger scales. While this may work reasonably
well in some cases, the fundamental assumption on which
it rests—that resource consumption increases linearly
with the load and the number of machines in the system—
does not always hold, as we show in Section 2. To make
matters worse, sources of non-linear growth are some-
times hard or impossible to observe in small deployments.
For example, the time needed to add a new block to an
HDFS file [22] increases with the file’s size, but it is
only after that size has grown beyond what is likely to
be observable in small deployments that the slowdown
becomes a limiting factor for the system’s performance.

The second common approach for predicting the be-
havior of large-scale systems is simulation [18, 24, 26].
Unfortunately, the results of a simulation are only as ac-
curate as the model on which the simulation relies; as
systems grow in size and complexity, modeling them
faithfully becomes prohibitive.

This paper proposes a third way: the Exalt library of-
fers researchers the ability to test the scalability of a large-
scale storage system by running its real code, but without
requiring access to thousands of machines. The basic
insight at the core of Exalt is that, in many large-scale
experiments, how data is processed is not affected by the
content of the data being written, but only by its size. Ex-
alt leverages this freedom by virtualizing the data, while
keeping the metadata intact to ensure that the system con-
tinues to function correctly. Specifically, Exalt clients
write data in a specific format, Tardis, that has two key
advantages. First, it allows Exalt to compress the behavior
of the system in both space and time. Space compression
is a powerful tool for performing large-scale experiments:
for example, running 10,000 storage nodes on just 100
machines can bring to light previously unknown scalabil-
ity bottlenecks in the metadata service. Since compressed
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data takes much less time to write, compression in space
can in turn result in compression in time: with the sys-
tem running faster, bugs and performance issues can be
discovered more rapidly.

The second key advantage of Tardis is that it addresses
a fundamental challenge in virtualizing data: being able
to distinguish data from metadata. While the content of
the former is not important for the system to function cor-
rectly and can therefore be virtualized, the integrity of the
latter is essential. This problem is particularly prominent
in modern storage systems, which employ a two-layer
architecture where the upper layer uses the lower layer as
black-box storage: files written to the lower layer contain
both data and metadata, which look indistinguishable to
the lower layer. The need to ensure the integrity of the
metadata is why approaches that virtualize data by alto-
gether disposing of file contents (e.g. [1]) cannot be used
in our context.

In summary, this paper makes the following contribu-
tions:

• We introduce Tardis, a data representation scheme
that allows data to be identified and efficiently com-
pressed even at lower-level storage layers that are
not aware of the semantics and formatting used by
higher levels of the system. Tardis provides transpar-
ent, lossless, computationally efficient compression
of data and achieves high compression ratios.

• We present a methodology that utilizes Tardis to test
the scalability and robustness of large-scale storage
systems: our goal is not to predict every aspect of the
performance of such systems (e.g. their power con-
sumption) but, more modestly, to identify scalability
problems. Our approach has a “Truman-show” [25]
feel: the part of the system whose scalability is be-
ing tested processes real data and interacts with the
rest of the system as it would in a true large-scale
deployment, while the rest of the system uses Tar-
dis to compress data and achieve high degrees of
colocation, thereby emulating the behavior of a large
number of nodes.

• We present our experience using Exalt, a library that
implements Tardis and uses our methodology to iden-
tify scalability issues in large-scale storage systems.
Using Exalt we found and fixed several such issues in
two mature storage systems: HDFS [22] and HBase
[2]. All the problems we identified manifest when
the scale of the system becomes larger than a typi-
cal research cluster. In the case of HDFS, resolving
these problems resulted in an order of magnitude im-
provement of the aggregate system throughput. Our
ability to identify these issues was not, for better or
worse, due to a prior deep understanding, but rather

to the opportunity offered by Exalt to test them at an
unprecedented scale.

The rest of the paper is organized as follows. Section
2 discusses the common practices for testing the scala-
bility of large systems. Section 3 introduces the Tardis
data representation scheme and Section 4 describes how
it can be used to identify scalability problems in large-
scale systems. Section 5 reviews the assumptions of Exalt
and discusses its applicability in various contexts. Sec-
tion 6 presents our experience using Exalt to identify
performance problems in two mature systems: HDFS and
HBase. Section 7 discusses related work and Section 8
concludes the paper.

2 Testing for scalability: common prac-
tices

When faced with the challenge of running experiments
on a system whose scale vastly exceeds their infrastruc-
ture, researchers typically resort to one of two options:
they either run the system at the largest scale they can af-
ford and try to extrapolate their results, or they explicitly
forgo running certain components of the system, substitut-
ing them with stubs that, ideally, maintain the interactions
of the original components with the rest of the system,
but are simpler and less resource-demanding to run. We
discuss both options, and why they are not well-suited for
performing scalability tests on large-scale systems.

2.1 Extrapolation

A common approach to estimate the behavior of sys-
tems that are too big to test is to run them at a small or
medium scale and then to extrapolate, based on those re-
sults, how they will behave at a large scale. For example,
if the CPU utilization of a bottleneck node is 10% in a
100-node experiment, extrapolation would lead one to
estimate that the system will scale to about 1,000 nodes.
While attractive for its simplicity, this approach has sev-
eral drawbacks that make it inaccurate in practice.

First, extrapolation is based on the assumption that
resource usage grows linearly with the scale of the system.
However, because of design choices and implementation
issues, this assumption is frequently violated in practice.
For example, HDFS uses an array to maintain a sorted list
of files within a directory. Using an array causes insertion
to be an O(N) operation, where N is the number of files
in the directory. As more files are added to the directory,
insertion becomes increasingly expensive: indeed, the
cost of adding N files to a directory is O(N2) . Note that a
more efficient directory implementation (e.g. a sorted tree
map) does not restore linear growth in resource usage,
but simply reduces the growth rate to O(N · logN). In
general, once the load on the system is not linear, accurate
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extrapolation becomes much harder, especially because,
as we have seen, the system’s performance may depend
on the details of the implementation.

A second, more subtle drawback of extrapolation is
that at small scales some important behaviors can easily
escape notice. Consider again the above example of a
workload of O(N2) complexity: as long as the value of N
is low, the potential scalability bottleneck remains largely
inconspicuous. To exacerbate the problem, measuring
resource utilization is an inherently noisy process. For
example, observing that a Java process uses 100 MB of
memory does not, by itself, indicate how much memory
is being used by the data structures of that process. An-
swering that question requires accurate information about
the amount of memory used internally by the JVM, the
amount of non-garbage-collected memory, etc. The uncer-
tainty added by measurement noise is significantly more
prominent at lower scales, where resource utilization is
low.

The final drawback, which is closely related to the pre-
vious one, is that extrapolation cannot be used to predict
behaviors that are only triggered when some resource uti-
lization reaches a certain threshold. For example, HDFS
has a blocking disk-scanning procedure that becomes in-
creasingly expensive as the system grows in size. Beyond
a certain size, running the procedure causes the corre-
sponding DataNode to start missing heartbeats, which in
turn can cause it to be evicted and force all its data to be
re-replicated, with serious performance repercussions.

2.2 Using stubs

Another technique for predicting the performance of a
system too big to test is to emulate, rather than actually
run, some of its components. The emulated components
are implemented as stubs, running either locally or re-
motely. For this approach to be successful, the stubs
should be simple to implement and require much more
modest resources than the original components they stand
in for; at the same time, they should be able to correctly
exercise the rest of the system, allowing it to be stress-
tested at scale using relatively modest resources.

While attractive in theory, the promises of emulation
are often elusive in practice: reproducing accurately the
behavior of a non-trivial real system component is hard,
and in the process the stub component can end up being
almost as complex as the real one, defeating its purpose.

We faced this challenge first-hand when trying to test
the scalability of the HDFS NameNode using stub DataN-
odes. Our goal was to create a large number of stub
DataNodes and use them to stress-test the NameNode.
Our first attempt did not involve the DataNodes in the pro-
tocol at all; to create files and add blocks to them, clients
simply invoked createFile and addBlock at the Na-

meNode. However, the system did not work, since the
NameNode expects the DataNodes to confirm the receipt
of each block. We therefore modified our clients to notify
the stub DataNodes, so they could in turn appropriately
notify the NameNode. This did not work, either: the
NameNode, we discovered, also expects each DataNode
to periodically report the list of blocks it stores on disk.
After several frustrating iterations, we eventually came to
realize that emulating the correct behavior of DataNodes
would have required us to reimplement the full HDFS
protocol, including all inter-DataNode communication,
local bookkeeping, etc.

3 Compressing data with Tardis

Our approach is based on a simple intuition: for the
purposes of testing the scalability of large-scale storage
systems, it is typically the size of the data being written
that matters, not its actual content. We are then free to
choose what data clients write during our tests: our work
explores the opportunities that this freedom affords.

Specifically, our approach is to design a data format
that achieves fast and efficient compression and decom-
pression. As we discuss in Section 3.3, using compressed
data lets us colocate multiple nodes on the same machine,
which in turn enables running large-scale experiments on
a small infrastructure.

Before presenting Tardis, our compression scheme, we
set forth the requirements that it must fulfill.

3.1 Compression scheme requirements

The scheme must be lossless. While compression
can reduce resource usage and allow node colocation,
the ability to recreate the original data is essential. Mod-
ern large-scale storage systems typically use a two-layer
architecture, where the upper layer uses the lower as a
black-box storage [2–4]. What appears like generic data
to the lower storage layer may actually be metadata nec-
essary for the correct functioning of the upper layer; it is
critical that none of this metadata be lost.

The scheme must achieve a high compression ratio.
The motivation for this requirement is straightforward,
since the compression ratio directly affects the amount of
colocation we can achieve.

The scheme must be computationally efficient. As
a counterexample, consider a straw-man scheme in which
clients simply write sequences of 0’s. This scheme offers
obvious opportunities for significant compression; how-
ever, if it is possible for the system to interleave client data
with metadata, the compression algorithm would need to
scan all the input bytes to determine where the sequence
of 0’s begins and where it ends. The disk and network
bottlenecks would have been removed, but at the expense
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Figure 1: Examples of the Tardis format in compressed and uncompressed form.

of introducing a CPU bottleneck, severely limiting the
scalability of this scheme.

Data chunks should be independently compressible.
Modern storage systems do not necessarily store data as
a single unit, but instead split it into multiple, separately
stored chunks, which must be independently compress-
ible. Meeting this requirement is challenging, however,
since a client in general has no control over how data
is divided into chunks. For example, in HBase the pro-
cedure of splitting data into chunks depends on a non-
deterministic race between multiple threads.

3.2 Tardis compression

This paper introduces a novel compression scheme,
called Tardis, that satisfies the above requirements. Tardis
consists of a data format and an algorithm for compress-
ing and decompressing the data. Intuitively, Tardis aims
to achieve the following two complementary goals. When
no metadata is inserted in the middle of the data, the com-
pression algorithm should be able to compress the entire
data after scanning only a small fraction of it. Other-
wise, the compression algorithm should be able to quickly
identify the location of the inserted metadata.

Data format Clients write data as a series of <flag>
<marker> entries, where <flag> is a predefined byte
sequence that does not appear in the system metadata,
and <marker> denotes the number of remaining bytes
in the data. For example, using a 4-byte flag and 4-byte
markers, 1 KB of data would be formatted as:

<flag>1016<flag>1008...<flag>8<flag>0

In this example, the first marker denotes that there are
1016 bytes remaining in the sequence, since the (first) flag
and the marker itself are 4 bytes each. Of course, the size
of flags and markers need not be the same: our prototype
uses 8-byte flags and 4-byte markers.

Compressed data format Given a byte sequence in
the above format, the compression algorithm would sim-
ply need to return its length. However, to enable data
chunks to be independently compressible, the algorithm
actually returns two numbers: the starting byte of the

sequence as well as its length. In the above example (also
illustrated in Figure 1a), if the entire 1 KB of data were be-
ing compressed, the result would be the pair (1024,1024).
If, however, the data were split into two chunks of 512
bytes each (Figure 1b), the first chunk would be com-
pressed as (1024,512) and the second as (512,512).

As we discussed above, in modern storage systems
data and metadata are frequently stored together. Figure
1c shows an example where metadata is inserted in the
middle of a Tardis sequence. In this case, the metadata
splits the original sequence into two subsequences, of
length 20 and 1004, respectively. Ideally, we would like
to compress each of these sequences separately, leaving
the metadata uncompressed. However, since in this case
the metadata is inserted in the middle of a flag-marker
pair, we simply leave these 8 bytes—the flag and the
corresponding marker—uncompressed.1 This shortens
the first subsequence to a length of 16 and the second
subsequence to 1000. Note that even if the metadata were
not aligned with the flags and markers, the result would
be the same: only the flag-marker pair that is split by the
metadata is left uncompressed and the rest of the data is
compressed as two separate subsequences.

To distinguish between compressed and uncompressed
data during decompression, an uncompressed sequence is
preceded by a 0 and a 4-byte integer denoting its length,
while a compressed sequence is preceded by a 1.

Compression Figure 2 shows the pseudocode
for the Tardis compression algorithm. The main
function, TardisCompress, iteratively calls the
FindSubsequence function until all input data has
been consumed. When FindSubsequence returns a
new subsequence (line 7), the main function appends
the appropriate bytes to the compressed data buffer.
We detect the presence of metadata between two
subsequences by checking whether the starting position
of the new subsequence (pos) is after the end of the
previous subsequence (index). If so, we append a 0 to
denote the beginning of an uncompressed sequence,

1It is actually possible to include the flag in the compressed sequence,
but we omit this optimization for simplicity of presentation.
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1 #define unit_size = flag_size + marker_size

3 (compressed_data) TardisCompress(data)
4 result = empty buffer
5 index = 0
6 while index < data.len
7 (pos,marker,len)=FindSubsequence(data,index)
8 if pos == -1
9 result.AppendMeta(data,index,data.len-index)

10 return result
11 else
12 if pos > index
13 result.AppendMeta(data,index,pos-index)
14 result.AppendTardis(data,pos,marker,len)
15 index = pos+len
16 return result

18 (pos,marker,length) FindSubsequence(data,startIndex)
19 (pos,marker) = ScanForFlag(data,startIndex)
20 if pos == -1
21 return (-1,-1,-1)
22 lastMarker = data.len-(unit_size+(data.len-

position)%unit_size)
23 target = min(pos+marker,lastMarker)
24 marker2 = BinarySearch in data from pos to target
25 for the rightmost flag-marker pair such that:
26 (pos2,marker2) = ScanForFlag(data,target) and
27 pos2 != -1 and pos2-pos == marker-marker2
28 return (pos, marker, marker-marker2+unit_size)
29 if no such marker2 is found
30 return (-1,-1,-1)

32 (position, marker) ScanForFlag(data, startIndex)
33 index = linearly search data for (flag,marker)

starting at startIndex
34 if index >= 0
35 return (index, marker)
36 else
37 return (-1, -1)

Figure 2: Pseudocode for Tardis compression.

followed by the length of the metadata, and finally by the
metadata itself, uncompressed (AppendMeta, line 13).

It is then time to add the new subsequence. To denote
that what follows is compressed, we append a 1 before
the compressed form of the Tardis subsequence (which,
recall, consists of the starting point and length of the
subsequence) (AppendTardis, line 14).

Function FindSubsequence is the core of the algo-
rithm: its task is to identify a Tardis subsequence. Two
factors complicate this task: the sequence may have been
split into multiple chunks and metadata may have been
inserted somewhere in the sequence. Given a starting
index in the data, FindSubsequence first scans the data
to find the first flag, indicating the start of a Tardis se-
quence, and reads the corresponding marker (line 19).
Then, it checks whether some metadata has been added
in the middle of this sequence. The check is simple: if
no metadata is inserted between two markers with val-
ues A and B, then these markers should be placed B−A
bytes apart. The purpose of lines 22-23 is to determine
which marker should serve as marker B. If the original
sequence is not split across chunks, then B is marker 0,
which should be m bytes after the first marker, where m is
the value of the first marker. Otherwise, B is set to the last

marker of the current chunk. If the difference between
the values of markers B and A is indeed equal to the byte
distance between the markers, the algorithm has found an
uninterrupted Tardis subsequence. If that is not the case,
the algorithm performs a binary search to find the right-
most flag-marker pair that satisfies the above condition,
leveraging the fact that the values of the markers form a
sorted sequence (lines 24-30).

In practice, the common case is very simple: as long
as there is no metadata inserted in the byte sequence,
the compression algorithm needs only to check the first
and last number of the sequence. This allows Tardis to
compress data much faster than off-the-shelf compres-
sion algorithms. For example, when compressing data
chunks of 1 MB, Tardis is about 33,000 times faster than
Gzip [11] and 2,300 times faster than the straw man com-
pression scheme where client data consists only of 0’s
and the compression algorithm simply scans the data and
compresses sequences of 0’s into an integer denoting their
length. Of course, the comparison to GZip is not apples-
to-apples, since Gzip is a generic compression algorithm;
what it does show, however, is that being able to choose
the data format drastically reduces the CPU overhead of
our approach.

Decompression The decompression algorithm is
straightforward. Given a compressed sequence, it iterates
through each sequence, whether compressed (preceded
by a 1) or uncompressed (preceded by a 0 and the length
of the sequence). Uncompressed sequences are copied
without modification, while compressed sequences are
expanded to their uncompressed form.

Choosing the flag To prevent portions of metadata
from being accidentally compressed, the flag sequence
should never appear in the metadata. If it did and, by un-
lucky coincidence, the length value following the fake flag
pointed to another flag followed by a 0, all that sequence
of bytes would be compressed. Although we could alto-
gether eliminate this danger,2 it seems unnecessary: Exalt
is not intended for production use, and an accidental com-
pression would simply require us to rerun the affected
experiment. With a sufficiently large flag, the odds of
a false positive can be driven arbitrarily low: our prag-
matic approach was to choose as flag an 8-byte random
sequence and take our chances. Our experiments have yet
to produce a false positive.

3.3 Using compression to enable large-
scale tests

Since we are attempting to run a large number of nodes
on a much smaller number of machines, we will nec-

2It would suffice to escape the flag sequence in the metadata. How-
ever, this would require intrusive modifications to the server code, as all
metadata insertions would need to be aware of the escaping logic.
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essarily have to colocate multiple nodes on the same
machine. However, such colocation will cause signifi-
cant contention on the physical resources of the machine.
Specifically, the disk- and memory capacity, and the disk-
and network bandwidth available to each machine are
typically enough to support only a single node, making
straightforward colocation infeasible.

Data compression can help here: storing compressed
data on disk decreases the disk capacity and bandwidth
requirements of each node, as well as memory capacity
and network bandwidth. Of course, data compression is
not without cost; in this case, the cost is CPU utilization.

This tradeoff, however, is very attractive for storage
systems, where CPU cycles are plentiful and bandwidth
and storage capacity are typically the system’s bottleneck.
It also opens the door to emulating the behavior of storage
systems too big to test using HPC computation clusters:
indeed, as we will see in Section 6, our analysis of the
scalability of HDFS/HBase has been performed by run-
ning Exalt on the Stampede high performance cluster at
the Texas Advanced Computing Center (TACC) [23].

If data compression is used without colocation, it re-
sults in a system that is “compressed” in time, rather than
space, since each write will take less time to complete.
Running the system at an accelerated pace offers the po-
tential of identifying bugs or performance problems much
faster: Section 6.1.4 discusses a case where time compres-
sion allowed us to identify a problematic behavior about
100 times faster than a real deployment.

3.4 Implementation

Our implementation of Exalt performs data compres-
sion for three key resources: disk, network, and mem-
ory. Our goal is to be minimally intrusive. While in-
memory compression does require minor modifications
to the source code of the storage system being tested,
we achieve fully transparent disk and network compres-
sion by using byte code instrumentation (BCI) to modify
the relevant Java library classes (Socket, SocketInput-
Stream, SocketOutputStream, SocketChannel for network
compression; File, FileInputStream, FileOutputStream,
RandomAccessFile, and FileChannel for on-disk com-
pression).

File compression is more challenging than network
compression because the file interface allows a user to
partially update existing data. When that data is already
compressed, updating it in place is not straightforward. A
naive solution would be to decompress the existing data,
update it, and compress it again. However, if the old and
the newly compressed data have different sizes, all fol-
lowing data chunks would have to be moved. To address
this problem, similarly to the Log-Structured File System
(LFS) [20], we transform in-place update operations into

append operations. This allows us to efficiently process
in-place updates, with only a small bookkeeping overhead
to keep track of the latest version of each range of bytes.

Memory compression In-memory data structures do
not use a well-defined interface, such as the File or Socket
abstraction used by the disk and network. As a result,
transparently modifying these data structures to compress
and decompress data at the application layer is very hard.3

Instead, when the in-memory data needs to be compressed,
we manually modify the source code of the system. Fortu-
nately, this process is quite simple. One need only identify
the data structures that hold the client data. When data is
stored in the data structure, it is compressed; when data is
retrieved from the data structure, it is decompressed. For
example, compressing the in-memory key-value store of
HBase required adding 71 lines of code across 4 files.

4 Finding scalability bottlenecks

Data compression gives us the ability to colocate mul-
tiple nodes on a single physical machine: in this section,
we discuss how we can selectively use this ability to
draw meaningful conclusions about the scalability of a
large-scale storage system. We will view the system as a
collection of real and emulated nodes. A real node runs
the system’s actual code and handles unmodified data. An
emulated node still runs the system’s actual code, but, as
needed to support colocation, may (i) store compressed
data on its disk, (ii) send compressed data over the net-
work, when it communicates with other emulated nodes,
and (iii) store compressed data in memory.

4.1 Exalt methodology

We use this combination of real and emulated nodes as
a microscope of sorts that we can focus on a part of the
system to identify performance bottlenecks. To ensure
that the part of the system “under inspection” behaves
exactly as it would in a real large-scale deployment, we
leave the corresponding nodes real, while using emulated
nodes for the rest of the system. This approach works
particularly well at identifying performance issues at cen-
tralized components that can become a bottleneck as the
scale of the system increases (e.g. HDFS NameNode,
HBase Master). Section 6 discusses our experience using
this technique to find scalability problems in real systems.

A downside of this methodology is that it may not
discover scalability problems that arise at the nodes that
are being emulated. To address this issue, after having
stress-tested the part of the system under inspection by
using the maximum amount of colocation for emulated
nodes, we perform a new set of experiments where a small

3Transparent compression of in-memory data could be potentially
implemented at the kernel level, but it would sacrifice portability.
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subset of formerly emulated nodes are also run as real,
while the rest is kept emulated. This hybrid configuration
makes it possible to identify scalability problems also at
nodes that are not under inspection, while maintaining
a high degree of colocation, but it is not a panacea: for
example, it is still unable to detect performance issues
that only manifest when a large number of nodes that are
not under inspection perform some collective action (e.g.
system-wide recovery).

5 Limitations and applicability

Exalt relies on a number of assumptions to provide
high-degrees of node colocation. This section reviews
these assumptions and discusses which of them can be
weakened to widen the applicability of our approach.

Exalt is primarily designed to evaluate I/O-intensive
applications like distributed file systems storing large
files [7, 22] or key-value stores with relatively large val-
ues [3, 17]. Applications that are not I/O-intensive or
store small values can not benefit significantly from Tar-
dis, as they gain little by compressing data. In Section 6.2
we explore in more detail how the size of the value in a
key-value store affects the colocation ratio of Exalt.

Our current implementation of Exalt makes two addi-
tional assumptions: first, that the target application does
not modify the data written by the clients, although it
can split the data and insert metadata; and second, that
experiments are not sensitive to the contents of the data,
so that clients can operate with synthetic data.

While these assumptions hold for the systems we have
so far applied Exalt to, they are not fundamentally re-
quired for Exalt to be applicable. We consider below
some popular techniques that violate these assumptions
and discuss how our implementation of Exalt can be mod-
ified to work in conjunction with them.

Encryption and erasure coding Both techniques in-
volve encoding data into a different format, violating the
assumption that client data is immutable. To handle these
cases, Exalt would compress the data using Tardis before
encoding it, and then add filler bytes as necessary to match
the length of the (encoded) original data. Filler bytes
would use the same format as Tardis (making them highly
compressible), but with a different flag sequence (so that
they can be distinguished from real data). When read-
ing the data, Exalt would remove the filler bytes before
performing decryption and then decompress the Tardis
sequence to obtain the client data.

Deduplication Deduplication compares the contents
of different data units (files, chunks, etc.) to eliminate
duplicates and, by making execution dependent on the
actual data, violates our second assumption. Indeed, dedu-
plication schemes that directly compare the units’ data
are incompatible with Exalt. However, Exalt can still be

applied to deduplication approaches that only compare
hashes of data units. Exalt would first compute the hash
of the client data and then replace the client data with
data formatted using an extended version of Tardis, which
inserts the hash of the data unit between the flag and the
marker. The deduplication module could then use this
hash directly to identify duplicate data units.

Compression If the system being tested already uses
compression, it is in general not possible to use synthetic
data at the clients, since the compression ratio depends
on the actual data. If, however, compression is performed
only at the client side, Exalt could apply a technique
similar to the one used to handle encryption and erasure
coding: the client would first compress the real data to de-
termine its compressed size, then create synthetic (Tardis)
data, compress it using Tardis’ compression and finally
append the right amount of filler bytes to match the length
of the (compressed) real data.

Data sensitive applications Many applications use
SQL-like languages for their queries. The execution of
these queries depends on the data, since SQL predicates
can be expressed as a function of the data. The rest of the
data, which does not affect the processing of the queries,
can be synthetic. The efficiency of Exalt in these cases
depends on the ratio of sensitive to non-sensitive data.

6 Case studies

Exalt allows us to evaluate storage systems at an un-
precedented scale. This section presents our experience
applying Exalt to evaluate two real-world storage sys-
tems: the Hadoop Distributed File System (HDFS) and
the HBase key-value store [2, 22]. We chose these sys-
tems for several reasons. First, not only they are popular
in their own right, especially among researchers, but their
architecture is representative of the majority of existing
large-scale storage systems. Second, both systems are
open-source, which allows us to perform code modifica-
tions where necessary (i.e. for in-memory compression).
Finally, both systems have a large development commu-
nity that has produced a mature and stable codebase. De-
spite the maturity of the code, we identified several perfor-
mance issues that arise as the scale of the system increases.
Our ability to diagnose these issues was not due to a prior
deeper understanding of these systems, but simply to the
ability to evaluate them at an unprecedented scale.

In our evaluation, we run HDFS and HBase at a scale
about 100 times larger than the size of the infrastructure
available to us. For example, one of our experiments
uses 96 machines to run an HDFS cluster with 9600
DataNodes. Our experiments identify a number of per-
formance problems that arise at such large scales. Some
of these problems pertain to low-level implementation
details, while others are due to high-level design choices.

7



For example, we find that storing many files on an HDFS
directory causes file creations to that directory to become
increasingly slow; and that keeping less than 3

4 of the re-
gion data in the memory of an HBase region server causes
its performance to degrade precipitously. Using Exalt,
we were able to identify and fix many of these problems,
improving as a result the aggregate HDFS throughput by
an order of magnitude.

Unfortunately, we have not yet been able to validate our
results by running the actual systems at a large scale: after
all, it is the very reason that we do not have access to such
plentiful resources that has motivated our work in the first
place. The largest validation we have performed involved
running HDFS/HBase on 1,500 nodes of the Stampede
cluster at the Texas Advanced Computing Center [23]:
while our results confirm the prediction of Exalt for that
configuration, the scale of the system is still too small to
exhibit even the first of the scalability issues identifies
by Exalt. Our current confidence in Exalt’s effectiveness
stems from two sources. First, for each problem that Exalt
has identified, we have traced the cause of the problem in
the source code, fixed it, and run the modified system to
confirm that its performance has been improved. Second,
some of our findings have been confirmed by engineers at
Facebook, among the few who have access to a large-scale
deployment of HDFS [6].

Most of our experiments were performed on the Stam-
pede cluster at TACC, whose machines have 16 cores,
32 GB of memory, but only 80 GB of local disk storage.
Since our access to TACC was limited, we ran some of
our experiments on three local machines with 16 cores,
64 GB memory and 10 1 TB disks each. These machines
were used to test the capacity limitations of individual
storage nodes.

6.1 Case study: HDFS

HDFS [22] is an open source implementation of the
Google File System (GFS) [7]. Each HDFS cluster con-
tains a single NameNode that stores the file system names-
pace information and several DataNodes that store the file
contents. Each file is split into multiple blocks and each
block is stored on three DataNodes. When a client creates
a file or adds a block to an existing file, it first contacts the
NameNode, which responds with a list of the DataNodes
that will store the new block. The client can then directly
write the block contents to these DataNodes.

We mainly focus on write workloads since they are
more likely to cause scalability problems. Unless other-
wise specified, in our experiments each client creates a
file in its own directory, writes 192MB of data to it (as
suggested by the HDFS developers in their white paper
on how to test HDFS’ scalability [21]), closes the file,
and then starts a new file. This workload achieves the
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Figure 3: HDFS throughput scalability.

highest scalability among all workloads that we tried;
Section 6.1.3 describes the performance problems caused
by other workloads. We use a block size of 128 MB and
the default 3-way replication (again, as suggested in [21]).
Unless otherwise specified, we run DataNodes and clients
in emulated mode while the NameNode runs in real mode.

For the above workload, Tardis achieves a compres-
sion ratio of over 500, but in practice the degree of colo-
cation is limited by CPU utilization: we colocate 100
DataNodes on one machine and achieve an effective write
bandwidth of 10 GB/sec on a disk with 100 MB/sec phys-
ical bandwidth. For experiments with modest storage
capacity requirements, we can increase the write band-
width to 20 GB/sec by writing to tmpfs, an in-memory file
system. Our largest configuration experiment uses 192
server machines, to emulate an HDFS cluster with 19,200
DataNodes.

6.1.1 HDFS throughput scalability

In some respect, the result of our experiments to test the
scalability of HDFS is not surprising: the bottleneck of
the system is the centralized NameNode. What is perhaps
surprising is that, thanks to Exalt, we were able to increase
the system throughput by an order of magnitude without
changing the architecture of the system.

Figure 3 reports the results of our experiments. On
the x-axis we increase the number of DataNodes and
on the y-axis we plot the aggregate throughput of the
system, as observed by the clients. The vertical arrows
represent the process of fixing an issue that was limiting
the system throughput. When an issue is fixed, we rerun
the experiment for the same number of DataNodes, to
verify that the system indeed achieves a higher throughput.
For reference, we also plot a straight line that shows the
ideal throughput achievable by a perfectly scalable system
that leverages the full bandwidth of all disks (100 MB/s).

Our first experiment shows that the original HDFS sys-
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Memory size 1GB 2GB 4GB 8GB
HDFS Capacity 1.15TB 2.35TB 4.76TB 9.49TB

Figure 4: HDFS space scalability as a function of Na-
meNode memory size.

tem quickly saturates at around 37 GB/s. We discovered
through profiling that the default number of RPC threads
at the NameNode was limiting the achievable through-
put; increasing the number of RPC threads from 10 to 256
allows the NameNode to achieve much higher throughput.

After fixing the first issue, the system saturates at
around 286 GB/s. Further profiling showed that the I/O
accesses at the NameNode were becoming the system
bottleneck. More specifically, the NameNode debug in-
formation was being stored on the same disk as its log file.
This prevented both files from sequentially accessing the
disk, thereby introducing a large number of seek calls
that reduced performance. Our solution was to write the
debug information to tmpfs instead, thereby making sure
that the NameNode log file was sequentially accessing the
disk. Alternatively, one could store the debug information
on another disk, if one were available.

Applying the second fix increases the system throu-
ghput to 418 GB/s, at which point the system again be-
comes saturated. This finding is consistent with the scala-
bility assessment of the HDFS developers that “assuming
each client has a write throughput of 40 MB/s, the system
can support no more than 10,000 clients”, which corre-
sponds to an aggregate throughput of 400 GB/s. While
this assessment was obtained using extrapolation, we con-
sider it reasonably accurate since it is based on a large
deployment of 4,000 nodes.

Since we suspected disk I/O to be the system bottleneck
at this point, we performed a final experiment in which
disk sync is disabled and the NameNode writes all logs
to tmpfs. The purpose of this experiment is to project
the scalability of the system in the presence of a fast stor-
age medium (e.g. NVRAM,SSD). In this configuration,
the system throughput increases by a further 50%, to a
maximum throughput of 595 GB/s.

Of course, we do not claim that Exalt’s throughput
predictions are perfectly accurate; on the contrary, we
acknowledge the limitations of running a system whose
resources are partially emulated. Nonetheless, the bene-
fits of Exalt are clear: it allowed us to test the system’s
real code and identify and resolve performance issues
at a scale that would have otherwise remained the sole
province of a few large companies.

6.1.2 HDFS capacity

The capacity of an HDFS cluster is limited by the
amount of memory available to the NameNode. In this
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experiment, we try to measure how much memory the
NameNode needs per 1 PB of HDFS storage space. Fig-
ure 4 shows that the capacity of HDFS grows linearly with
the amount of memory at the NameNode. In particular,
1 GB of NameNode memory can support about 1.2 PB
of raw HDFS space (400 TB of data, since blocks are
3-way replicated). This result is close to the estimation of
HDFS developers: “1 GB of metadata ≈ 1 PB of physical
storage” [21].

Using Exalt allows us to perform this experiment using
only 16 TB of disk storage, while a real deployment would
require a total of 10 PB of disk storage.

6.1.3 Performance degradation in HDFS

The above experiments use a workload that provides
high scalability. Other workloads are not as accommodat-
ing. We evaluate two such workloads that can drastically
degrade the HDFS performance.

In the first workload, all clients create files in the same
directory. As shown in Figure 5, the aggregate system
throughput steadily decreases as more files are created.
Further profiling allowed us to identify the cause of this
behavior in the source code: the NameNode uses an Ar-
rayList data structure to maintain an alphabetically sorted
list of the files inside a directory. Adding an element to
a sorted array is an O(N) operation, since it requires a
suffix of the sorted array to be shifted by one position.
Therefore, the bigger the directory, the longer it takes to
add a file to it. As a double check, we verified that, if we
limit the number of files written to each directory, creating
more files does not cause a performance degradation.

In the second workload, one client creates a file and
keeps appending data to it. As shown in Figure 6, once the
file grows sufficiently large, the aggregate system through-
put decreases steadily. Note that in this experiment there
are only a few clients and the system is not fully sat-
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Figure 6: HDFS throughput degradation as the size of
files increases.

urated, which accounts for the fact that the aggregate
system throughput is lower than in the previous experi-
ment. Profiling led us to the cause of the problem: before
the NameNode creates a new block for a file, it needs
to calculate the file’s length. It does this by scanning all
existing blocks and computing the sum of the lengths of
all blocks. This, too, is an O(N) operation. We fixed this
problem by adding a length field to each file and updating
the field when a block is added or updated. As Figure 6
shows, after applying our fix the system throughput no
longer decreases as the files grow in size.

As before, Exalt allows us to identify these perfor-
mance issues without requiring access to a large amount
of disk storage. Running this experiment in a real deploy-
ment would require 900 TB of disk storage; with Exalt,
we only need 1.5 TB.

6.1.4 DataNode scalability

As disk capacities increase every year, and most HDFS
deployments use multiple disks per DataNode, it is impor-
tant for the DataNode’s performance to not decrease as
more storage capacity is added to it. While running HDFS
in hybrid mode—keeping some DataNodes real— we ob-
served uncommonly high latencies for some requests. Our
profiling indicated that the source of the problem was a
disk scan that the DataNode periodically performs on all
its blocks. Figure 7 shows that the time a real node takes
to perform this scan increases linearly with the number
of blocks stored on the disk. Unfortunately, this scan
is a blocking operation, preventing write requests and
heartbeats from being sent or received. As the duration
of this scan becomes longer, it can have serious perfor-
mance consequences, including timeouts at the clients
or even missed heartbeats, which would cause unneces-
sary re-replication of the DataNode’s data. This issue
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Figure 7: Time of the block-scan procedure on a DataN-
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is confirmed by Facebook engineers; to address it, they
modified HDFS to allow the block scan to be performed
in parallel with heartbeats and write requests [6].

While reproducing this problem is easy, triggering it in
a real deployment would require 8 TB of disk storage on
a single DataNode; using Exalt, we triggered this prob-
lem using an 80 GB disk. After identifying the problem,
we reproduced it on a real DataNode with 8 TB of disk
storage (Figure 7).

Note that although it could be triggered with only a
few machines, this problem would be hard to identify and
tedious to reproduce during debugging, since it would
take at least a few hours for the latency increase to be
observable. Exalt’s time compression helps in this case.
If emulated nodes have exclusive access to a machine’s re-
sources, the system works at an accelerated speed: in this
example, the problem would manifest itself in a matter of
minutes.

6.2 HBase

HBase [2] is a distributed key-value store built upon
HDFS. The basic data unit of HBase is a region, which
corresponds to a continuous key range in a table. An
HBase cluster includes a Master, responsible for assign-
ing regions to different region servers. Client requests to
a specific region are directed to the corresponding region
server. The region server processes write requests by log-
ging them to HDFS while also keeping them in a memory
buffer called memcache. When the size of the memcache
exceeds a threshold, the region server writes the whole
memcache into a checkpoint file on HDFS, so that it can
garbage collect the previous log files. A checkpoint is also
taken if the total memory usage across all regions exceeds
some limit; in this case, a region server checkpoints the
region with the largest memcache. When necessary to
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Figure 8: HBase throughput scalability.

free up space, the region server performs compaction to
merge several checkpoints. In essence, a region server
transforms the random access patterns of a key-value store
into the append-only interface of HDFS. When a region
grows large, HBase splits that region into two for load
balancing; conversely, if two adjacent regions are too
small, they are merged into one. Apart from the Master
and the region servers, an HBase cluster incorporates a
ZooKeeper ensemble that performs lease management.

We evaluate HBase using a simple workload that can
achieve a high throughput: we create enough regions so
that each region server stores about 10 regions. We start
multiple clients that randomly write key-value pairs to
those regions. The key size is 4 bytes and the value size is
1 MB. To measure the maximum achievable throughput,
we disable split, merge, and compaction operations—to
ensure that split and merge operations do not occur, we
limit the number of key-value pairs written to a region. We
plan to study the effects of split, merge, and compaction
in the future.

In our experiments, we keep the HBase Master, HDFS
NameNode and ZooKeeper cluster real, while all DataN-
odes and region servers are emulated. In each experiment
we assign 500 MB of physical memory to region servers.
However, we perform in-memory compression, which ef-
fectively increases each region server’s memory to 16 GB.

Figure 8 demonstrates the throughput scalability of
HBase as the number of available region servers increases.
Note that the raw throughput of HBase is much lower than
that of HDFS (see Figure 3). This is due to two reasons:
first, HBase needs to write data twice to HDFS—once
for logging and once for checkpointing. Second, region
servers are relatively more CPU-intensive than DataNodes
and therefore can not benefit as much from colocating
multiple nodes on the same machine.

HBase can achieve a maximum write throughput of
about 80 GB/s. Considering that HBase writes data twice,
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Figure 9: HBase aggregate throughput as the number of
regions per GB of memory changes.

this translates to a 160 GB/s throughput at the HDFS layer,
which is about 40% of the maximum throughput achiev-
able by HDFS. Our profiling shows that the sync calls to
disk at the HDFS NameNode are still the bottleneck of
the system. The reason for this 60% performance loss is
that the region servers perform many additional directory
operations, other than simply creating and closing files.
For example, when a log file is garbage-collected, the
region server first moves it to an “old log” directory as a
backup and only deletes it after some time has elapsed.

In Figure 8 each region server has 16 GB of memory
and holds 10 regions: since the default maximum size
of a region is 200MB, all data can be cached in memory.
Our next experiment evaluates how the performance of
HBase is affected when we decrease the memory size
per region. As shown in Figure 9, HBase throughput
drops significantly when the number of regions per GB
of memory exceeds 7, which translates to about 150 MB
of memory per region. In other words, in order for HBase
to work efficiently in a large-scale deployment, each re-
gion server must be equipped with a considerably large
amount of memory: enough to hold at least 3

4 of its on-
disk data. The reason for this performance drop is that
region servers flush their regions to HDFS files when their
memory usage exceeds a certain threshold. If the number
of regions per GB of memory is high, this will create a
large number of small files on HDFS, which stresses the
HDFS NameNode. Resolving this problem requires a
significant redesign of HBase, which is beyond the scope
of this paper. Note that this performance drop is only
observed at large scales, since small deployments can not
generate enough load to saturate the HDFS NameNode.

Our last experiment explores the effect of writing small
values on the colocation ratio achievable in Exalt (Fig-
ure 10). Not surprisingly, Exalt achieves high colocation
ratios when the value sizes are large (around 500 KB),
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Figure 10: Colocation ratio of Exalt.

but does not fare equally well for small values. It is
worth noting that the achievable colocation ratio for a
given workload is not infinite; eventually CPU utilization
becomes the bottleneck of the system. For HBase, this
happens at a colocation ratio of about 110.

7 Related work

As we mentioned earlier, two common approaches to
evaluating the scalability of large storage systems are
using extrapolation and stub components. For example,
extrapolation is used, among others, in RAMCloud [19],
Spanner [12], and Salus [27], while the stub approach
is used in HDFS [21, 22]. Section 2 discusses these ap-
proaches in detail, so we do not discuss them further here.

Several tools have been proposed to address the gap be-
tween the size of the experiments that researchers would
like to run and the resources available to them.

In DieCast [9] this experimental gap is addressed us-
ing time dilation [10]. DieCast runs multiple processes
inside virtual machines on a single host and slows down
each process by a constant factor. It compensates for this
slow-down by multiplying the measured throughput by
the same factor. DieCast can achieve some degree of
colocation when CPU utilization is the bottleneck, but
does nothing to reduce the large amount of disk space
necessary to evaluate large-scale storage systems.

The system that comes closer to addressing the ex-
perimental gap for storage systems is David [1]. David
leverages the observation that to evaluate a local file sys-
tem it is not necessary to store the actual data. Thus,
David only stores the file system’s metadata: the data is
simply discarded. This technique allows David to eval-
uate local file systems of much larger size than that of
the local disk on which they are run. Unfortunately, this
approach cannot be easily applied to distributed storage
services. For example, when users write a key-value pair
to HBase, the region server adds a timestamp and a region

identifier to the write request and stores this metadata,
together with the users’ data, on the local file system of
an HDFS DataNode. Since data and metadata look in-
distinguishable to the HDFS layer, David would discard
metadata critical for the correct operation of the system.

Memulator [8] emulates nonexistent storage compo-
nents by storing data in memory and accurately predicting
how long each operation takes. Its purpose is to test the
behavior of the system on devices that the researchers
do not have access to. Unlike Exalt, it does not save any
resource usage, which makes it not applicable to our goal.

Finally, simulation is a technique used by several sys-
tems to evaluate the performance of large-scale deploy-
ments. The approaches vary from disk simulation [24],
network simulation [15, 18], to simulation of large-scale
P2P systems [26]. A well-known drawback of simulation
is that its results are only as good as its model of how the
system works. Unfortunately, as systems grow in com-
plexity, coming up with a model that accurately captures
all their features becomes prohibitively hard.

There exist several compression algorithms [5, 14, 16,
28, 29] one may consider using in our context. However,
all these algorithms are designed to be general-purpose
and as such they need to scan all the input bytes. Tardis,
on the other hand, owes its efficiency largely to the fact
that it does not have to scan most of the input bytes.

8 Conclusion

Exalt is a library that gives back to researchers the abil-
ity to evaluate the scalability of large storage systems.
Exalt is based on the Tardis compression scheme, which
leverages a specific data format to achieve efficient com-
pression and high degrees of colocation, which in turn
allows researchers to perform large-scale experiments on
as few as one hundred machines. We have used Exalt
to identify several performance problems in HDFS and
HBase. Fixing these problems allowed the system to sig-
nificantly increase its maximum achievable throughput.
We plan to use Exalt to evaluate the performance of more
large-scale systems (e.g. Cassandra [13]).

Finally, we plan to further explore the relationship be-
tween space and time compression to quickly diagnose
problems that might otherwise require several days or
weeks of testing.
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