
7

Zyzzyva: Speculative Byzantine
Fault Tolerance

RAMAKRISHNA KOTLA

Microsoft Research, Silicon Valley

and

LORENZO ALVISI, MIKE DAHLIN, ALLEN CLEMENT, and EDMUND WONG

The University of Texas at Austin

A longstanding vision in distributed systems is to build reliable systems from unreliable com-

ponents. An enticing formulation of this vision is Byzantine Fault-Tolerant (BFT) state machine

replication, in which a group of servers collectively act as a correct server even if some of the servers

misbehave or malfunction in arbitrary (“Byzantine”) ways. Despite this promise, practitioners hes-

itate to deploy BFT systems, at least partly because of the perception that BFT must impose high

overheads.

In this article, we present Zyzzyva, a protocol that uses speculation to reduce the cost of BFT

replication. In Zyzzyva, replicas reply to a client’s request without first running an expensive three-

phase commit protocol to agree on the order to process requests. Instead, they optimistically adopt

the order proposed by a primary server, process the request, and reply immediately to the client.

If the primary is faulty, replicas can become temporarily inconsistent with one another, but clients

detect inconsistencies, help correct replicas converge on a single total ordering of requests, and

only rely on responses that are consistent with this total order. This approach allows Zyzzyva to

reduce replication overheads to near their theoretical minima and to achieve throughputs of tens of

thousands of requests per second, making BFT replication practical for a broad range of demanding

services.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability—Fault-tolerance;

D.4.7 [Operating Systems]: Organization and Design—Distributed systems; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed systems

General Terms: Performance, Reliability

Additional Key Words and Phrases: Byzantine fault tolerance, speculative execution, replication,

output commit

This work is supported in part by NSF grants CNS-0720649, CNS-0509338, and CNS-0411026.

Authors’ addresses: R. Kotla, Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View,

CA 94043; email: kotla@microsoft.com; L. Alvisi, M. Dahlin, A. Clement, E. Wong, Department of

Computer Sciences, The University of Texas at Austin, 1 University Station C0500, Austin, TX

78712-0233; email: {lorenzo, dahlin, aclement, elwong}@cs.utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0734-2071/2009/12-ART7 $10.00

DOI 10.1145/1658357.1658358 http://doi.acm.org/10.1145/1658357.1658358

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:2 • R. Kotla et al.

ACM Reference Format:
Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. 2009. Zyzzyva: Speculative Byzantine

fault tolerance. ACM Trans. Comput. Syst. 27, 4, Article 7 (December 2009), 39 pages.

DOI = 10.1145/1658357.1658358 http://doi.acm.org/10.1145/1658357.1658358

1. INTRODUCTION

Mounting evidence suggests that real systems must contend not only with sim-
ple crashes but also with more complex failures ranging from hardware data
corruption [Prabhakaran et al. 2005] to nondeterministic software errors [Yang
et al. 2006] and security breaches [Keeney et al. 2005]. Such failures can cause
even highly engineered services to become unavailable or to lose data. For ex-
ample, a single corrupted bit in a handful of messages recently brought down
the Amazon S3 storage service for several hours [Amazon 2008], and several
well-known email service providers have occasionally lost customer data [Gmail
2006; Hotmail 2004].

Byzantine Fault-Tolerant (BFT) state machine replication is a promising
approach to masking many such failures and constructing highly reliable and
available services. In BFT replication, n ≥ 3 f + 1 servers collectively act as
a correct server even if up to f servers misbehave or malfunction in arbitrary
(“Byzantine”) ways [Lamport et al. 1982; Lamport 1984].

Unfortunately, practitioners hesitate to deploy BFT systems at least partly
because of the perception that BFT must impose high overheads. This concern
motivates our work, which seeks to answer a simple question: Can we build a
system that tolerates a broad range of faults while meeting the demands of high
performance services?

The basic idea of BFT state machine replication is simple: Clients send re-
quests to a replicated service and the service’s distributed agreement proto-
col ensures that correct servers execute the same requests in the same or-
der [Schneider 1990]. If the service is deterministic, each correct replica thus
traverses the same series of states and produces the same reply to each request.
The servers send their replies back to the client, and the client accepts a reply
that matches across a sufficient number of servers.

Zyzzyva builds on this basic approach, but reduces its cost through specula-
tion. As is common in existing BFT state machine replication protocols [Castro
and Listov 2002], an elected primary server proposes an order on client requests
to the other server replicas. However, unlike in traditional BFT state machine
replication protocols, Zyzzyva replicas then immediately execute requests spec-
ulatively, without running an expensive agreement protocol to establish the
requests’ final order. As a result, if the primary is faulty, correct replicas’ states
may diverge, and they may send different responses to a client. Nonetheless,
Zyzzyva preserves correctness because a correct client detects such divergence
and avoids acting on a reply until the reply and sequence of preceding requests
are stable and guaranteed to be eventually adopted by all correct servers. Thus,
applications at correct clients observe the traditional abstraction of a replicated
state machine that executes requests in a linearizable [Herlihy and Wing 1990]
order.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:3

The challenge in Zyzzyva is ensuring that responses to correct clients become
stable. While Zyzzyva ultimately leaves this responsibility to the replicas, a
correct client with an outstanding request speeds the process by supplying
information that will either cause the request to become stable rapidly or lead
to the election of a new primary server, which will be charged with the task of
either making pending request stable or face its own demotion.

Essentially, Zyzzyva “rethinks the sync” [Nightingale et al. 2006] for BFT.
Instead of enforcing the condition that a correct server only emits replies that
are stable, Zyzzyva recognizes that this condition is stronger than required.
Instead, Zyzzyva enforces the weaker condition: A correct client only acts on
replies that are stable. This change allows us to move the output commit from
the servers to the client, which lets servers to avoid the expensive all-to-all
communication required to ensure the stronger condition.

By leveraging this insight, Zyzzyva’s replication cost, processing overhead,
and end-to-end communication latencies approach their theoretical lower
bounds. In practice, Zyzzyva achieves a peak measured throughput of over 86K
requests/second on 3.0 GHz Pentium-IV machines during failure-free execu-
tions, with only slight throughput reduction, to 82K requests/second, when up
to f nonprimary replicas crash, suggesting that Zyzyzva can provide the peace
of mind offered by BFT replication for a broad range of demanding services.

1.1 Why Another BFT Protocol?

The past three decades have witnessed remarkable progress in the science
of BFT state machine replication. Lamport defined state machine replication
in 1978 [Lamport 1978]. Then, in 1982 and 1984, Lamport et al. defined the
Byzantine fault model [Lamport et al. 1982] and a BFT state machine repli-
cation algorithm for synchronous systems [Lamport 1984]. The approach was
significantly refined by Schneider [1990] and Reiter [1995], but the cost of BFT
state machine replication protocols and their reliance on synchrony assump-
tions for safety limited their practicality.

In the last decade, Castro and Listov’s [2002] seminal Practical Byzantine
Fault Tolerance (PBFT) protocol devised techniques to eliminate expensive sig-
natures and potentially fragile timing assumptions and demonstrated high
throughputs of over 10K requests per second. This surprising result jump-
started an arms race in which researchers reduced replication costs [Yin et al.
2003], and improved performance [Abd-El-Malek et al. 2005; Cowling et al.
2006; Kotla and Dahlin 2004] of BFT service replication.

Unfortunately, a side-effect of these efforts is that the current state-of-the-art
for BFT state machine replication is distressingly complex. In a November 2006
paper describing Hybrid-Quorum replication (HQ replication), Cowling et al.
[2006] draw the following conclusions comparing three state-of-the-art proto-
cols (Practical Byzantine Fault Tolerance (PBFT) [Castro and Listov 2002],
Query/Update (Q/U) [Abd-El-Malek et al. 2005], and HQ replication [Cowling
et al. 2006]).

—“In the regions we studied (up to f = 5), if contention is low and low latency
is the main issue, then if it is acceptable to use 5f + 1 replicas, Q/U is the

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:4 • R. Kotla et al.

Table I. Properties of State-of-the-Art and Optimal Byzantine Fault-Tolerant

Replication Systems

State Machine Repl.

PBFT Q/U HQ Zyzzyva Lower Bound

Cost Total replicas 3f+1 5f+1 3f+1 3f+1 3f+1 [Pease et al. 1980]

App. replicas 2f+1 5f+1 3f+1 2f+1 2f+1 [Schneider 1990]

Throughput MAC ops/request 2+(8f+1)/b 2+8f 4+4f 2+3f/b 2†

Latency NW 1-way latencies 4 2∗ 4 3 2∗ or 3‡

These systems tolerate f faults using MACs for authentication [Castro and Listov 2002] and use a batch size

of b [Castro and Listov 2002]. Bold entries denote protocols that match known lower bounds or those with the

lowest known cost. †It is not clear that this trivial lower bound is achievable. ‡The distributed systems literature

typically considers 3 one-way latencies to be the lower bound for agreement on client requests [Dutta et al. 2005;

Lamport 2003; Martin and Alvisi 2006]; ∗A delay of 2 one-way latencies is achievable if no concurrency is assumed.

best choice, else HQ is the best since it outperforms [P]BFT with a batch size
of 1.”

—“Otherwise, [P]BFT is the best choice in this region: It can handle high
contention workloads, and it can beat the throughput of both HQ and Q/U
through its use of batching.”

—“Outside of this region, we expect HQ will scale best: HQ’s throughput de-
creases more slowly than Q/U’s (because of the latter’s larger message and
processing costs) and [P]BFT’s (where eventually batching cannot compen-
sate for the quadratic number of messages).”

Such complexity represents a barrier to the adoption of BFT techniques because
it requires a system designer to choose the right technique for a workload and
then for the workload not to deviate from expectations.

As Table I indicates, Zyzzyva simplifies the design space of BFT replicated
services by approaching the lower bounds in almost every key metric.

With respect to replication cost, Zyzzyva and PBFT match the lower bound,
both in the total number of replicas that participate in the protocol and in
the number of replicas that must hold copies of application state and execute
application requests. Both protocols hold cost advantages of 1.5–2.5 over Q/U
and 1.0–1.5 over HQ depending on the number of faults to be tolerated and on
the relative cost of replicating application nodes versus agreement nodes.

With respect to throughput, both Zyzzyva and PBFT use batching when load
is high and thereby approach the lower bound on the number of authentica-
tion operations performed at the bottleneck node, and Zyzzyva approaches this
bound more rapidly than PBFT. Unlike state machine replication-based pro-
tocols, quorum-based protocols such as Q/U and HQ cannot batch concurrent
client requests as they do not have a primary replica funneling all requests to
other replicas. As shown in the second row of the Table I, Q/U and HQ’s inabil-
ity to support batching increases the cryptographic overhead per request at the
bottleneck node, by factors approaching 5 and 4, respectively, when one fault
(f = 1) is tolerated and by higher factors in systems that tolerate more faults.

With respect to latency, Zyzzyva executes requests in three one-way message
delays, which matches the lower bound for agreeing on a client request [Dutta
et al. 2005; Lamport 2003; Martin and Alvisi 2006] and improves upon both

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:5

PBFT and HQ. Q/U sidesteps this lower bound by providing a service that is
slightly weaker than traditional state machine replication (i.e., by not totally
ordering all requests) and by optimizing for cases without concurrent access to
any state. This difference presents a chink in Zyzzyva’s armor, which Zyzzyva
minimizes by matching the lower bound on message delays for full consensus.
We believe that Zyzzyva’s other advantages over Q/U (fewer replicas, improved
throughput via batching, simpler state machine replication semantics, ability
to support high-contention workloads) justify this modest additional latency.

With respect to fault scalability [Abd-El-Malek et al. 2005], the metrics that
depend on f grow as slowly or more slowly in Zyzzyva as in any other protocol.

Note that as is customary [Abd-El-Malek et al. 2005; Castro and Listov 2002;
Cowling et al. 2006; Rodrigues et al. 2001; Yin et al. 2003], Table I compares the
protocols’ performance during the expected common case of fault-free, timeout-
free execution. All protocols are guaranteed to operate correctly in the presence
of up to f faults and arbitrary delays, but they can pay significantly higher
overheads and latencies in such scenarios [Clement et al. 2009b]. In Section 5.4,
we consider the susceptibility of these protocols to faults and argue that Zyzzyva
remains the most attractive choice.

2. SYSTEM MODEL

To tolerate a broad range of failures, we assume the Byzantine failure model
where faulty nodes (server replicas or clients) may deviate from their intended
behavior in arbitrary ways because of problems such as hardware faults, soft-
ware faults, node misconfigurations, or even malicious attacks. We further as-
sume a strong adversary that can coordinate faulty nodes to compromise the
replicated service. However, we assume the adversary cannot break crypto-
graphic techniques like collision-resistant hashes, encryption, and signatures;
we denote a message m signed by principal q’s public key as 〈m〉σq . Zyzzyva
ensures its safety and liveness properties if at most f replicas are faulty, and
it assumes a finite client population, any number of which may be faulty.

It makes little sense to build a system that can tolerate Byzantine server
replicas and clients but that can be corrupted by an unexpectedly slow node
or network link, hence we design Zyzzyva so that its safety properties hold in
any asynchronous distributed system where nodes operate at arbitrary speeds
and are connected by a network that may corrupt, delay, and fail to deliver
messages, or deliver them out of order.

Unfortunately, ensuring both safety and liveness for consensus in an asyn-
chronous distributed system is impossible if any server can crash [Fischer et al.
1985], let alone if servers can be Byzantine. Zyzzyva’s liveness, therefore, is
ensured only during intervals in which messages sent to correct nodes are pro-
cessed within some arbitrarily large (but potentially unknown) worst-case delay
from when they are sent. This assumption appears easy to meet in practice if
broken links are eventually repaired.

Zyzzyva implements a BFT service using state machine replication [Lamport
1984; Schneider 1990]. Traditional state machine replication techniques can be
applied only to deterministic services. Zyzzyva copes with the nondeterminism

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:6 • R. Kotla et al.

present in many real-world applications such as file systems and databases
using standard techniques to abstract the observable application state at
the replicas and to resolve nondeterministic choices via the agreement stage
[Rodrigues et al. 2001].

If a client of a service issues an erroneous or malicious request, Zyzzyva’s
job is to ensure the request is processed consistently at all correct replicas; the
replicated service itself is responsible for protecting its application state from
such erroneous requests. Services typically limit the damage by authenticating
clients and enforcing access control, so that, for example, in a replicated file
system, if a client tries to write a file without appropriate credentials, all correct
replicas process the request by returning an error code.

Services can also limit the damage done by Byzantine clients by maintaining
multiple versions of shared data (e.g., snapshots in a file system [Santry et al.
1999; Kotla et al. 2007b]) so that data destroyed or corrupted by a faulty client
can be recovered from older versions.

3. PROTOCOL

Zyzzyva is a state machine replication protocol executed by 3f + 1 replicas and
based on three subprotocols: (1) agreement, (2) view change, and (3) checkpoint.
The agreement subprotocol orders requests for execution by the replicas. Agree-
ment operates within a sequence of views, and in each view a single replica,
designated as the primary, is responsible for leading the agreement subpro-
tocol. The view change subprotocol coordinates the election of a new primary
when the current primary is faulty or the system is running slowly. The check-
point subprotocol limits the state that must be stored by replicas and reduces
the cost of performing view changes.

Figure 1 shows the communication pattern for a single instance of Zyzzyva’s
agreement subprotocol. In the fast, no-fault case (Figure 1(a)), a client simply
sends a request to the primary, the primary forwards the request to the replicas,
and the replicas execute the request and send their responses to the client.

A request completes at a client when the client has a sufficient number of
matching responses to ensure that all correct replicas will eventually execute
the request and all preceding requests in the same order, thus guaranteeing
that all correct replicas process the request in the same way, issue the same
reply, and transition to the same subsequent system state. To allow a client to
determine when a request completes, a client receives from replicas responses
that include both an application-level reply and the history on which the reply
depends. The history is the sequence of all requests executed by a replica prior
to and including this request.

As Figure 1 illustrates, a request completes at a client in one of two ways.
First, if the client receives 3f + 1 matching responses (Figure 1(a)), then the
client considers the request complete and acts on it. Second, if the client receives
between 2f +1 and 3f matching responses (Figure 1(b)), then the client gathers
2f + 1 matching responses in a commit certificate that it distributes to the
replicas. A commit certificate includes cryptographic proof that 2f + 1 servers
agree on a linearizable order for the request and all preceding requests, and

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:7

 6

Speculative execution

Application

Speculative execution Commit

Application

Primary

Replica 1

Replica 2

Replica 3

Client

X

Primary

Replica 1

Replica 2

Replica 3

Client

 (a) Fast case

(b) Two phase case

1

1

2

2

3

3

4a

4b

5

2f+1 2f+1

3f+1

Fig. 1. Protocol communication pattern for agreement within a view for: (a) the fast case; and (b)

the two-phase faulty-replica case. The numbers refer to the main steps of the protocol in the text.

successfully storing a commit certificate to 2f + 1 servers (and thus at least
f + 1 correct servers) ensures that no other ordering can muster a quorum of
2f + 1 servers to contradict this order. Therefore, once Once 2f + 1 replicas
acknowledge receiving a commit certificate, the client considers the request
complete and acts on the corresponding reply.

Zyzzyva then ensures the following safety condition.

SAF If a request with sequence number n and history hn completes, then any
request that completes with a higher sequence number n′ ≥ n has a history
hn′ that includes hn as a prefix.

If fewer than 2f + 1 responses match, then to ensure liveness the client
retransmits the request to all replicas, which then begin waiting for the primary
to order the retransmitted request. If a correct replica sees that the primary is
ordering the request too slowly or inconsistently, it starts suspecting that the
primary is faulty. If a sufficient number of replicas suspect that the primary is
faulty, then a view change occurs and a new primary is elected.

Assuming eventual synchrony1 [Dwork et al. 1988], Zyzzyva then ensures
the following liveness condition.

LIV Any request issued by a correct client eventually completes.

For the sake of clarity, in the rest of this section we describe and outline
the proof of correctness for an unoptimized version of Zyzzyva that relies on

1In practice eventual synchrony can be achieved by using exponentially increasing time-

outs [Castro and Listov 2002].

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:8 • R. Kotla et al.

 History

Checkpoint

Application

Certificate
Garbage
Collected
History

Max
 CC

Committed

Checkpoint

Snapshot
Active

Snapshot

CP_INTERVAL CP_INTERVAL

Snapshot

Checkpoint

Client 3
Client 2
Client 1

Client m-1
Client m

 Protocol

SpeculativeHistory

...

History

Tentative

Fig. 2. State maintained at each replica.

digital signatures. In Section 4 we describe a number of optimizations, all im-
plemented in our prototype, that reduce encryption costs by replacing digital
signatures with Message Authentication Codes (MACs), improve throughput
by batching requests, reduce the impact of lost messages by caching out-of-
order messages, improve read performance by optimizing read-only requests,
reduce bandwidth by having most replicas send hashes rather than full replies,
reduce overheads by including MACs only for a preferred quorum, and im-
prove performance in the presence of faulty nodes using a commit phase opti-
mization. In Section 4.1 we discuss Zyzzyva5, a variation of the protocol that
requires 5f + 1 agreement replicas but that completes in three one-way mes-
sage exchanges as in Figure 1(a) even when up to f nonprimary replicas are
faulty.

3.1 Node State and Checkpoint Subprotocol

To ground our discussion, we begin by discussing the state maintained by each
replica as summarized by Figure 2. Each replica i maintains an ordered history
of the requests it has executed and a copy of the max commit certificate, the
commit certificate seen by i that covers the largest prefix of i’s stored history.
The history up to and including the request with the highest sequence number
covered by this commit certificate is the committed history, and the history that
follows is the speculative history. We say that a commit certificate has sequence
number n if n is the highest sequence number of any request in the committed
history.

A replica constructs a checkpoint every CP INTERVAL requests. A replica
maintains one stable checkpoint and a corresponding stable application state
snapshot, and it may store up to one tentative checkpoint and corresponding ten-
tative application state snapshot. The process by which a tentative checkpoint
and application state become stable is similar to the one used by earlier BFT
protocols [Castro and Listov 2002; Cowling et al. 2006; Kotla and Dahlin 2004;
Rodrigues et al. 2001; Yin et al. 2003] with the exception that Zyzzyva adds

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:9

Table II. Labels Given to Fields in Messages

Label Meaning

c Client ID

CC Commit Certificate

d Digest (cryptographic 1-way hash) of client request message: d = H(m)

i, j Server IDs

hn History through sequence number n encoded as cryptographic 1-way hash:

hn = H(hn−1, d)

m Message containing client request

maxn Max sequence number accepted by replica

n Sequence number

ND Selection of nondeterministic values needed to execute a request

o Operation requested by client

OR Order Request message

POM Proof Of Misbehavior

r Application reply to a client operation

t Timestamp assigned to an operation by a client

v View number

an additional all-to-all communication among replicas to commit the tentative
history of requests included in the checkpoint, as explained in Appendix A.

To bound the size of history, a correct replica: (1) truncates the history be-
fore the committed checkpoint and (2) blocks processing of new requests after
processing 2 × CP INTERVAL requests since the last committed checkpoint.

Finally, in order to support execute exactly-once semantics, each replica
maintains a response cache containing a copy of the latest ordered request from,
and corresponding response to, each client.

3.2 Agreement Subprotocol: Fast Case

We detail Zyzzyva’s agreement subprotocol by considering three cases: (1) the
fast case when all nodes act correctly and no timeouts occur, (2) the two-phase
case that can occur when a nonprimary replica is faulty or some timeouts occur,
and (3) the view change case that can occur when the primary is faulty or
more serious timeouts occur. Table II summarizes the labels we give fields in
messages. Most readers will be happier if on their first reading they skip the
text marked additional details.

Figure 1(a) illustrates the basic flow of messages in the fast case. We trace
these messages through the system to explain the protocol, with the numbers
in the figure corresponding to the numbers of major steps in the text. As the
figure illustrates, the fast case proceeds in four major steps.

1. Client sends request to the primary.

2. Primary receives request, assigns sequence number, and forwards or-
dered request to replicas.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:10 • R. Kotla et al.

3. Replica receives ordered request, speculatively executes it, and re-
sponds to the client.

4a. Client receives 3f +1 matching responses and completes the request.

3.2.1 Message Processing Details. To ensure correctness, the messages are
carefully constructed to carry sufficient information to link these actions with
one another and with past system actions. We now detail the contents of each
message and describe the steps each node takes to process each message.

1. Client sends request to the primary.

A client c requests an operation o be performed by the replicated service by
sending a message 〈REQUEST, o, t, c〉σc to the replica it believes to be the primary
(i.e., the primary for the last response received by the client).

Additional details. If the client guesses the wrong primary, the retrans-
mission mechanisms discussed in step 4c forward the request to the current
primary. The client’s timestamp t is included to ensure exactly-once semantics
of execution of requests [Castro and Listov 2002].

2. Primary receives request, assigns sequence number, and forwards or-
dered request to replicas.

A view’s primary has the authority to propose the order in which the system
should execute requests. It does so by producing ORDER-REQ messages in response
to client REQUEST messages.

In particular, when When the primary p receives message m = 〈REQUEST, o, t,
c〉σc from client c, the primary assigns to the request a sequence number n in the
current view v and relays a message 〈〈ORDER-REQ, v, n, hn, d , ND〉σp , m〉 to the
nonprimary (backup) replicas, where n and v indicate the proposed sequence
number and view number for m, digest d = H(m) is the cryptographic one-way
hash of m, hn = H(hn−1, d) is a cryptographic hash summarizing the history,
and ND is a set of values for nondeterministic application variables (time in
file systems) required for executing the request.

Additional details. The primary only takes the preceding actions if t > tc,
where tc is the highest timestamp previously received from c.

3. Replica receives ordered request, speculatively executes it, and re-
sponds to the client.

When a replica receives an ORDER-REQ message, it optimistically assumes that
the primary is correct and that other correct replicas will receive the same re-
quest with the same proposed order. It therefore speculatively executes requests
in the order proposed by the primary and produces a SPEC-RESPONSE message that
it sends to the client.

In particular, upon Upon receipt of a message 〈〈ORDER-REQ, v, n, hn, d , ND〉σp ,
m〉 from the primary p, replica i accepts the ordered request if m is a well-formed

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:11

REQUEST message, d is a correct cryptographic hash of m, v is the current view,
n = maxn + 1 where maxn is the largest sequence number in i’s history, and
hn = H(hn−1, d). Upon accepting the message, i appends the ordered request to
its history, executes the request using the current application state to produce
a reply r, and sends to c a message 〈〈SPEC-RESPONSE, v, n, hn, H(r), c, t〉σi , i, r,
OR〉, where OR = 〈ORDER-REQ, v, n, hn, d , ND〉σp .

Additional details. A replica may only accept and speculatively execute re-
quests in sequence number order, but message loss or a faulty primary can
introduce holes in the sequence number space. Replica i discards the ORDER-REQ

message if n ≤ maxn. If n > maxn + 1, then i discards the message, sends
a message 〈FILL-HOLE, v, maxn + 1, n, i〉σi to the primary, and starts a timer.
Upon receipt of a message 〈FILL-HOLE, v, k, n, i〉σi from replica i, the primary
p sends a 〈〈ORDER-REQ, v, n′, hn′ , d , ND〉σp , m′〉 to i for each request m′ that p
ordered in the sequence number interval k ≤ n′ ≤ n during the current view;
the primary ignores fill-hole requests from other views. If i receives the valid
ORDER-REQ messages needed to fill the holes, it cancels the timer. Otherwise, the
replica i broadcasts the FILL-HOLE message to all other replicas and initiates a
view change when the timer fires. Any replica j that receives a FILL-HOLE mes-
sage from i sends the corresponding ORDER-REQ message, if it has received one.
If, in the process of filling-in holes in the replica sequence, replica i receives
conflicting ORDER-REQ messages, then the conflicting messages form a proof of
misbehavior as described in protocol step 4d.

4a. Client receives 3f +1 matching responses and completes the request.

Upon receiving 3f +1 distinct messages 〈〈SPEC-RESPONSE, v, n, hn, H(r), c, t〉σi ,
i, r, OR〉, where i identifies the replica issuing the response, a client determines
if they match. SPEC-RESPONSE messages from distinct replicas match if they have
identical v, n, hn, H(r), c, t, OR, and r fields.

In the absence of faults and timeouts, all 3f + 1 responses will match, and
3f + 1 matching responses suffice to guarantee that it is safe for the client
to rely on the corresponding reply. In particular, 3f + 1 matching responses
guarantee that, even in the event of a view change, the position of the request
in the history of correct replicas will not change. The reason, once again, comes
down to intersections between quorums of replicas. In particular, a client can
receive 3f +1 matching responses only if all correct replicas (which are at least
2f +1) send matching responses. As we will see in Section 3.5, the view change
subprotocol invoked in the event of a primary failure determines the correct
state of the service by collecting the histories of 2f + 1 responsive servers, but
any group of 2f + 1 servers must include at most f faulty servers and at least
f +1 correct servers and thus, correct servers are always able to out-vote faulty
servers to keep a history consistent with the response seen by the client.

3.3 Agreement Subprotocol: Two-Phase Case

If the network, primary, or some replicas are slow or faulty, the client c may
not receive matching responses from all 3f + 1 replicas. The two-phase case

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:12 • R. Kotla et al.

applies when the client receives between 2f + 1 and 3f matching responses.
As Figure 1(b) illustrates, steps 1–3 occur as described before, but step 4 is
different.

4b. Client receives between 2f +1 and 3f matching responses, assembles
a commit certificate, and transmits the commit certificate to the replicas.

The commit certificate is a cryptographic proof that a majority of correct
servers agree on the ordering of requests up to and including the client’s request.
Protocol steps 5 and 6 complete the second phase of agreement by ensuring that
enough servers have this proof.

5. Replica receives a COMMIT message from a client containing a commit
certificate and acknowledges with a LOCAL-COMMIT message.

6. Client receives LOCAL-COMMIT messages from 2f + 1 replicas and com-
pletes the request.

3.3.1 Message Processing Details. Again, the details of message construc-
tion and processing are designed to allow clients and replicas to link the system’s
actions together into a single linearizable history.

4b. Client receives between 2f +1 and 3f matching responses, assembles
a commit certificate, and transmits the commit certificate to the replicas.

A client c sets a timer when it first issues a request. When this timer expires,
if c has received matching speculative responses from between 2f + 1 and 3f
replicas, then c has a proof that a majority of correct replicas agree on the
order in which the request should be processed. Unfortunately, the replicas
themselves are unaware of this quorum of matching responses; they only know
of their local decision, which may not be enough to guarantee that the request
completes in this order.

Figure 3 illustrates the problem. A client receives 2f +1 matching speculative
responses indicating that a request req was executed as the nth operation in
view v. Let these responses come from f + 1 correct servers C and f faulty
servers F and assume the remaining f correct servers C ′ received an ORDER-REQ

message from a faulty primary proposing to execute a different request req′ at
sequence number n in view v. Suppose a view change occurs at this time. The
view change subprotocol must determine what requests were executed with
what sequence numbers in view v so that the state in view v + 1 is consistent
with the state in view v. Furthermore, since up to f replicas may be faulty, the
view change subprotocol must be able to complete using information from only
2f + 1 replicas. Suppose now that the 2f + 1 replicas contributing state to a
view change operation are one correct server from C, f faulty servers from F ,
and f correct but misled servers from C ′. In this case, only one of the replicas
initializing the new view is guaranteed to vote to execute req as operation n
in the new view, while as many as 2f replicas may vote to execute req′ in that

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:13

{

(correct)

Server
(correct)

Pimary
(failed)

Server
(correct,
misled)

h_n, H(req), ...), req
ORDER_REQ(v, n,

h_n, H(req), ...), req
ORDER_REQ(v, n,

Client receives
2f+1 matching
SPEC_RESP
messages

Client
SPEC_RESP(
v, n, h_n, ...)

SPEC_RESP(
v, n, h’_n, ...)

View Change

F

C’

C{
{

Server

"req is
operation n"

"req’ is
operation n"

h’_n, H(req’), ...), req’
ORDER_REQ(v, n, "req’ is

operation n"

Fig. 3. Example of a problem that could occur if a client were to rely on just 2f + 1 matching

responses without depositing a commit certificate with the servers.

position. Thus, the system cannot ensure that view v + 1’s state reflects the
execution of req as the operation with sequence number n.

Before client c can rely on this response, it must take additional steps to
ensure the response’s stability. The client therefore sends a message 〈COMMIT,
c, CC〉σc , where CC is a commit certificate consisting of a list of 2f + 1 replicas,
the replica-signed portions of the 2f +1 matching SPEC-RESPONSE messages from
those replicas, and the corresponding 2f + 1 replica signatures.

Additional details. CC contains 2f + 1 signatures on the SPEC-RESPONSE mes-
sage and a list of 2f + 1 nodes, but since all the responses received by c from
replicas are identical, c only needs to include one replica-signed portion of the
SPEC-RESPONSE message. Also note that, for efficiency, CC does not include the
body r of the reply but only the hash H(r).

5. Replica receives a COMMIT message from a client containing a commit
certificate and acknowledges with a LOCAL-COMMIT message.

When a replica i receives a message 〈COMMIT, c, CC〉σc containing a valid
commit certificate CC proving that a request should be executed with a speci-
fied sequence number and history in the current view, the replica first ensures
that its local history is consistent with the one certified by CC. If so, replica i
stores CC if CC’s sequence number exceeds the stored max commit certificate’s
sequence number and sends a message 〈LOCAL-COMMIT, v, d , h, i, c〉σi to c.

Additional details. If the local history simply has holes encompassed by CC’s
history, then i fills them as described in protocol step 3. If, however, the two his-
tories contain different requests for the same sequence number, then i initiates
the view change subprotocol. Note that as the view change protocol executes,
correct replicas converge on a single common history, and those replicas whose
local state reflect the “wrong” history (e.g., because they speculatively executed
the “wrong” requests) restore their state from a cryptographically signed dis-
tributed global stable state.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:14 • R. Kotla et al.

6. Client receives LOCAL-COMMIT messages from 2f + 1 replicas and com-
pletes the request.

The client resends the COMMIT message until it receives corresponding LOCAL-
COMMIT messages from 2f + 1 distinct replicas. The client then considers the
request to be complete and delivers the reply r to the application.

2f + 1 LOCAL-COMMIT messages suffice to ensure that a client can rely on a
response. In particular, at least f + 1 correct servers store a commit certificate
for the response, and since any commit or view change requires participation
by at least 2f + 1 of the 3f + 1 servers, any subsequent committed request or
view change includes information from at least one correct server that holds
this commit certificate. Since the commit certificate includes 2f + 1 signatures
vouching for the response, even a single correct server can use the commit
certificate to convince all correct servers to accept this response, including the
application reply and the history.

Additional details. When the client first sends the COMMIT message to the
replicas it starts a timer. If this timer expires before the client receives 2f + 1
LOCAL-COMMIT messages, then the client moves on to protocol steps described in
Section 3.4.

3.3.2 Client Trust. At first glance, it may appear imprudent to rely on
clients to transmit commit certificates to replicas (4b): what if a faulty client
sends an altered commit certificate (threatening safety) or fails to send a commit
certificate (imperiling liveness)?

Safety is ensured even if clients are faulty because commit certificates are
authenticated by 2f + 1 replicas. If a client alters a commit certificate, correct
replicas will ignore it.

Liveness is ensured for correct clients because commit certificates are cumu-
lative: Successfully storing a commit certificate for request n at 2f + 1 replicas
commits those replicas to a linearizable total order for all requests up to re-
quest n. So, if a faulty client fails to deposit a commit certificate, that client
may not learn when its request completes, and a replica whose state has di-
verged from its peers may not immediately discover this fact. However, if at
any future time a correct client issues a request, that request (and a lineariz-
able history of earlier requests on which it depends) will either: (i) complete via
3f + 1 matching responses (4a), (ii) complete via successfully storing a commit
certificate at 2f + 1 replicas (4b–6), or (iii) trigger a view change (4c or 4d that
shortly follow).

3.4 Agreement Subprotocol: View Change Case

Cases 4a and 4b allow a client c’s request to complete with 2f + 1 to 3f + 1
matching responses. However, if the primary or network is faulty, c may not
receive matching SPEC-RESPONSE or LOCAL-COMMIT messages from even 2f + 1
replicas. Cases 4c and 4d therefore ensure that a client’s request either
completes in the current view or that a new view with a new primary is ini-
tiated. In particular, case 4c is triggered when a client receives fewer than

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:15

2f + 1 matching responses and case 4d occurs when a client receives responses
indicating inconsistent ordering by the primary.

4c. Client receives fewer than 2f + 1 matching SPEC-RESPONSE messages
and resends its request to all replicas, which forward the request to the
primary in order to ensure the request is assigned a sequence number
and eventually executed.

A client sets a second timer when it first issues a request. If the second timer
expires before the request completes, the client suspects that the primary may
not be ordering requests as intended, so it resends its REQUEST message through
the remaining replicas so that they can track the request’s progress and, if
progress is not satisfactory, initiate a view change. This case can be understood
by examining the behavior of a nonprimary replica and of the primary.

Replica. When nonprimary replica i receives a message 〈REQUEST, o, t, c〉σc

from client c, then if the request has a higher timestamp than the currently
cached response for that client, i sends a message 〈CONFIRM-REQ, v, m, i〉σi where
m = 〈REQUEST,o,t,c〉σc to the primary p and starts a timer. If the replica accepts
an ORDER-REQ message for this request before the timeout, it processes the ORDER-
REQ message as described earlier. If the timer fires before the primary orders
the request, the replica initiates a view change.

Primary. Upon receiving the message 〈CONFIRM-REQ,v,m,i〉σi from replica i, the
primary p checks the client’s timestamp for the request. If the request is new,
p sends a new ORDER-REQ message using a new sequence number as described
in step 2.

Additional details. If replica i does not receive the ORDER-REQ message from
the primary, the replica sends the CONFIRM-REQ message to all other replicas.
Upon receipt of a CONFIRM-REQ message from another replica j , replica i sends
the corresponding ORDER-REQ message it received from the primary to j ; if i did
not receive the request from the client, i acts as if the request came from the
client itself. To ensure eventual progress, a replica doubles its current timeout
in each new view and resets it to a default value if a view succeeds in executing
a request.

Additionally, to retain exactly-once semantics, replicas maintain a cache that
stores the reply to each client’s most recent request. If a replica i receives a
request from a client and the request matches or has a lower client-supplied
timestamp than the currently cached request for client c, then i simply resends
the cached response to c. Similarly, if the primary p receives an old client request
from replica i, p sends to i the cached ORDER-REQ message for the most recent
request from c. Furthermore, if replica i has received a commit certificate or
stable checkpoint for a subsequent request, then the replica sends a LOCAL-
COMMIT to the client even if the client has not transmitted a commit certificate
for the retransmitted request.

4d. Client receives responses indicating inconsistent ordering by the pri-
mary and sends a proof of misbehavior to the replicas, which initiate a
view change to oust the faulty primary.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:16 • R. Kotla et al.

If client c receives a pair of SPEC-RESPONSE messages containing valid messages
OR = 〈ORDER-REQ, v, n, hn, d , ND〉σ j for the same request (d = H(m)) in the
same view v with differing sequence number n or history hn or ND, then the
pair of ORDER-REQ messages constitutes a Proof Of Misbehavior (POM) [Aiyer
et al. 2005] against the primary. Upon receipt of a POM, c sends a message
〈POM,v, P OM 〉σc to all replicas. Upon receipt of a valid POM message, a replica
initiates a view change and forwards the POM message to all other replicas.

For completeness, note that cases 4b and 4c are not exclusive of 4d; a client
may receive messages that are both sufficient to complete a request and also a
proof of misbehavior against the primary.

3.5 View Changes

Fast agreement and speculative execution have profound effects on Zyzzyva’s
view change subprotocol. First, we highlight the differences between the Zyz-
zyva view change subprotocol and that of previous systems for complete-
ness. We then explain the exact message exchange and processing details in
Section 3.5.3.

The view change subprotocol must elect a new primary and guarantee that
it will not introduce any changes in a history that has already completed at a
correct client. To maintain this safety property, traditional view change sub-
protocols [Castro and Listov 2002; Cowling et al. 2006; Kotla and Dahlin 2004;
Rodrigues et al. 2001; Yin et al. 2003] require a correct replica that commits to a
view change to stop accepting messages other than CHECKPOINT, VIEW-CHANGE, and
NEW-VIEW messages. Also, to prevent faulty replicas from disrupting the system,
a view change subprotocol should never remove a primary unless at least one
correct replica commits to the view change. Hence, a correct replica tradition-
ally commits to a view change if either: (a) it observes the primary to be faulty or
(b) it has a proof that f + 1 replicas have committed to a view change. On com-
mitting to a view change a correct replica sends a signed VIEW-CHANGE message
that includes the new view, the sequence number of the replica’s latest stable
checkpoint (together with a proof of its stability), and the set of prepare certifi-
cates (the equivalent of commit certificates in Zyzzyva) collected by the replica.

The traditional view change completes when the new primary, using 2f + 1
VIEW-CHANGE messages from distinct replicas, computes the history of requests
that all correct replicas must adopt to enter the new view. The new primary
includes this history, with a proof of validity, in a signed NEW-VIEW message that
it broadcasts to all replicas.

Zyzzyva maintains the overall structure of the traditional protocol, but it
departs in two ways that together allow clients to accept a response before any
replicas know that the request has been committed and allow the replicas to
commit to a response after two phases instead of the traditional three.

(1) First, to ensure liveness, Zyzzyva strengthens the condition under which
a correct replica commits to a view change by adding a new “I hate the
primary” phase to the view change subprotocol. We explain the need for
and details of this addition shortly by considering the case of the missing
phase.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:17

(2) Second, to guarantee safety, Zyzzyva weakens the condition under which a
request appears in the history included in the NEW-VIEW message. We explain
the need for and details of this change later by considering the case of the
uncommitted request.

3.5.1 The Case of the Missing Phase. As Figure 1 shows, Zyzzyva’s agree-
ment protocol guarantees that every request that completes within a view does
so after at most two phases. This property may appear surprising to the reader
familiar with PBFT. If we view a correct client that executes step 4b of Zyz-
zyva as implementing a broadcast channel between replicas, then Zyzzyva’s
communication pattern maps to only two of PBFT’s three phases, one where
communication is primary-to-replicas (preprepare) and the second involving
all-to-all exchanges (either prepare or commit). Where did the third phase go?
And why is it there in the first place?

The answer to the second question lies in the subtle dependencies be-
tween the agreement and view change subprotocols. No replicated service that
uses the traditional view change protocol can be live without an agreement
protocol that includes both the prepare and commit phases.2 To see how this
constraint applies to BFT state machine replication-based protocols, consider
a scenario with f faulty replicas, one of them the primary, and suppose the
faulty primary causes f correct replicas to commit to a view change and stop
sending messages in the view. In this situation, a client request may only re-
ceive f + 1 responses from the remaining correct replicas, not enough for the
request to complete in either the first or second phase; and because fewer than
f +1 replicas demand a view change, there is no opportunity to regain liveness
by electing a new primary.

The third phase of traditional BFT agreement breaks this stalemate: By ex-
changing what they know, the remaining f +1 correct replicas either gather the
evidence necessary to complete the request after receiving only f +1 matching
responses or determine that a view change is necessary.

Back to the first question: How does Zyzzyva avoid the third phase in the
agreement subprotocol? The insight is that what compromises liveness in the
previous scenario is that the traditional view change protocol lets correct repli-
cas commit to a view change and become silent in a view without any guarantee
that their action will lead to the view change. Instead, in Zyzzyva, a correct
replica does not abandon the current view unless it is guaranteed that every
other correct replica will do the same, forcing a new view and a new primary.

To ensure this property, the Zyzzyva view change subprotocol adds an ad-
ditional phase to strengthen the conditions under which a replica stops par-
ticipating in the current view. In particular, a correct replica i that suspects
the primary of view v continues to participate in the view, but expresses its
vote of no-confidence in the primary by multicasting to all replicas the message
〈I-HATE-THE-PRIMARY, v〉σi . If i receives f + 1 votes of no confidence in v’s pri-
mary, then it commits to a view change: It becomes silent, and multicasts to all

2Unless a client can unilaterally initiate a view change. This option is unattractive in our setting

where clients can be Byzantine.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:18 • R. Kotla et al.

replicas a VIEW-CHANGE message that contains a proof that f + 1 replicas have
no confidence in the primary for view v. A correct replica that receives a valid
VIEW-CHANGE message joins in the mutiny and commits to the view change. As a
result, Zyzzyva’s view change protocol ensures that if a correct replica commits
to a view change in view v, eventually all correct replicas will. In effect, Zyzzyva
shifts the costs needed to deal with a faulty primary from the critical path (the
agreement protocol) to the view change subprotocol, which is expected to be run
only when the primary is faulty.

3.5.2 The Case of the Uncommitted Request. Zyzzyva replicas may never
learn the outcome of the agreement protocol: Only clients may know when a
request has completed. How do Zyzzyva replicas identify a safe history prefix
for a new view?

There are two ways in which a request r and its history may complete in
Zyzzyva. Let us first consider the least problematic from the perspective of
a view change: A request r completes because a client receives 2f + 1 LOCAL-
COMMIT messages, implying that at least f + 1 correct replicas have stored a
commit certificate for r. Traditional view change protocols already handle this
case: The standard VIEW-CHANGE message sent by a correct replica includes all
commit certificates known to the replica since the latest stable checkpoint.
The new primary includes in the NEW-VIEW message all commit certificates that
appear in any of the 2f + 1 valid VIEW-CHANGE messages it receives: at least one
of those VIEW-CHANGE messages must contain a commit certificate for r.

The other case is more challenging: If r completes because the client re-
ceives 3f + 1 matching speculative responses, then no correct replica will have
a commit certificate for r. We handle this case by modifying the view change
subprotocol in two ways. First, correct replicas add to the information included
in their VIEW-CHANGE message all ORDER-REQ messages (without the correspond-
ing client request) received since the latest stable checkpoint. Second, a correct
new primary extends the history to be adopted in the new view to include all
requests with an ORDER-REQ message containing a sequence number higher than
the largest sequence number in any commit certificate that appears in at least
f + 1 of the 2f + 1 VIEW-CHANGE messages the new primary collects.

This change weakens the conditions under which a request ordered in one
view can appear in a new view: We no longer require a commit certificate but
also allow a sufficient number of ORDER-REQ messages to support a request’s
ordering. This change ensures that the protocol continues to honor ordering
commitments for any request that completes when a client gathers 3f + 1
matching speculative responses.

Notice that this change may have the side-effect of assigning an order to
a request that has not yet completed in the previous view. In particular, a
curiosity of the protocol is that, depending on which set of 2f + 1 VIEW-CHANGE

messages the primary uses, it may, for a given sequence number, find different
requests with f + 1 ORDER-REQ messages. This curiosity, however, is benign
and cannot cause the system to violate safety. In particular, there can be two
such candidate requests for the same sequence number only if at least one
correct replica supports each of the candidates. In such a case, neither of the

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:19

candidates could have completed by having a client receive 3f + 1 matching
responses, and the system can safely assign either (or neither) request to that
sequence number.

3.5.3 View Change Subprotocol. The Zyzzyva view change subprotocol pro-
ceeds as follows.

VC1. Replica initiates the view change by sending an accusation against
the primary to all replicas.

Replica i initiates a view change by sending 〈I-HATE-THE-PRIMARY, v〉σi to all
replicas, indicating that the replica is dissatisfied with the behavior of the cur-
rent primary. In previous protocols, this message would indicate that replica
i is no longer participating in the current view. In Zyzzyva, this message is
only a hint that i would like to change views. Even after issuing the message,
i continues to participate faithfully in the current view.

VC2. Replica receives f + 1 accusations that the primary is faulty and
commits to the view change.

Replica i commits to a view change into view v + 1 by sending an indictment
of the current primary, consisting of 〈I-HATE-THE-PRIMARY, v〉σ j from f +1 distinct
replicas j , and the message 〈VIEW-CHANGE, v + 1, s, C, CC, O, i〉σi to all replicas.
O is i’s ordered request history since the last stable checkpoint with sequence
number s. C is the proof of the last stable checkpoint consisting of 2f +1 check-
point messages. CC is the most recent commit certificate for a request since the
last view change.

VC3. Replica receives 2f + 1 view change messages.

Primary. Upon receipt of 2f + 1 valid VIEW-CHANGE messages (including its
own), the new primary p constructs the message 〈NEW-VIEW, v + 1, P, G, σp〉σp ,
where P is the set containing valid VIEW-CHANGE messages received by the new
primary for view v + 1. G is the ordered request history computed by the new
primary using P .

Backup. A backup replica starts a timer upon receipt of 2f + 1 valid VIEW-
CHANGE messages (including its own). If the backup replica does not receive a
valid NEW-VIEW message from the new primary before the timer expires, then
the replica initiates a view change into view v + 2. The length of the timer in
the new view grows exponentially with the number view changes that fail in
succession.

Additional details. The new primary computes G in new view v+1 as follows.

—The primary determines min-s as the latest stable checkpoint in the view
change messages in P , max-cc as the highest sequence number of a committed
certificate CC, max-r as the highest sequence number of a request that is
not committed but (potentially) completed at a client on the fast path, and

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:20 • R. Kotla et al.

max-s as the highest sequence number in some ordered request history log
O, where min-s ≤ max-cc ≤ max-r ≤ max-s.

—Committed Requests. The primary inserts 〈〈ORDER-REQ, v+1, n, hn, d , ND〉σp ,
m〉 into G by copying requests from the ordered history log of the replica that
sent the VIEW-CHANGE with max-cc, for every sequence number n where min-s
< n ≤ max-cc. As a performance optimization, we do not include request m
in G, but fetch it later if it is not found in the replicas’ local order history log.

—Uncommitted But Potentially Completed Requests. The primary inserts
〈〈ORDER-REQ, v + 1, n, hn, d , ND〉σp , m〉 in G for every sequence number n
between max-cc+1 and max-r such that the following conditions are true:
(1) Request n is present in ordered request history logs of at least f + 1 dis-
tinct replicas with matching sequence number n, request history digest hn,
request digest d, and the ND set, and (2) hn = H(hn−1, d).

In PBFT, requests that are not committed are discarded; Zyzzyva instead
retains them as long as they meet the preceding conditions. Zyzzyva does
so to avoid the risk of losing, during a view change, requests that completed
when a client received 3f + 1 matching responses, but are not committed.
Note that at least f + 1 correct replicas out of the 3f + 1 replicas that sent
matching responses are guaranteed to contribute to the state collected by
the new primary during the view change protocol, thereby ensuring that all
complete requests, whether or not they are committed, are passed on to the
next view.

—Requests That are Guaranteed Not to Have Completed. If a request’s sequence
number is at most max-s but the request does not meet the previous two
conditions, then the request has definitely not completed. As in PBFT, the
primary replaces such requests with a null request by creating 〈〈ORDER-REQ,
v + 1, n, hn, dNull, Null〉σp , Null〉 for all n such that max-r+1 ≤ n ≤ max-s. A
null request goes through the protocol as a regular request but is treated as
a noop when executed.

VC4. Replica receives a valid new view message, reconciles its local state,
and changes to the new view.

Upon receipt of a new view message, replicas (including new primary) rec-
oncile their local state with the state received in the new view message, change
to the new view, and start processing messages in the new view.

Additional details.
Primary. The primary reconciles its local state by comparing its local history

log O with that of G and using the following steps. Let max-l be the latest
request in O.

—If max-l is less than min-s, then the primary inserts the checkpoint certificate
with sequence number min-s in its history log, discards information from
the request history log, and copies ordered requests from G to O starting
from min-s+1. It also acquires an application-level snapshot for min-s by
contacting the replicas in the checkpoint certificate. It then executes requests

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:21

in O starting from min-s+1 in view v + 1. This case arises when the primary
replica is left behind other replicas.

—If max-l is greater than or equal to min-s and the request history digest hmax-l

does not match in history logs O and G, then the primary takes the same
action as stated before. The primary rolls back the application and request
history logs to min-s, inserts checkpoint certificate with sequence number
min-s from P in its request history log, copies ordered requests from G to O
starting from min-s+1, and then executes requests in O starting from min-
s+1 in new view v + 1. This case arises when the history of the new primary
diverges from the global stable state.

—If max-l is greater than or equal to min-s and the request history digest hmax-l

in O matches with that of G then requests are copied from G to O starting
from max-l+1. The primary then executes requests starting from max-l+1.
If the latest local stable checkpoint is less than min-s, then the checkpoint
certificate is updated with that of the checkpoint certificate for min-s.

The primary also updates its local max commit certificate with that of max-cc
which is computed using P as described in the protocol step VC3. It then enters
view v + 1 and starts accepting messages in view v + 1.

Backup. A backup accepts a new-view message for view v + 1 if it is properly
signed, if the view change messages it contains are valid, and if the request
history log G that the primary computed is correct; the backup verifies G by
performing a computation similar to the one the primary performed to create
G, as described in the protocol step VC3. It then reconciles its local state using
the same computation used by the primary as described earlier.

3.5.4 The Cost of Speculation. While Zyzzyva uses speculation to improve
performance when the primary is correct, a faulty primary can impose signif-
icant overhead by wasting work performed by correct replicas before the view
change. A faulty primary can send different request orders to replicas and make
their state diverge. Although Zyzzyva’s view change protocol ensures correct-
ness under such an attack by rolling the system back to a consistent state,
it cannot prevent a faulty primary from wasting work and slowing down the
system. In the worst case, replicas lose at most 2 × CP INTERVAL requests
worth of work as they do not execute more than 2 × CP INTERVAL requests
speculatively since their last stable checkpoint.

3.6 Correctness

This section sketches the proof that Zyzzyva maintains properties SAF and LIV

defined previously; full proofs can be found in Kotla’s [2008] dissertation.

3.6.1 Safety. We first show that Zyzzyva’s agreement subprotocol is safe
within a single view and then show that the agreement and view change pro-
tocols together ensure safety across views.

—Within a View. The proof proceeds in two parts. First we show that no two
requests complete with the same sequence number n. Then we show that

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:22 • R. Kotla et al.

for any two requests r and r ′ that complete with sequence numbers n and n′

respectively, if n < n′ then hn is a prefix of hn′ .
Part 1. A request completes when the client receives 3f + 1 matching SPEC-

RESPONSE messages in phase 1 or 2f + 1 matching LOCAL-COMMIT messages in
phase 2. If a request completes in phase 1 with sequence number n, then no
other request can complete with sequence number n because correct replicas:
(a) send only one speculative response for a given sequence number and
(b) send a LOCAL-COMMIT message only after seeing 2f + 1 matching SPEC-
RESPONSE messages. Similarly, if a request completes with sequence number
n in phase 2, no other request can complete since correct replicas only send
one LOCAL-COMMIT message for sequence number n.

Part 2. For any two requests r and r ′ that complete with sequence numbers
n and n′ and histories hn and hn′ respectively, there are at least 2f +1 replicas
that ordered each request. Because there are only 3f + 1 replicas in total, at
least one correct replica ordered both r and r ′. If n < n′, it follows that hn is
a prefix of hn′ .

—Across Views. We show that any request that completes based on responses
sent in view v < v′ is contained in the history specified by the NEW-VIEW

message for view v′. Recall that requests complete either when a correct
client receives 3f + 1 matching speculative responses or 2f + 1 matching
LOCAL-COMMIT messages.

If a request r completes with 2f +1 matching LOCAL-COMMIT messages, then
at least f + 1 correct replicas have received a commit certificate for r (or
for a subsequent request) and will send that commit certificate to the new
primary in their VIEW-CHANGE message. Because there are 3f + 1 replicas in
the system and 2f + 1 VIEW-CHANGE messages in a NEW-VIEW message, that
commit certificate will necessarily be included in the NEW-VIEW message and
r will be included in the history. Consider instead a request r that completes
with 3f + 1 matching SPEC-RESPONSE messages and does not complete with
2f + 1 matching LOCAL-COMMIT messages. Every correct replica will include
the ORDER-REQ for r in its VIEW-CHANGE message, ensuring that the request
will be supported by at least f + 1 replicas in the set of 2f + 1 VIEW-CHANGE

messages collected by the primary of view v′ and therefore be part of the
NEW-VIEW message.

3.6.2 Liveness. Zyzzyva guarantees liveness only during periods of syn-
chrony. To show that a request issued by a correct client eventually completes,
we first show that if the primary is correct when a correct client issues the re-
quest, then the request completes. We then show that if a request from a correct
client does not complete during the current view, then a view change occurs.

Part 1. If the client and primary are correct, then protocol steps 1–3 ensure
that the client receives SPEC-RESPONSE messages from all correct replicas. If the
client receives 3f +1 matching SPEC-RESPONSE messages, the request completes,
and so does our proof. A client that instead receives fewer than 3f + 1 such
messages will receive at least 2f + 1 of them, since there are 3f + 1 replicas
and at most f of them are faulty. This client then sends a COMMIT message to
all replicas (protocol step 4b). All correct replicas send a LOCAL-COMMIT message

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:23

to the client (protocol step 4b.1), and, because there are at least 2f + 1 correct
replicas, the client’s request completes in protocol step 4b.2.

Part 2. Assume the request from correct client c does not complete. By protocol
step 4c, c resends the REQUEST message to all replicas when the request has
not completed for a sufficiently long time. A correct replica, upon receiving the
retransmitted request from c, contacts the primary for the corresponding ORDER-
REQ message. Any correct replica that does not receive the ORDER-REQ message
from the primary initiates the view change by sending an I-HATE-THE-PRIMARY

message to all other replicas. Either at least one correct replica receives at
least f + 1 I-HATE-THE-PRIMARY messages, or no correct replica receives at least
f + 1 I-HATE-THE-PRIMARY messages. In the first case, the replicas commit to a
view change; QED. In the second case, all correct replicas that did not receive
the ORDER-REQ message from the primary receive it from another replica. After
receiving an ORDER-REQ message, a correct replica sends a SPEC-RESPONSE to c.
Because all correct replicas send a SPEC-RESPONSE message to c, c is guaranteed
to receive at least 2f + 1 such messages. Note that c must receive fewer than
2f + 1 matching SPEC-RESPONSE messages: Otherwise, c would be able to form
a COMMIT and complete the request, contradicting our initial assumption. If,
however, c does not receive 2f + 1 matching SPEC-RESPONSE messages, then c is
able to form a POM message: c relays this message to the replicas which in turn
initiate and commit to a view change, completing the proof.

4. IMPLEMENTATION OPTIMIZATIONS

Our implementation includes several optimizations to improve performance
and reduce system cost.

Replacing signatures with MACs. Like previous work [Abd-El-Malek et al.
2005; Castro and Listov 2002; Cowling et al. 2006; Kotla and Dahlin 2004;
Rodrigues et al. 2001; Yin et al. 2003], we replace most signatures in Zyzzyva
with MACs and authenticators in order to reduce the computational overhead
of cryptographic operations. The technical changes to each subprotocol required
by replacing signatures (PKI) with authenticators (non-PKI) are described in
Kotla’s [2008] dissertation. Like PBFT [Castro and Listov 2002], we change the
checkpoint protocol to wait for 2f +1 matching checkpoint messages instead of
f +1 matching messages in the protocol step CP3 (as described in Appendix A)
when we replace signatures with authenticators. Finally, unlike the non-PKI
view change protocol used in our earlier system [Kotla 2008], our current non-
PKI view change subprotocol replaces signatures in PKI view change protocol
messages (explained in Section 3.5.3) with authenticators in all messages by
adding an additional view-change-ack phase similar to PBFT [Castro and Listov
2002] with the exception that the I-HATE-THE-PRIMARY messages continue to use
digital signatures instead of authenticators.

Separating agreement from execution. We separate agreement from execu-
tion [Yin et al. 2003] by requiring only 2f + 1 replicas to be execution replicas.
The remaining replicas serve as witness replicas [Liskov et al. 1991], aiding
in the process of ordering requests but not replicating the application. Witness

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:24 • R. Kotla et al.

replicas include Null as the application reply in their responses. Clients accept
a history based on the agreement protocol described in the previous section with
a slight modification: A pair of responses are considered to match if: (1) all the
fields (v, n, hn, c, t, O R) except the reply r and response hash H(r) fields match
and (2) either fields r and H(r) match or one of the responses have a Null reply.
A client acts on a reply only after receiving the appropriate number of match-
ing responses with at least f + 1 matching application replies from execution
replicas. We can gain further benefit by biasing the primary selection criteria so
that witness replicas are chosen as the primary more frequently than execution
replicas. Because the primary is the bottleneck node in the system and a wit-
ness replica is under less application-level load than a regular replica, this bias
can result in faster ordering and processing of requests. However, we cannot use
this bias if resolving nondeterminism at the primary requires application state.

Request batching. We batch concurrent requests to reduce cryptographic
and communication overheads like other agreement-based replicated ser-
vices [Castro and Listov 2002; Kotla and Dahlin 2004; Rodrigues et al. 2001; Yin
et al. 2003]. Batching requests amortizes the cost of replica operations across
multiple requests and reduces the total number of operations per request. One
key step in batching requests is having replicas compute a single history di-
gest corresponding to the entries in the batch. This batch history is used in
responses to all requests included in the batch. If the second phase completes
for any request in the batch, the second phase is considered complete for all re-
quests in the batch and replicas respond to the retransmission of any requests
in the batch with LOCAL-COMMIT messages.

Caching out-of-order requests. The protocol described in Section 3.2 dictates
that replicas discard ORDER-REQ messages that are received out of order. We im-
prove performance when the network delivers messages out of order by caching
these requests until the appropriate sequence number is reached. Similarly, the
view change subprotocol can order additional requests that are not supported
by f + 1 speculative responses.

Read-only optimization. Like PBFT [Castro and Listov 2002], we improve
the performance of read-only requests that do not modify the system state.
A client sends read-only requests directly to the replicas which execute the
requests immediately, without recording the request in the request history. As
in PBFT, clients wait for 2f +1 matching replies in order to complete read-only
operations. In order for this optimization to function, we augment replies to
read requests with a replica’s maxn and max-cc. A client that receives 2f + 1
matching responses, including the maxn and max-cc fields, such that maxn =
max-cc can accept the reply to the read. Furthermore, a client that receives
3f +1 matching replies can accept the reply to the read, even if the max-cc and
maxn values are not consistent.

Single execution response. The client randomly selects a single execution
replica to respond with a full response while the other execution replicas send

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:25

only a digest of the response. This optimization is introduced in PBFT [Cas-
tro and Listov 2002] and saves network bandwidth proportional to the size of
responses.

Preferred quorums. Q/U [Abd-El-Malek et al. 2005] and HQ [Cowling et al.
2006] leverage preferred quorums to reduce the cost of authenticators by op-
timistically including MACs for a subset of replicas rather than all replicas.
With preferred quorums optimization, replicas authenticate speculative re-
sponse messages for the client and a subset of 2f other replicas. Additionally, on
the initial transmission, the client can specify that replicas should authenticate
speculative response messages to the client only. This optimization reduces the
number of cryptographic operations performed by backup replicas from 2+ 3 f +1

b
to 2+ 1

b . However, the preferred quorum optimization yields no reduction in the

cryptographic overhead of 2 + 3 f
b MAC operations per request at the primary.

Hence, the preferred quorum optimization provides only marginal improvement
in overall application throughput.

Other optimizations. First, we use an adaptive commit timer at the client
that adapts to the slowest replica in the system to initiate the commit phase.
In Zyzzyva, a correct client can waste work by pessimistically initiating the
commit phase as soon as it receives 2f + 1 matching speculative responses in
the first phase, although none of the replicas is faulty and their responses are
delayed. On the other hand, a correct client cannot wait indefinitely to receive
3f +1 matching speculative responses as it may never hear from a faulty replica.
How long should a correct client wait before initiating the commit phase? We
address this dilemma by using an adaptive commit timer. We pessimistically
initialize this timer to zero, which means that the client will start the commit
phase as soon as it receives 2f + 1 matching responses in the first phase. If
it receives the remaining of f matching speculative responses before the end
of the commit phase, then the client completes the operation and also sets the
commit timer to the difference between the time when the commit phase started
and the time it received the 3f + 1-th matching speculative response. So, the
next time around the client will start the commit timer after receiving 2f + 1
matching speculative responses but will not initiate the commit phase until the
commit timer expires. If an operation ever completes at the end of the commit
phase, then it resets the commit timer to zero. This mechanism adaptively and
opportunistically delays the commit phase in order to avoid the unnecessary
overhead of the commit phase when there are no failures while ensuring that
the system is live in the presence of failures. Second, like PBFT [Castro 2001],
clients broadcast requests directly to all the replicas, whereas the primary uses
just the request digest in the order request message.

4.1 Making the Faulty Case Fast

Zyzzyva uses speculation to optimize performance for the common case when
there are no failures in the system but also aims to improve performance for
other cases when the backup nodes fail or respond slowly.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:26 • R. Kotla et al.

Commit optimization. In the presence of backup failures, the protocol de-
scribed in Section 3.2 requires that clients start the second phase if they receive
fewer than 3f + 1 responses. Replicas then verify the commit certificate and
send the local-commit response. The problem with this approach is that the
replicas end up splitting the batch of requests in the first phase when replies
are sent back to the clients and then verify commit messages from each client
separately in the second phase. Thus, replicas fail to amortize the verification
cost in the second phase of the protocol, and this increases the protocol overhead
of the replicas from 2 + 3 f +1

b to 3 + 5 f +1
b MAC operations per request.

Zyzzyva addresses this problem by letting a client set a commit optimization
bit in its requests as a hint to the replicas to send speculative replies only after
committing the request locally. When this bit is set, backup replicas broadcast
a signed ORDER-REQ message (similar to the prepare message in PBFT) to other
replicas after they receive a valid ORDER-REQ request message from the primary.
If a replica receives 2f + 1 matching ORDER-REQ messages (including its own)
it then commits the request locally, executes the request, and sends the spec-
ulative response to the client with both maxn and max-cc set to the sequence
number of the request. Like read-only optimization, clients consider a request to
be complete if they receive 2f + 1 matching speculative responses with maxn =
max-cc and deliver response to the application.

A client sets the commit optimization bit in a request if it failed to complete
the previous request on the fast path. The client resets this bit to zero if and
when it receives 3f +1 matching speculative responses. This bit is initialized to
zero assuming that they are no faults in the system. This optimization reduces
the cryptographic overhead at a replica from 3+ 5 f +1

b to 2+ 5 f +1
b MAC operations

per request because it allows replicas to verify commit messages once for an
entire batch before committing requests locally. We evaluate the performance
impact of this optimization in Section 5.4 and show that Zyzzyva performs well
even in the presence of backup replica failures.

Zyzzyva5. We introduce a second protocol, Zyzzyva5 [Kotla 2008], that uses
2f additional witness replicas (the number of execution replicas is unchanged at
2f +1) for a total of 5f +1 replicas. Increasing the number of replicas lets clients
receive responses in three one-way message delays even when f backup replicas
are faulty [Dutta et al. 2005; Lamport 2003; Martin and Alvisi 2006]. Zyzzyva5
trades the number of replicas in the system against performance in the presence
of faults. Zyzzyva5 is identical to Zyzzyva with a simple modification: Nodes
wait for an additional f messages, so that, for instance, if a node bases a decision
on a set of 2f + 1 messages in Zyzzyva, the corresponding decision in Zyzzyva5
is based on a set of 3f + 1 messages. The exceptions to this rule are the “I hate
the primary” phase of the view change protocol and the fill-hole and confirm-
request subprotocols that serve to prove that another correct replica has taken
an action; these phases still require only f + 1 responses.

5. EVALUATION

This section examines the performance characteristics of Zyzzyva and compares
it with existing approaches. We run our experiments on 3.0 GHz Pentium-4

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:27

machines running the Linux 2.6 kernel. We use MD5 for MACs and Ad-
Hash [Bellare and Micciancio 1997] for incremental hashing. MD5 is known
to be vulnerable, but we use it to make our results comparable with those in
the literature. Since Zyzzyva uses fewer MACs per request than any of the com-
peting algorithms, our advantages over other algorithms would be increased if
all were to use the more secure, but more expensive, SHA-256.

For comparison, we run Castro and Liskov’s [2002] implementation of PBFT
and Cowling et al.’s [2006] implementation of HQ; we scale up measured
throughput for the small request/response benchmark by 9% [OpenSSL 2007] to
account for their use of SHA-1 rather than MD5. We include published through-
put measurements for Q/U [Abd-El-Malek et al. 2005]; we scale reported per-
formance up by 7.5% to account for our use of 3.0 GHz rather than 2.8 GHz
machines. We also compare against measurements of an unreplicated server.

Unless noted otherwise, in our experiments Zyzzyva uses all of the optimiza-
tions described in Section 4 other than preferred quorums. PBFT [Castro and
Listov 2002] does not implement preferred quorum optimization. We run with
preferred quorum optimization for HQ [Cowling et al. 2006]. We do not use the
read-only optimization for Zyzzyva and PBFT unless we state so explicitly.

Our measured PBFT throughput of 71K ops/second on 3 GHz machines (as
shown in Section 5) matches the published peak throughput numbers (15K
ops/second on 600 MHz machine) [Castro and Liskov 2000] after factoring in the
increased CPU speed. However, the numbers reported for PBFT in Q/U [Abd-El-
Malek et al. 2005] and HQ [Cowling et al. 2006] are quite lower and do not match
with ours or the numbers reported in the PBFT paper [Castro and Liskov 2000].

5.1 Throughput

To stress-test Zyzzyva we use the microbenchmarks devised by Castro and
Liskov [2002]. In the 0/0 benchmark, a client sends a null request and receives
a null reply. In the 4/0 benchmark, a client sends a 4KB request and receives
a null reply. In the 0/4 benchmark, a client sends a null request and receives a
4KB reply.

Figure 4 shows the throughput achieved for the 0/0 benchmark by Zyzzyva,
Zyzzyva5, PBFT, and HQ (scaled as noted before). For reference, we also show
the peak throughput reported for Q/U [Abd-El-Malek et al. 2005] in the f = 1
configuration, scaled to our environment as described earlier. As the number
of clients increases, Zyzzyva and Zyzzyva5 scale better than PBFT with and
without batching. Without batching, Zyzzyva achieves a peak throughput that
is 2.7 times higher than PBFT because of PBFT’s higher cryptographic overhead
(PBFT performs about 2.2 times more operations than Zyzzyva) and message
overhead (PBFT sends and receives about 3.7 times more messages than Zyz-
zyva). When the batch size is increased to 10, Zyzzyva’s and Zyzzyva5’s peak
throughputs increase to 86K ops/second, suggesting that the protocol over-
head at the primary is 12μs per batched request. With the batch size of 10,
PBFT’s peak throughput increases to 59K ops/second. The 45% difference in
peak throughput between Zyzzyva and PBFT is largely accounted for by PBFT’s
higher cryptographic overhead (about 30%) and message overhead (about 30%)

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:28 • R. Kotla et al.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

se
c)

Number of clients

Unreplicated

Zyzzyva (B=10)

Zyzzyva5 (B=10)

PBFT (B=10)

Zyzzyva5

PBFT

HQ

Q/U max throughput

Zyzzyva

Fig. 4. Realized throughput for the 0/0 benchmark as the number of client varies for systems

configured to tolerate f = 1 faults.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

L
a
te

n
cy

 p
e
r

re
q
u
e
st

 (
m

s)

Throughput (Kops/sec)

Z
yz

zy
va

(B
=

1
)

Zyzzyva(B=10)
Zyzzyva(B=20)

Zyzzyva(B=40)

P
B

F
T

(B
=

1
)

P
B

F
T

(B
=

1
0

)

P
B

F
T

(B
=

2
0
)

P
B

F
T

(B
=

4
0
)

Fig. 5. Latency vs. throughput for systems with increasing batch sizes.

compared to Zyzzyva. However, as Figure 5 shows, further increases in batch
size do not significantly improve Zyzzyva’s performance. Conversely, PBFT’s
performance peaks with a batch size of 20, where Zyzzyva’s throughput advan-
tage reduces to 23%.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:29

Fig. 6. Latency for 0/0, 0/4, and 4/0 benchmarks for systems configured to tolerate f = 1 faults.

Zyzzyva provides over 3 times the reported peak throughput of Q/U and
over 9 times the measured throughput of HQ. This difference stems from three
sources. First, Zyzzyva requires fewer cryptographic operations per request
compared to HQ and Q/U. Second, neither Q/U nor HQ is able to use batching
to reduce cryptographic and message overheads. Third, Q/U and HQ do not
take advantage of the Ethernet broadcast channel to speed up the one-to-all
communication steps.

Overall, the peak throughput achieved by Zyzzyva is within 35% of that of
an unreplicated server that simply replies to client requests over an authenti-
cated channel. Note that as application-level request processing increases, the
protocol overhead will fall.

5.2 Latency

Figure 6 shows the latencies of Zyzzyva, Zyzzyva5, Q/U, and PBFT for the 0/0,
0/4, and 4/0 microbenchmarks. For Q/U, which can complete in fewer message
delays than Zyzzyva during contention-free periods, we use a simple best-case
implementation of Q/U with preferred quorums in which a client simply gener-
ates and sends 4f +1 MACs with a request, each replica verifies 4f +1 MACs (1
to authenticate the client and 4f to validate the object history set state), each
replica generates and sends 4f + 1 MACs (1 to authenticate the reply to the
client and 4f to authenticate object history set state) with a reply to the client,
and the client verifies 4f + 1 MACs. We examine both the default read/write
requests that use the full protocol and read-only requests that exploit the read-
only optimization.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:30 • R. Kotla et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

L
a
te

n
cy

 p
e
r

re
q
u
e
st

 (
m

s)

Throughput (Kops/sec)

Unreplicated
Zyzzyva (B=10)

Zyzzyva5 (B=10)

P
B

F
T

 (
B

=
1
0
)

Z
yz

zy
va

5P
B

F
T

H
Q

Q
/U

 m
a
x

th
ro

u
g
h
p
u
t

Q/U best latency

Z
yz

zy
va

Fig. 7. Latency vs. throughput for systems configured to tolerate f = 1 faults.

Zyzzyva uses fast agreement to drive its latency near the optimal for an
agreement protocol: three one-way message delays [Dutta et al. 2005; Lamport
2003; Martin and Alvisi 2006]. The experimental results in Figure 6 show that
Zyzzyva and Zyzzyva5 achieve lower latencies than PBFT for write operations.
For reads, Zyzzyva, Zyzzyva5, and PBFT are comparable. HQ performs sig-
nificantly worse than Zyzzyva and PBFT because it uses unicast instead of
multicast for exchanging messages, SHA1 instead of MD5 for computing mes-
sage digests, and TCP instead of UDP as the transport layer. As expected, by
avoiding serialization Q/U achieves even better latency in low-contention work-
loads such as the one examined here, though Zyzzyva and PBFT can match Q/U
for read-only requests where all of these protocols can complete in two message
delays.

Figure 7 shows latency and throughput as we vary offered load. As the figure
illustrates, batching in Zyzzyva, Zyzzyva5, and PBFT increases latency but also
increases peak throughput. Adaptively setting the batch size in response to
workload characteristics is an avenue for future work.

5.3 Fault Scalability

In this section we examine how the performance of these protocols depends on
the number of tolerated faults (f).

Figure 8 shows the peak throughputs of Zyzzyva, PBFT, HQ, and Q/U (re-
ported throughput) with increasing number of tolerated faults for batch sizes
of 1 and 10. Zyzzyva is robust to increasing value of f and continues to pro-
vide significantly higher throughput than the other systems. Additionally, as
expected for the case with no batching, the overhead of Zyzzyva increases more

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:31

Fig. 8. Fault scalability: Peak throughputs.

slowly than PBFT with increasing f because Zyzzyva requires 2 + (3 f + 1)
cryptographic operations compared to 2 + (10 f + 1) cryptographic operations
for PBFT.

Figure 9 shows the number of cryptographic operations per request and the
number of messages sent and received per request at the bottleneck server (the
primary in Zyzzyva, Zyzzyva5, and PBFT; any server in Q/U and HQ) using
an analytical cost model and assuming that all protocols implement preferred
quorum optimization.

Figure 9(a) shows that Zyzzyva and Zyzzyva5 scale well compared to other
protocols with increasing f . Protocols that support batching, such as Zyzzyva,
Zyzzyva5, and PBFT, scale even better when the batch size increases to 10
requests because they perform fewer cryptographic operations per request.

If multicast is supported, the number of messages processed by a bottle-
necked server for a client request becomes approximately the same for all pro-
tocols. Multicast reduces the number of client messages for all protocols by
allowing clients to transmit their requests to all servers in a single send. Multi-
cast also reduces the number of server messages for Zyzzyva, Zyzzyva5, PBFT,
and HQ (but not Q/U) when the primary or other servers communicate with
their peers. In particular, with multicast the Zyzzyva primary sends or receives
one message per batch of operations plus two additional messages per request,
regardless of f .

Figure 9(b) plots overhead in terms of number of messages for the case when
there is no multicast support. One point worth noting is that message counts
at the primary for Zyzzyva, Zyzzyva5, and PBFT increase as f increases, while
server message counts are constant with f for Q/U and HQ. However, with

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:32 • R. Kotla et al.

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

C
ry

p
to

g
ra

p
h
ic

 O
p
e
ra

tio
n
s

p
e
r

R
e
q
u
e
st

Faults tolerated

Zyzzyva5

PBFT

HQ

Q/U

Zyzzyva

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

C
ry

p
to

g
ra

p
h
ic

 O
p
e
ra

tio
n
s

p
e
r

R
e
q
u
e
st

Faults tolerated

HQ

Q/U

PBFT

Zyzzyva5

Zyzzyva

Batch size = 1 Batch size = 10
(a) bottleneck server cryptographic operations

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

M
e

ss
a

g
e

s
p

e
r

R
e

q
u

e
st

Faults tolerated

Zyzzyva5

PBFT

HQ

Q/U

Zyzzyva

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

M
e

ss
a

g
e

s
p

e
r

R
e

q
u

e
st

Faults tolerated

HQ

Q/U

PBFT
avyzzyZ5avyzzyZ

Batch size = 1 Batch size = 10

(b) bottleneck server messages (without multicast support)

Fig. 9. Fault scalability using the analytical model.

increasing batch sizes the message count overhead is amortized across the
batch of requests and the rate of increase reduces with increasing f for Zyzzyva,
Zyzzyva5, and PBFT: when the batch size is increased to 10, Zyzzyva, Zyzzyva5,
and PBFT are comparable to quorum-based protocols.

Kotla [2008] examines other metrics, such as message and cryptographic
overheads at the client and finds that Zyzzyva outperforms all protocols except
PBFT by these metrics.

5.4 Performance During Failures

Zyzzyva guarantees correct execution with any number of faulty clients and
up to f faulty replicas. However, its performance is optimized for failure-free
operation, and a single faulty replica can force Zyzzyva to execute the slower
two-phase protocol.

One solution is to buttress Zyzzyva’s fast 1-phase path by employing addi-
tional servers. Zyzzyva5 uses a total of 5f + 1 servers (2f + 1 full replicas and
3f additional witnesses) to allow the system to complete requests via the fast

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:33

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

se
c)

Number of clients

Zyzzyva without commit opt (B=10)

Zyzzyva5 (B=10)

Zyzzyva (B=10)

PBFT (B=10)

Zyzzyva5 (B=1)

PBFT (B=1)

HQ

Zyzzyva (B=1)

Zyzzyva without commit opt (B=1)

Fig. 10. Realized throughput for the 0/0 benchmark as the number of clients varies when f = 1

nonprimary replicas fail to respond to requests.

communication pattern shown in Figure 1(a) when the client receives 4f + 1
(out of 5f + 1) matching replies.

Zyzzyva remains competitive with existing protocols, even when, running
with 3f + 1 replicas, it falls back to the slower two-phase protocol. This is
surprising, because Zyzzyva’s cryptographic overhead at the bottleneck replica
should increase from 2 + 3 f +1

b to 3 + 5 f +1
b operations per request if we simply

execute the two-phase algorithm described before. (As noted at the start of
this section, we omit the preferred quorums optimization in our experimental
evaluations, so the 2 + 3 f +1

b MAC operations per request in our measurements

are a higher figure than the 2 + 3 f
b listed in Table I.) However, as explained in

Section 4.1, our implementation includes a commit optimization that reduces
cryptographic overheads to 2+ 5 f +1

b cryptographic operations per request (from

3 + 5 f +1
b) by having replicas initiate and complete the second phase to commit

the request before they execute the request and send the response (with the
committed history) back to the client.

Figure 10 compares the throughputs of Zyzzyva, Zyzzyva5, PBFT, and HQ
in the presence of f nonprimary-server fail-stop failures. We do not include a
discussion of Q/U in this section as the throughput numbers of Q/U with failures
are not reported [Abd-El-Malek et al. 2005], but we would not expect a fail-stop
failure by a replica to reduce significantly the performance shown for Q/U in
Figure 4. Also, we do not include a line for the unreplicated server case as the
throughput falls to zero when the only server suffers a fail-stop failure.

As Figure 10 shows, without the commit optimization, falling back on the two-
phase protocol reduces Zyzzyva’s maximum throughput from 86K ops/second

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:34 • R. Kotla et al.

(Figure 4) to 52K ops/second. Despite this extra overhead, Zyzzyva’s “slow case”
performance remains within 13% of the PBFT’s performance, which is less
aggressively for the failure-free case and which suffers no slowdown in this
scenario. Zyzzyva’s commit optimization repairs most of the damage caused by
a fail-stop replica, maintaining a throughput of 82K ops/second which is within
5% of the peak throughput achieved for the failure-free case. For systems that
can afford extra witness replicas, Zyzzyva5’s throughput is not significantly
affected by the fail-stop failure of a replica, as expected. HQ continues to be
outperformed for the same reasons explained in Section 5.1.

6. RELATED WORK

Zyzzyva stands on the shoulders of recent efforts that have dramatically
cut the costs and improved the practicality of BFT replication. Castro and
Liskov’s [2002] Practical Byzantine Fault Tolerance (PBFT) protocol devised
techniques to eliminate expensive signatures and potentially fragile timing
assumptions, and it demonstrated high throughputs of over ten thousand re-
quests per second. This surprising result jump started an arms race in which
researchers reduced replication costs [Yin et al. 2003], and improved perfor-
mance [Abd-El-Malek et al. 2005; Cowling et al. 2006; Kotla and Dahlin 2004]
of BFT service replication. Zyzzyva incorporates many of the ideas developed in
these protocols and folds in the new idea of speculative execution to construct
an optimized fast path that significantly outperforms existing protocols and
that has replication cost, processing overhead, and latency that approach the
theoretical minima for these metrics. An article describing an earlier version
of the Zyzzyva system appeared before [Kotla et al. 2007a].

Numerous BFT agreement protocols [Castro and Listov 2002; Cowling et al.
2006; Kotla and Dahlin 2004; Martin and Alvisi 2006; Rodrigues et al. 2001;
Yin et al. 2003] have used tentative execution to reduce the latency experienced
by clients. This optimization allows replicas to execute a request tentatively as
soon as they have collected the Zyzzyva equivalent of a commit certificate for
that request. This optimization may superficially appear similar to Zyzzyva’s
support for speculative executions, but there are two fundamental differences.
First, Zyzzyva’s speculative execution allows requests to complete at a client
after a single phase, without the need to compute a commit certificate: this
reduction in latency is not possible with traditional tentative executions. Sec-
ond, and more importantly, in traditional BFT systems a replica can execute
a request tentatively only after the replica’s “state reflects the execution of all
requests with lower sequence number, and these requests are all known to be
committed” [Castro and Liskov 1999]. In Zyzzyva, replicas continue to execute
request speculatively, without waiting to know that requests with lower se-
quence numbers have completed; this difference is what lets Zyzzyva leverage
speculation to achieve not just lower latency but also higher throughput. In
Q/U [Abd-El-Malek et al. 2005], replicas speculatively execute requests from
clients without ordering them first. Thus, in the presence of request contentions,
correct replicas in Q/U can misspeculate and diverge by executing contentious
requests (modifying a common object or state variable) in different orders even

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:35

when there are no failures in the system. In contrast, Zyzzyva’s replicas spec-
ulate on the primary being correct rather than the workload, and thus do not
misspeculate on request contentions when there are no failures in the system.

Q/U [Abd-El-Malek et al. 2005] provides high throughput assuming low con-
currency in the system, but requires higher number of replicas than Zyzzyva.
HQ [Cowling et al. 2006] uses fewer replicas than Q/U but uses multiple rounds
to complete an operation. Both HQ and Q/U do not batch concurrent requests
and incur higher overhead in the presence of request contention. Singh et al.
[2008] compare the performance of Zyzzyva, PBFT, and Q/U under extreme net-
work conditions and with varying message size using their simulation tool. For
peak throughput, they validate our results and show that Zyzyva outperforms
BFT and Q/U protocols even when the timeouts are misconfigured. However,
they show that the throughput benefits of Zyzzyva over other protocols reduce
with increasing request sizes and become indistinguishable for large requests,
as expected, because nodes are bottlenecked by network and per-byte message
processing overheads rather than by the protocol-specific cryptographic over-
heads. For latency under low load, they validate our results and show that Q/U’s
latency is comparable with Zyzzyva in a LAN setting or in a WAN setting (with
slow and lossy links) when requests can be batched. However, they also show
that Q/U can provide significantly lower latencies compared to Zyzzyva in a
WAN setting and when there is little or no scope for batching because of the
interreplica communication required by Zyzzyva.

To ensure correct operation, BFT systems require at least two-thirds of repli-
cas to be working correctly. Hence, applications using BFT are not going to be
available when more than one-third of total replicas are not available because
of network partitions. BFT2F [Li and Mazières 2007] explores how to weaken
gracefully the consistency guarantees provided by BFT state machine repli-
cation when the number of faulty replicas exceeds one-third but is no more
than two-thirds of the total replicas. Zeno [Singh et al. 2009] requires as few as
one-third of replicas to make progress but offers weaker eventual consistency
semantics. Attested append-only memory [Chun et al. 2007] ensures correct op-
eration even when half of the replicas are faulty under a stronger trust model
where trusted hardware or software components implement A2M abstractions.
Zyzzyva separates agreement from execution [Yin et al. 2003] to reduce the
number of execution replicas to the minimal 2f + 1. The 2f + 1 lower bound
on BFT replication cost can be circumvented by using only f + 1 execution
replicas in the failure-free case and activating additional replicas only upon
failures. This approach is taken in ZZ [Wood et al. 2008], which uses virtual
machines for fast replica activation.

Speculator [Nightingale et al. 2005] allows clients to complete operations
sepculatively at the application level and perform client-level rollback. A simi-
lar approach could be used in conjunction with Zyzzyva to support clients that
want to act on a reply optimistically, rather than waiting on the specified set of
responses. Wester et al. [2009] demonstrate the benefits of client-side specula-
tion in replicated state machines.

Recent work in BFT proposes techniques to improve robustness at the cost
of common case performance. Aardvark [Clement et al. 2009b] eliminates

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:36 • R. Kotla et al.

fragile optimizations that maximize best-case performance but that can allow a
faulty client or server to drive the system down expensive execution paths. Up-
Right [Clement et al. 2009a] borrows techniques from Zyzzyva and Aardvark
to demonstrate the practicality of BFT in deployed cluster services such as the
Zookeeper coordination service and the Hadoop file system.

7. CONCLUSION

By systematically exploiting speculation, Zyzzyva exhibits significant perfor-
mance improvements over existing BFT protocols. The throughput overheads
and latency of Zyzzyva approach the theoretical lower bounds for any BFT state
machine replication protocol.

We believe that Zyzzyva demonstrates that BFT overheads should no longer
be regarded as a barrier to using BFT replication, even for many highly de-
manding services.

APPENDIX

A. CHECKPOINT SUBPROTOCOL

The checkpoint subprotocol of Zyzzyva proceeds as follows.

CP1. When replica i receives the order request message for the
CP INTERVALth request since the last checkpoint, the replica sends the

speculative response to all other replicas in addition to the client.

Additional details. For efficiency, replica i does not include the body of the
application reply r in the speculative response but just includes the hash H(r).

CP2. Replica receives a commit certificate for the CP INTERVALth re-
quest, forms a checkpoint message, and relays the checkpoint message
to all other replicas.

After receiving a commit certificate for the request and processing it as in
step 5, replica i forms a 〈CHECKPOINT, n, h, a, i〉σi message and sends it to all
replicas. n is the sequence number, h is the history digest, and a is the digest
of the application state when every request in history h has been executed.

Additional details. Replica i can receive a commit certificate either from the
client or by receiving 2f + 1 matching speculative response messages directly
from other replicas. The replica considers commit certificates gathered in either
manner to be equivalent.

CP3. Replica receives f +1 matching checkpoint messages and considers
the checkpoint stable.

After receiving f + 1 matching checkpoint messages, replica i considers the
request stable and garbage collects any request with sequence number at most
n and makes an up call into the application to garbage collect application state.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:37

Replacing Signatures with MACs. Like PBFT, we replace digital signatures
with authenticators for signing the protocol messages in the non-PKI version
of the checkpoint protocol which has the same steps as before except that the
replicas wait for 2f +1 matching checkpoint messages in CP3 before considering
the checkpoint stable.

ACKNOWLEDGMENTS

We thank R. Rodrigues, J. Cowling, and M. Abd-El-Malek for sharing source
code for PBFT, HQ, and Q/U, respectively. We are grateful for M. Herlihy’s and
B. Liskov’s feedback on earlier drafts of this article.

REFERENCES

ABD-EL-MALEK, M., GANGER, G., GOODSON, G., REITER, M., AND WYLIE, J. 2005. Fault-Scalable

Byzantine fault-tolerant services. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP’05). 59–74.

AIYER, A. S., ALVISI, L., CLEMENT, A., DAHLIN, M., MARTIN, J.-P., AND PORTH, C. 2005. BAR fault

tolerance for cooperative services. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP’05). 45–58.

AMAZON. 2008. Amazon S3 availability event: July 20, 2008.

http://status.aws.amazon.com/s3-20080720.html.

BELLARE, M. AND MICCIANCIO, D. 1997. A new paradigm for collision-free hashing: Incrementally

at reduced cost. In Proceedings of 14th Annual Eurocrypt Conference (Eurocrypt’97). 163–192.

CASTRO, M. 2001. Practical Byzantine fault tolerance. Ph.D. thesis, MIT, Cambridge, MA.

CASTRO, M. AND LISKOV, B. 1999. Practical Byzantine fault tolerance. In Proceedings of the 3rd
USENIX Symposium on Operating Systems Design and Implementation (OSDI’99). 173–186.

CASTRO, M. AND LISKOV, B. 2000. Proactive recovery in a Byzantine-fault-tolerant system. In Pro-
ceedings of the 4th Symposium on Operating Systems Design and Implementation (OSDI’00).
273–288.

CASTRO, M. AND LISTOV, B. 2002. Practical Byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst. 20, 4, 398–461.

CHUN, B.-G., MANIATIS, P., SHENKER, S., AND KUBIATOWICZ, J. 2007. Attested append-only memory:

Making adversaries stick to their word. SIGOPS Oper. Syst. Rev. 41, 6, 189–204.

CLEMENT, A., KAPRITSOS, M., LEE, S., WANG, Y., ALVISI, L., DAHLIN, M., AND RICHE, T. 2009a. UpRight

cluster services. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles
(SOSP’09). 270–290.

CLEMENT, A., MARCHETTI, M., WONG, E., ALVISI, L., AND DAHLIN, M. 2009b. Making Byzantine fault

tolerant services tolerate Byzantine faults. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’09). 153–168.

COWLING, J., MYERS, D., LISKOV, B., RODRIGUES, R., AND SHRIRA, L. 2006. HQ replication: A hybrid

quorum protocol for Byzantine fault tolerance. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI’06). 177–190.

DUTTA, P., GUERRAOUI, R., AND VUKOLIĆ, M. 2005. Best-Case complexity of asynchronous Byzantine

consensus. Tech. rep. EPFL/IC/200499, EPFL.

DWORK, C., LYNCH, N., AND STOCKMEYER, L. 1988. Consensus in the presence of partial synchrony.

J. ACM, 288–323.

FISCHER, M., LYNCH, N., AND PATERSON, M. 1985. Impossibility of distributed consensus with one

faulty process. J. ACM 32, 2, 374–382.

GMAIL. 2006. Lost gmail emails and the future of Web apps. http://it.slashdot.org (12/29/06).

HERLIHY, M. AND WING, J. 1990. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Prog. Lang. Syst. 12, 3, 463–492.

HOTMAIL. 2004. Hotmail incinerates customer files. http://news.com.com, (6/3/04).

KEENEY, M., KOWALSKI, E., CAPPELLI, D., MOORE, A., SHIMEALL, T., AND ROGERS, S. 2005. Insider

threat study: Computer system sabotage in critical infrastructure sectors.

http://www.cert.org/archive/pdf/insidercross051105.pdf.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

7:38 • R. Kotla et al.

KOTLA, R. 2008. xbft: Byzantine fault tolerance with high performance, low cost, and aggressive

fault isolation. Ph.D. thesis, The University of Texas at Austin, Austin, TX.

KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND WONG, E. 2007a. Zyzzyva: Speculative Byzan-

tine fault tolerance. In Proceedings of the 21st ACM Symposium on Operating Systems Principles
(SOSP’07). 45–58.

KOTLA, R. AND DAHLIN, M. 2004. High throughput Byzantine fault tolerance. In Proceedings of
the International Conference on Dependable Systems and Networks (DSN’04). 575–584.

KOTLA, R., DAHLIN, M., AND ALVISI, L. 2007b. SafeStore: A durable and practical storage system.

In Proceedings of the USENIX Annual Technical Conference. 129–142.

LAMPORT, SHOSTAK, AND PEASE. 1982. The Byzantine generals problem. ACM Trans. Program.
Lang. Syst. 4, 3, 382–401.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Comm.
ACM 21, 7, 558–565.

LAMPORT, L. 1984. Using time instead of timeout for fault-tolerant distributed systems. ACM
Trans. Program. Lang. Syst. 6, 2, 254–280.

LAMPORT, L. 2003. Lower bounds for asynchronous consensus. Lecture Notes in Computer Sci-

ence, vol. 2584. Springer, 22–23.

LI, J. AND MAZIÈRES, D. 2007. Beyond one-third faulty replicas in Byzantine fault tolerant services.

In Proceedings of the 4th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’07). 131–144.

LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P., AND SHRIRA, L. 1991. Replication in the Harp file

system. In Proceedings of the 13th ACM Symposium on Operating Systems Principles. 226–238.

MARTIN, J.-P. AND ALVISI, L. 2006. Fast Byzantine consensus. IEEE Trans. Depend. Secure. Com-
put. 3, 3, 202–215.

NIGHTINGALE, E., VEERARAGHAVAN, K., CHEN, P., AND FLINN, J. 2006. Rethink the sync. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI’06). 1–

14.

NIGHTINGALE, E. B., CHEN, P., AND FLINN, J. 2005. Speculative execution in a distributed file system.

In Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP’05). 191–

205.

OPENSSL. 2007. OpenSSL. http://www.openssl.org/.

PEASE, M., SHOSTAK, R., AND LAMPORT, L. 1980. Reaching agreement in the presence of faults. J.
ACM 27, 2.

PRABHAKARAN, V., BAIRAVASUNDARAM, L., AGRAWAL, N., ARPACI-DUSSEAU, H. G. A., AND ARPACI-DUSSEAU, R.

2005. IRON file systems. In Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP’05). 206–220.

REITER, M. 1995. The Rampart toolkit for building high-integrity services. Lecture Notes in

Computer Science, vol. 938. Springer, 99–110.

RODRIGUES, R., CASTRO, M., AND LISKOV, B. 2001. BASE: Using abstraction to improve fault toler-

ance. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01).
15–28.

SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C., VEITCH, A. C., CARTON, R. W., AND OFIR, J. 1999.

Deciding when to forget in the Elephant file system. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSP’99). 110–123.

SCHNEIDER, F. B. 1990. Implementing fault-tolerant services using the state machine approach:

A tutorial. ACM Comput. Surv. 22, 4.

SINGH, A., DAS, T., MANIATIS, P., DRUSCHEL, P., AND ROSCOE, T. 2008. BFT protocols under fire. In

Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’08). 189–204.

SINGH, A., FONSECA, P., KUZNETSOV, P., RODRIGUES, R., AND MANIATIS, P. 2009. Zeno: Eventually

consistent Byzantine fault tolerance. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’09). 169–184.

WESTER, B., COWLING, J., NIGHTINGALE, E. B., CHEN, P. M., FLINN, J., AND LISKOV, B. 2009. Tolerating

latency in replicated state machines through client speculation. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’09). 245–260.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Zyzzyva: Speculative Byzantine Fault Tolerance • 7:39

WOOD, T., SINGH, R., VENKATARAMANI, A., AND SHENOY, P. 2008. ZZ: Cheap practical BFT using

virtualization. Tech. rep. TR14-08, University of Massachusetts, Amherst, MA.

YANG, J., SAR, C., AND ENGLER, D. 2006. Explode: A lightweight, general system for finding serious

storage system errors. In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’06). 131–146.

YIN, J., MARTIN, J.-P., VENKATARAMANI, A., ALVISI, L., AND DAHLIN, M. 2003. Separating agreement

from execution for Byzantine fault tolerant services. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP’03). 253–267.

Received March 2009; revised June 2009; accepted September 2009

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

