
Distrib. Comput. (2002) 15: 1–15

c© Springer-Verlag 2002

Causality tracking in causal message-logging protocols

Lorenzo Alvisi1,∗, Karan Bhatia2,∗∗, Keith Marzullo 3,∗∗∗

1 The University of Texas at Austin, Department of Computer Sciences, Austin, Texas, USA (e-mail: lorenzo@cs.utexas.edu)
2 Entropia Inc., La Jolla, California, USA (e-mail: karan@entropia.com)
3 University of California, San Diego, Department of Computer Science and Engineering, La Jolla, CA 92093-0114, USA
(e-mail: marzullo@cs.ucsd.edu)

Received: July 1999 / Accepted: July 2001

Abstract. Casual message-logging protocols have several at-
tractive properties: they introduce no blocking, send no addi-
tional messages over those sent by the application, and never
create orphans. Causal message logging, however, does re-
quire the casual effects of the deliveries of messages to be
tracked. The information concerning causality tracking is pig-
gybacked on application messages, and the amount of such
information can become large.

In this paper we study the cost of tracking causality in
causal message-logging protocols. One can track causality as
accurately as possible, but to do so requires piggybacking a
considerable amount of additional information. One can re-
duce the amount of piggybacked information on each mes-
sage by reducing the accuracy of causality tracking. But then,
causal message logging may piggyback the reduced amount
of information on more messages.

We specify six different methods of tracking causality,
each representing a natural choice based on the specification
of causal message logging. We describe how these six meth-
ods can be implemented and compare them in terms of how
large of a piggyback load they impose. This load depends on
the application that is using causal message logging.We char-
acterize some applications for which a given method has the
smallest piggyback load, and study using simulation the size
of the piggyback load for two differentmodels of applications.

Key words: Message logging – Causal logging – Causality
tracking

∗ Supported in part by an Alfred P. Sloan Research Fellowship,
an IBM faculty Partnership Award, the National Science Foundation
(CAREER award CCR-9734185), DARPA/SPAWAR grant N66001-
98-8911, and Tivoli.
∗∗ Supported in part by DARPA/SPAWAR grant N66001-98-8911.
∗∗∗Supported inpart byDOD-ARPAunder contract numberF30602-
96-1-0313,DARPA/SPAWARgrantN66001-98-8911 andNSFgrant
CCR-32375A.

1 Introduction

Message logging [9] is a common technique used to build sys-
tems that can tolerate process crash failures. These protocols
require that each process periodically record its local state and
log the messages received since recording that state. When a
process crashes, a new process is created in its place: the new
process is given the appropriate recorded local state, and then
it is sent the loggedmessages in the order they were originally
received. Thus, message-logging protocols implement an ab-
straction of a resilient process in which the crash of a process
is translated into an intermittent unavailability of that process.

All message-logging protocols require that the state of a
recovered process be consistent with the states of the other
processes. This consistency requirement is usually expressed
in terms oforphan processes, which are surviving processes
whosestate is inconsistentwith the recoveredstateof a crashed
process. Thus, message logging protocols guarantee—either
through careful logging or through a somewhat complex re-
covery protocol—that after recovery no process is an orphan.

Message logging protocols can bepessimistic(for exam-
ple, [5,11,17,24]),optimistic(for example, [12,22,23,26]), or
causal[3,4,10]. Like pessimistic protocols, causal protocols
never create orphans, and, like optimistic protocols, they do
not log synchronously to stable storage. They are able to do
this by piggybacking information onto the ambient message
traffic.

Causal message-logging protocols track the causal effects
ofmessage deliveries. Letf be the number of concurrent crash
failures that are to be tolerated. We have given [4] a generic
causal message-logging protocol that tracks causality to de-
termine when information needed for recovery has been de-
livered and recorded by at leastf + 1 independently-failing
processes.

In this paper we study the cost of tracking causality in
causal message-logging protocols. This is not an easy prob-
lem to address. One can track causality as accurately as pos-
sible, but to do so requires piggybacking on the application
messages a considerable amount of additional information.
One can reduce the amount of piggybacked information on
each message by reducing the accuracy of causality tracking.
But then, causal message logging may piggyback the reduced
amount of information on more messages because the proto-

2 L. Alvisi et al.

col may learn more slowly when the recovery information has
been replicated at leastf + 1 times.

Understanding which method piggybacks the least infor-
mation in a given situation is important for several reasons.
First, it is in itself an interesting question, because the tradeoff
is complex and there is a temptation either to be as accurate
as possible or to use as little information as possible to track
causality. As this paper shows, there are times when neither
is the best choice in terms of message size. Second, there are
environments, such as embedded systems or mobile systems,
in which bandwidth is limited. In such systems, limiting the
size of messages is important. Third, a significant cost in any
protocol is in assembling, processing, and disassembling a
message. Piggybacking less information in messages is one
way to improve the performance of a causal message-logging
protocol.

We consider six different methods of tracking causality.
They represent natural choices based on the specification of
causal message logging. All of the published causal message-
logging protocols track causality using one of these methods.
We describe how these six methods can be implemented. We
compare them in terms of how large a piggyback load they
impose. This load is application dependent: we characterize
some applications for which a given method has the smallest
piggyback load, and study using simulation the size of the
piggyback load for two different models of applications.

We do not consider the effect on the piggyback load when
processesperiodically checkpoint their states.Frequent check-
pointing can reduce the piggyback load because one doesn’t
need to track causality for events prior to a checkpoint. But,
frequent checkpointing imposes another kind of overhead.
The results here should be illustrative for executions in which
checkpointing is relatively infrequent.

We do not present the protocol that is run when a crashed
process recovers. All six protocols in this paper can use the
same recovery protocol. A discussion on recovery as well as
the actual recovery protocol can be found in [18].

The paper proceeds as follows. In Sect.2 we present the
system model and in Sect.3 we specify causal message log-
ging. Section 4 develops the six causal message-logging pro-
tocols and identifies two classes of applications for which the
simplest protocol is also the most efficient in terms of piggy-
back overhead. In Sect.5 we measure and compare the piggy-
back overheads using a synthetic application. Section 6 con-
cludes the paper.

2 System model

Weassumea systemNnprocesses that can communicate only
by exchanging messages. The system is asynchronous: there
exists no bound on the relative speeds of processes, no bound
on message transmission delays, and no global time source.

The execution of the system is represented by arun, which
is an irreflexive partial ordering of the send events, receive
events and local events ordered by potential causality [13].
Delivery events are local events that represent the delivery of
a received message to the application or applications running
in that process. For any messagem from processp to process
q, q deliversm only if it has receivedm, andq deliversm no
more than once.

At any point in time, thestateof a process is a mapping
of program variables and implicit variables (such as program
counters) to their current values. We assume that the state of
the process does not include the state of the underlying com-
munication system, such as the queue of messages that have
been received but not yet delivered to the process. Given the
statessp andsq of two processesp andq, p �= q respectively,
we say thatsp andsq (or, more simply,p andq) aremutually
consistentif all of the messages fromq thatp has delivered
during its execution up tosp were sent byq during its execu-
tion up tosq, and vice versa. A collection of states, one from
each process, is aconsistent global stateif all pairs of states
are mutually consistent [6]; otherwise it isinconsistent.

We assume that processes arepiecewise deterministic[24]
in that the only nondeterminism in a process arises from the
nondeterministic order in which messages that have been re-
ceived are delivered. It is therefore natural to think of the ex-
ecution of a process as being partitioned into intervals, with
the beginning of each interval being defined by the initial state
of the process or the delivery of a message. Such an interval
is called astate interval. Thus, given the first state of a state
interval and themessagewhose delivery defines the beginning
of the interval, the rest of the states in the interval are uniquely
determined by the process.

For any messagem delivered by processp, the receive
sequence numberof m, denotedm.rsn, represents the order
in whichm was delivered:m.rsn= � if m is the�th message
delivered byp [23]. The state interval that initiates with the
delivery ofm is denotedp[�]where�, theindexof p[�], is equal
tom.rsn. The state intervalp[0] is defined to be the interval of
states ofp from its initial state to the state immediately before
the delivery of the first message.

We further assume that:

• Processes fail independently according to the fail-stop
model [19];

• The fixed set of processes that belong to the system is
known by all of these processes;

• Channels are point-to-point, FIFO, and fail by intermit-
tently losing messages.

3 Specification of causal message logging

With the assumption that processes are piecewise determin-
istic, the only non-deterministic choices made during an exe-
cution concern the order in which messages are delivered to
processes. To recover a process’s state, the nondeterministic
choices the processmakes during recovery should be the same
as itmadebefore failing.Hence,weneed to represent the order
of message deliveries.

For each messagem delivered during a given run, let
m.source andm.ssn denote, respectively, the identity of the
sender process and a unique identifier assigned tom by the
sender. The lattermay, for example, be a sequence number. Let
deliverm.dest(m) denote the event that corresponds to the de-
livery ofmessagem by processm.dest. The tuple〈m.source,
m.ssn,m.dest,m.rsn〉 unequivocally determinesm and the
order in whichm was delivered bym.dest. We refer to this
tuple as thedeterminantof the eventdeliverm.dest(m) and we
denote it as #m.

Causality tracking in causal message-logging protocols 3

Let Depend(m) denote the set of processes whose state
reflects the delivery of messagem. Formally,

Depend(m)def={
j ∈ N

∣∣∣∣∨ ((j = m.dest) ∧ j has deliveredm)
∨ (∃m′: (deliverm.dest(m) → deliverj(m′)))

}

where→ denotes thehappens-beforerelationship [13]. Let
Log(m) denote the set of processes that maintain a copy of
#m in their address space: in particular, processm.dest is a
member ofLog(m) once it deliversm. In [4], we showed that
the following property ensures that sufficient information is
available to avoid the creation of orphans:

∀m : ✷(Depend(m) ⊆ Log(m)) (1)

where✷ is the temporal “always” operator.
We say that #m is stable(denotedstable(m)) when #m

cannot be lost because of crashes. Property 1 need hold only
for messages with a determinant that is not stable. In [4],
we showed that the following property ensures that no set
of crashed processes can lead to the creation of orphans:

∀m : ✷(¬stable(m) ⇒ (Depend(m) ⊆ Log(m))) (2)

If determinants are written into stable memory, then
stable(m) holds when thewrite of #m to stablememory com-
pletes. If determinants are kept in volatile memory, and we
assume that no more thanf processes can fail concurrently,
thenstable(m) holds as long asf + 1 processes have a copy
of #m in their volatile memory. In the latter case, Property 2
can be written:

∀m : ✷((|Log(m)| ≤ f) ⇒ (Depend(m) ⊆ Log(m))) (3)

Property 3 allowsLog(m) to grow arbitrarily larger than
Depend(m) and allows for protocols that disseminate a large
number of unnecessary copies of #m. As the number of de-
livery events performed during a run increases, these extra
copies may end up wasting a significant portion of the address
spaces of the processes in the system. In order to address this
problem, we consider protocols that implement the following
strengthening of Property 3:

∀m : ✷(|Log(m)| ≤ f ⇒
Depend(m) ⊆ Log(m) ∧ ✸(Depend(m) = Log(m)) (4)

where✸ is the temporal “eventually” operator. This property
couples logging with causal dependency on deliver events: as
long as|Log(m)| ≤ f :

• All processes that delivered an application message sent
causally after the delivery ofm have stored a copy ofm’s
determinant.

• All processes that have stored a copy ofm’s determi-
nant will eventually deliver an application message sent
causally after the delivery ofm.

We call the protocols that implement Property 4causal
message-logging protocols.

4 Family Based Logging

Family Based Logging (FBL) is a logging technique that im-
plements Property 41. Conceptually, each processpmaintains
in its volatile storage a set of determinantsDLp called the
determinant logof p and defined as follows:

DLp
def= {#m : p ∈ Depend(m)}.

That is,DLp contains the determinant of all of the delivery
events that causally precedep’s current state. We denote with
UnstableDLp the subset ofDLp that p does not know to be
stable. Wheneverp sends a messagem′ to some processq,
processp piggybacks ontom′ all the determinants#m in
UnstableDLp for which q �∈ Log(m). Hence, a fundamental
issue of implementing FBL is how a processp determines
Log(m) for anydeterminant #m thatphas received. Ingeneral,
p may not know the exact values ofLog(m) and |Log(m)|,
and so it must estimate these values. We denotep’s estimated
values forLog(m) and|Log(m)| asLog(m)p and|Log(m)|p
respectively.

4.1 EstimatingLog(m) and|Log(m)|
To satisfy Property 4,p must never overestimateLog(m) or
|Log(m)|. However, ifp underestimates|Log(m)|, it may then
needlessly piggyback determinants that are already stable,
making the messages on average significantly larger. By ex-
changing more information, processes can improve the accu-
racy of their estimates and avoid piggybacking useless data;
piggybacking this extra information can in turnmake themes-
sages significantly larger.

The most basic piece of information about|Log(m)| is
gainedwhenaprocessq delivers amessagem. Onceq delivers
m, q knows thatq ∈ Log(m). Further pieces of information
about|Log(m)| are piggybacked on messages. Three natural
pieces of information are:

#m Whenq receives#m fromp, processq cansafely infer that
Log(m) contains at least processp, processm.dest(the
original destination of messagem) and processq itself.

|Log(m)|p Upon receipt of|Log(m)|p, q can safely infer
that |Log(m)| is no smaller than|Log(m)|p. Whenq re-
ceives #m for the first time,q can further safely infer that
|Log(m)| must be at least equal to|Log(m)|p + 1, since
q itself could not be counted in|Log(m)|p. Note that this
scheme allowsq to infer a value for|Log(m)| safely with-
out knowing the identity of the processes inLog(m).

Log(m)p Upon receipt ofLog(m)p, processq can safely infer
thatLog(m)q must be at least equal to the union of the cur-
rent setLog(m)q andLog(m)p, and can update|Log(m)|q
accordingly. Using this scheme, when processp sends its
estimate ofLog(m) to processq, it is providingq with the
union of all the estimates relative toLog(m) computed by
the processes along the causal path that connects process
m.destto processp.

1 It is conceptually simple, though somewhat cumbersome, to gen-
eralize our discussion of FBL so that it implements a more general
version of Property 4, i.e. one that uses the more general predicate
¬stable(m) instead of|Log(m)| ≤ f . We use the latter in this paper
to simplify our exposition.

4 L. Alvisi et al.

Fig. 1. Log(m)pi and |Log(m)|pi for
ΠDet,Π|Log| andΠLog

One can define a protocol for each of these different
information-exchange schemes. Let

UnstableDLp(q)
def= {#m ∈ UnstableDLp : q �∈ Log(m)p}.

That is,UnstableDLp(q) is the the set of determinants in
UnstableDLp thatp does not knowq already has. Letp send
a messagem′ to q. The three protocols piggyback as follows:

ΠDet Processp piggybacksUnstableDLp(q) onm′.
Π|Log| For each determinant #m inUnstableDLp(q), process

p piggybacks both #m and|Log(m)|p onm′.
ΠLog For each determinant #m in UnstableDLp(q), process

p piggybacks both #m andLog(m)p onm
′.

Furthermore, for each of these three protocols, whenp
receives an acknowledgement fromq for messagem′, p adds
q to Log(m) for each determinant#m piggybacked onm′.

The causal message-logging protocol Manetho [10] is es-
sentiallyΠDet with f = n. That is, Manetho assumes that
total failures are possible, which means that a determinant
never becomes stable2.

Hence, a process piggybacks#m on a messagem′ to q
whenp has a copy of#m andp does not know thatq has a
copy of#m. [8]

In the three protocols defined above, a process piggy-
backs information toq only about determinants that are in
UnstableDLp(q). To disseminate more quickly that a deter-
minant has become stable, however, a process can piggyback
additional information. The following three protocols, which
are analogous toΠDet,Π|Log| andΠLog, piggyback such in-
formation. Supposep sends a messagem′ to q. The three
protocols piggyback as follows:

Π+
Det Processp piggybacks the same data as inΠDet. In
addition,p informsq of which determinants inDLp have
become stable.

2 This is because we equatestable(m) with |Log(m)| ≤ f . In
Manetho, as in any message logging protocol, a determinant can
always be made stable by writing it to any other suitable implemen-
tation of stable storage,e.g.a disk.

Π+
|Log| Processp piggybacks the same data as inΠ|Log|.And,
if |Log(m)|p has increased since the last timep piggy-
backed #m to q, thenp piggybacks|Log(m)|p onm′.

Π+
Log Processp piggybacks the same data as inΠLog. In
addition, if Log(m)p has increased since the last timep
piggybacked #m to q, thenp piggybacksLog(m)p onm

′.

4.2 Comparison of the protocols

The six protocols piggyback different amounts of information
and estimateLog(m) and |Log(m)| differently. We examine
these differences below.

4.2.1 Accuracy ofLog(m)p and|Log(m)|p
The execution shown in Fig.1 illustrates the differences be-
tweenΠDet,Π|Log| andΠLog with respect to how accurately
they estimateLog(m) and |Log(m)|. For each deliver event
executed by processpi and for each of the three protocols, we
showLog(m)pi

and|Log(m)|pi
.

Through the receipt of messagem3, the three protocols
yield the same estimates ofLog(m) and |Log(m)|. Oncep3
receivesm4, however, the three protocols compute different
estimates forLog(m) and|Log(m)|:
ΠDet Upon receipt of the copy of #m piggybacked on mes-

sagem4, processp3 concludes that, in addition to itself,
Log(m)must include at least processp1 = m4.sourceand
processp2 = m.dest. Processp3 thus setsLog(m)p3

=
{p1, p2, p3}, and|Log(m)|p3

= 3.
Π|Log| As in the previous case, processp3 setsLog(m)p3

to
{p1, p2, p3}. However, since this is the first time thatp3
receives #m, p3 was not inLog(m) when p1 sentm4.
Since|Log(m)|p1

= 3, p3 can infer that|Log(m)|must be
at least 4.

ΠLog Processp3 receivesLog(m)p1
in addition to #m. It then

concludes thatLog(m)must includeat leastp1, p2, p3, and
p4 and that|Log(m)| ≥ 4.

Causality tracking in causal message-logging protocols 5

Fig. 2. Comparison ofΠLog and
Π+

Log for f = 3

s

Fig. 3. A parallel solution to the Synthetic Aperture
Radar problem

AlthoughΠLog provides a more accurate assessment of
Log(m), bothΠ|Log| andΠLog allow processp3 to conclude
that |Log(m)| ≥ 4. The benefits of the extra information ex-
changed by protocolΠLog become evident when processp5
receives messagem5, at which pointΠLog has the most ac-
curate determination of|Log(m)|.

ProtocolsΠ+
Det, Π

+
|Log| andΠ

+
Log are similar toΠDet,

Π|Log| andΠLog, but can provide better estimates ofLog(m)
and|Log(m)|. An example illustrating the difference between
ΠLog andΠ

+
Log is given in Fig.2.Assumef = 3. Determinant

#mbecomes stablewhenp5 receivesm3.WithProtocolΠLog,
whenp5 subsequently sendsm4 top3, #m is not piggybacked,
and therefore messagem4 does not carryLog(m)p5

. With

ProtocolΠ+
Log instead,p5 piggybacksLog(m)p5

even if #m
is already stable. Hence, using ProtocolΠLog a messagem5
sent byp3 to p1 will contain a piggybacked value of #m,
while using ProtocolΠ+

Log it will not. Similar scenarios can
be constructed with the other two pairs of protocols.

Consider again the execution shown in Fig.1. As long as
|Log(m)| is small, the protocols have the same estimates of
Log(m). This suggests that for small values off , one should
useΠDet because it piggybacks the least possible amount
of information per message. We examine this hypothesis in
Sect.4.2.2. There are applications, however, with whichΠDet

performsaswell asΠLog even for large values off . For exam-
ple, Fig.3 shows an application for whichΠDet does as well
asΠ+

Log whenf = n. The application is a parallel solution
to the SyntheticAperture Radar problem (SAR) [15] in which

radar echoes, collected by aircraft or spacecraft, are used to
construct terrain contours. The steps necessary for producing
high-quality images from SAR data consist of the following
sequence of computations: two-dimensional discrete Fourier
transform, binary convolution, two-dimensional inverse dis-
crete Fourier transform, and intensity level normalization for
visualization. For our purposes, however, the important prop-
erty to note is that data flows in a particular manner.

To characterize a set of applications for whichΠDet

performs as well asΠ+
Log, we represent an application’s pat-

ternof communicationwithachannel graph. Foragivenappli-
cation, its associated channel graph is a directed graph. Nodes
are used to represent processes as well as sources of applica-
tionmessages received from the environment and destinations
of applicationmessages sent to the environment, and edges are
used to represent the direction that application messages are
sent.

Definition 1. A channel graph isshortcut-freeif it is acyclic
and for all pairs of nodesi and j, all paths fromi to j have
the same length.

The channel graph of Fig.3 is shortcut-free. The following
theorem characterizes one set of applications for whichΠDet

performs as well asΠ+
Log whenf = n.

Theorem 1. Letf = n. Given a shortcut-free channel graph,
for any runρ, ProtocolΠDetpiggybacks on each message the
same determinants as ProtocolΠ+

Log.

6 L. Alvisi et al.

r

q

p

Fig. 4. The channel graph obtained assuming thatΠ+
Log estimates

Log(m)pi
better thanΠDet

Proof. Whenf = n the antecedent of Property 4 is trivially
true, and so with any FBL protocol a processpwill piggyback
a determinant#m when sending a messagem′ to q if and
only if p ∈ Depend(m) andq �∈ Log(m)p. Whether or notp
is inDepend(m) does not depend on the specifics of a partic-
ular FBL protocol, but is determined solely by the application
messages. Hence, we can prove the theorem by showing that
q �∈ Log(m)p underΠDet if and only if q �∈ Log(m)p under

Π+
Log.
Assumeq �∈ Log(m)p underΠ

+
Log. SinceΠ

+
Log piggy-

backs a superset of the information piggybacked byΠDet,
p underΠ+

Log will estimateLog(m) at least as accurately as
ΠDet: Log(m)p underΠDet is a subset ofLog(m)p under

Π+
Log. Hence,q �∈ Log(m)p underΠDet.
Assumeq �∈ Log(m)p underΠDet. For q ∈ Log(m)p to

hold underΠ+
Log, there must exist a causal path from node

q to nodep carrying this information. This path cannot be
made solely of application messages, or the channel graph
would contain a cycle and therefore would not be shortcut-
free. Hence, the dependency must have been carried by an
acknowledgement from processq to a third processr. Fur-
thermore,r �= p sinceΠDet andΠ

+
Log do not differ in how

they use acknowledgements to estimateLog(m) and by as-
sumption underΠDet q �∈ Log(m)p. Furthermore, sinceq
sent an acknowledgement tor, an application message was
sent byr to q. We conclude that in order forq to be a member
of Log(m)p underΠ

+
Log the channel graph must contain (i)

an edge fromr to q, (ii) a path fromr to p, and (iii) an edge
from p to q.

Figure 4 shows such a channel graph. To show that this
graph cannot be shortcut-free, we observe that there are two
paths of different length that connectr andq: the first consists
only of the edge fromr to q while the second goes throughp.

We conclude that for all shortcut-free channel graphs, if
ΠDet estimates thatp �∈ Log(m)p, then so doesΠ

+
Log. ��

4.2.2 Piggyback overhead

Protocols likeΠDet that exchange less information may dra-
matically underestimateLog(m) and|Log(m)|, possibly lead-
ing to excessive piggybacking of #m. On the other hand, by
piggybacking less information, the piggyback load per mes-
sage may be smaller. Hence, there is a trade-off between the
amount of information carried in each message versus the

number of unnecessary piggybacks. This trade-off is com-
plex, since it depends both on the application’s pattern of
communication and on the network’s responsiveness in de-
livering acknowledgements: we explore it in detail in Sect.5.
Even a simple qualitative analysis, however, shows that, while
for ΠDet, Π|Log|, andΠLog the amount of piggybacked in-
formation is proportional to the numberD of determinants
UnstableDLp(q), for Π+

Det, Π
+
|Log|, andΠ

+
Log this informa-

tion may in the worst case be proportional to the numberN
of determinants inDLp(q).

In the worst case, bothD andN can only be bound by the
total number of delivery events that causally precede the send-
ing ofm. Thus, the extra information sent byΠ|Log|,Π

+
|Log|,

ΠLog andΠ
+
Log doesnotworsen the theoretical asymptotically

worst case behavior of FBL protocols. In practice, however,
whenD is large, adding an extra piggyback proportional toD,
asΠ|Log| andΠLog do, can result in significant extra overhead.
Furthermore, even whenD is small,N is most likely large,
makingΠ+

Det, Π
+
|Log| andΠ

+
Log appear even less practical.

Hence, it could be advantageous to represent the extra infor-
mation using a data structure whose size is independent ofD
orN .

ProtocolΠ|Log| can be easily modified to achieve this goal
by sorting the determinants #m′ piggybacked onm according
to |Log(m′)|. One can then, for example, also piggyback anf
element arrayx wherex[i] is the number of determinants that
have|Log(m′)|. The arrayx can also be run encoded should it
be sparse. The resulting version ofΠ|Log| piggybacks nomore
thanf additional words thanΠDet, an amount which is inde-
pendent ofD. A drawback of this approach, however, is that
determinants sorted in this manner are not suitable for some
of the compression techniques described in [2,3], which can
dramatically reduce the size of the piggyback. Furthermore,
while this this approach can also be applied toΠ+

|Log|, it can

not be applied toΠLog orΠ
+
Log.

In the next section we introduce a data structure, called a
dependencymatrix, that allowsus to implementΠ+

Det,Π
+
|Log|,

andΠ+
Log with an incremental cost overΠDet that is indepen-

dent ofD orN .

4.3 Dependency tracking

We know from Property 4 that as long as|Log(m)| ≤ f , each
process ensures thatDepend(m) ⊆ Log(m). Hence, a pro-
cess can useDepend(m) to estimateLog(m). We can take
advantage of techniques for tracking dependencies to com-
puteDepend(m). The most widely-used technique is based
onvector clocks[16].

A vector clock is ann-element vector that counts the num-
ber of relevant events in the causal past of a process for some
definition of relevant. LetVp be the vector clock associated
with processp. The valueVp[p] counts the number of relevant
events thatp has executed, andVp[q], q �= p counts the num-
ber of relevant events thatp knows thatq has executed. Hence,
given two relevant eventsep of processp andeq of processq,

ep → eq ≡ Vp(ep)[p] ≤ Vq(eq)[p] (5)

whereVp(ep) andVq(eq) are the vector clocks of processp
andq when they executeep andeq respectively.

Causality tracking in causal message-logging protocols 7

Vector clocks are easy to implement. When a processp
executes a relevant event, it incrementsVp[p]. And, when
it executesreceivep(m), then∀r : 1 ≤ r ≤ n, r �= p :
Vp(receivep(m))[r] is set to the maximum ofp’s previous
value forVp[r] andVq(sendq(m) to p)[r]. This second rule
requires the sending processq to piggyback the current value
of its vector clock onm.

Strom andYemini [23] were the first to use vector clocks
with message logging when they introduced the notion of a
dependencyvector.AdependencyvectorDVp is a vector clock
where the relevant events are delivery events. Specifically,

• DVp(e)[p] is the index of the state interval that contains the
evente. This is the same as the receive sequence number
of the last message delivered byp through the execution
of e.

• DVp(e)[q] is the highest index of any state interval of pro-
cessq that processp depends upon through the execution
of evente.

Specializing Equation 5 to dependency vectors, we get:

deliverp(m) → deliverq(m′) ≡
DVp(deliverp(m))[p] ≤ DVq(deliverq(m′))[p] (6)

Dependency vectors track arbitrary dependencies between
delivery events. In the context of FBL, we are interested in
determining which processes depend on eventdeliverp(m)
only when|Log(m)| ≤ f . We therefore define an abstraction,
which we callweak dependency vectorWDV, that satisfies the
following weaker version of Condition 6:

deliverp(m) → deliverq(m′) ∧ |Log(m)| ≤ f ⇒
WDVp(deliverp(m))[p] ≤ WDVq(deliverq(m′))[p] (7.a)

WDVp(deliverp(m))[p] ≤ WDVq(deliverq(m′))[p] ⇒
deliverp(m) → deliverq(m′) (7.b)

whereWDVp andWDVq are the weak dependency vectors of
processp andq respectively.

From the definition ofDepend(m), the Properties 7.a and
7.b, and thatDepend(m) ⊆ Log(m) it follows that, for any
given messagem for which |Depend(m)| ≤ f one can deter-
mine if q is inDepend(m) from q’s current weak dependency
vector. In particular, the following conditions hold:

q ∈ Depend(m) ∧ |Depend(m)| ≤ f ⇒
WDVq[m.dest] ≥ m.rsn (8.a)

WDVq[m.dest] ≥ m.rsn ⇒ q ∈ Depend(m) (8.b)

One can define useful vector clocks that are weaker than
weak dependency vectors. For example, it is useful to define
a vector clockPBC(m) that is constructed from the set of
determinants piggybacked on amessagem. This vector clock,
which only satisfies Condition 8.b, is constructed as follows:

PBC(m)[p]def=

� where� is the largest value ofm′.rsn
for all determinants #m′ piggybacked
onm such thatm′.dest= p

0 if there is no such determinant

AnelementPBC(m)[p]maybezero for three reasons: (1) there
are no messagesm′ for which p ∈ Depend(m′); (2) for all

such messages|Depend(m′)| > f ; (3) for all such messages
p knows thatq ∈ Log(m′). If the first reason holds for all
zero elements, thenPBC(m) is a dependency vector, and if
either the first or second reason hold for all zero elements,
thenPBC(m) is a weak dependency vector.

Dependency tracking proceeds as follows. Each process
p ∈ N maintains ann×n dependencymatrix DMatp, defined
as follows3:

• DMatp[p, ∗] is the weak dependency vector of processp.
• DMatp[q, ∗] is processp’s estimate of the weak depen-
dency vector of processq.

for q ∈ (N −{p}) and whereDMatp[i, ∗] denotes theith row
of matrixDMatp.

A processp’s estimate of the weak dependency vector of
another processq will lag behindq’s actual weak dependency
vector, and soDMatp[q, ∗]will not in general be able to satisfy
Condition 8.a. However, it is straightforward to design update
rules that satisfy Condition 8.b. Here is one such set of rules:

1. When processp receives a messagem from q:
(a) p incrementsDMatp[p, p] by one.DMatp[p, p] is now

the value of the receive sequence number ofm. This
is the vector clock update rule used when a process
executes a relevant event.

(b) p setsDMatp[p, ∗] to the component-wisemaximumof
the current value ofDMatp[p, ∗] and ofPBC(m). This
is the vector clock update rule used when a process
receives a piggybacked vector clock.
Even thoughPBC(m) is weaker than a weak depen-
dency vector, the new value ofDMatp[p, ∗] is still a
weak dependency vector. As noted above, a compo-
nentPBC(m)[q] can be zero for three different rea-
sons. If one of the first two reasons hold, then for that
componentPBC(m) is a weak dependency vector. If
the third reason holds, thenq has already piggybacked
the non-zero value of this component that would make
it a weak dependency vector.

(c) psetsDMatp[q, ∗] tobe thecomponent-wisemaximum
of the current value ofDMatp[q, ∗] and ofPBC(m).
Doing so ensures thatp’s estimate ofq’s dependency
vector is up to date.As above, even thoughPBC(m) is
not a weak dependency vector, the resulting value of
DMatp[q, ∗] is a weak dependency vector.

(d) For all values ofi : 1 ≤ i ≤ n, p setsDMatp[i, i] to the
maximum ofDMatp[i, i] andPBC(m)[i]. This is done
becausep may learn about some processi reaching
a state interval indirectly fromq rather than directly
from i.

2. When processq receives an acknowledgement for mes-
sagem from p, it setsDMatq[p, ∗] to be the component-
wise maximum of the current value ofDMatq[p, ∗] and
PBC(m).

Given Condition 8.b, it is simple forp to estimate
Depend(m)and thereforeLog(m):Log(m)p contains the pro-
cessesq such thatDMatp[q,m.dest] is at leastm.rsn.And, pro-
3 Because the order of events executed by a processor is in fact a

total order, it is also straightforward to construct a dependencymatrix
that has sizenP × nP wherenP is the number of processors in the
system [4].

8 L. Alvisi et al.

cessp can consider #m to be stable when more thanf entries
of DMatp[∗,m.dest] are greater than or equal tom.rsn.

The set of rules given above implements ProtocolΠDet.
In the next section we describe three more sets of rules that
implementΠ+

Det,Π
+
|Log| andΠ

+
Log.

4.4 Piggybacking the dependency matrix

As it turns out, it is simpler to present the set of rules that
implementΠ+

Det,Π
+
|Log| andΠ

+
Log by starting from the last

protocol and working our way backwards to the first. The
reason lies in the observation that the dependency matrix of
processq can be used to computeLog(m)q for all messages
m for which q is a member ofDepend(m). So, to implement
Π+

Log, q can simply piggyback its dependencymatrix on every
message it sends.

4.4.1 ImplementingΠ+
Log

The update rules forΠ+
Log are as follows:

1. When processp receives a messagem from q:
(a) p incrementsDMatp[p, p] by one.DMatp[p, p] is now

the value of the receive sequence number ofm.
(b) p setsDMatp[p, ∗] to the component-wise maximum

of the current value ofDMatp[p, ∗] and ofDMatq[q, ∗].
(c) For all values ofi : 1 ≤ i ≤ n, p setsDMatp[q, ∗] to

the component-wise maximum of the current value of
DMatp[i, ∗] and of the piggybacked valueDMatq[i, ∗].

2. When processq receives an acknowledgement for mes-
sagem from p, it setsDMatq[p, ∗] to be the component-
wise maximum of the current value ofDMatq[p, ∗] and of
PBC(m).

The resulting protocol implementsΠ+
Log and piggybacks

n2 additional data overΠDet, which is independent of the
number of determinants in bothDLp andUnstableDLp.

4.4.2 ImplementingΠ+
|Log|

A second set of update rules can be used to derive an imple-
mentation ofΠ+

|Log| that is analogous toΠ|Log| and that pig-

gybacksO(f × n) additional data per message. Consider the
following data structure that is extracted from the dependency
matrix:

Stability Matrix: SMatp is a(f + 1) × n matrix of integers.
For all processesq inN ,SMatp[i, q] is the highest receive
sequence number of any messagem delivered byq for
which |Log(m)|p = i.

The stability matrix is a compact way of representing
|Log(m)|p. Specifically, if|Log(m)|p = i then

i > f whenm.rsn≤ SMatp[f,m.dest]
1 ≤ i ≤ f whenSMatp[i + 1,m.dest] < m.rsn

andm.rsn≤ SMatp[i,m.dest]

The stability matrix can be computed directly from the depen-
dency matrix. Consider the columnDMatp[∗, q]. The values
in this column are a multi-set4 of receive sequence numbers
for messages that were delivered byq. Let� be the first largest
value in thismulti-set.� is also the receive sequence number of
the lastmessage thatpknowsq hasdelivered.Thus, for allmes-
sagesm delivered byq, if if m.rsn ≤ � then|Log(m)|p ≥ 1
and ifm.rsn> � then|Log(m)|p = 0. Thus,SMatp[1, q] = �.
Generalizing this observation,SMatp[i, q] is the ith largest
value ofDMatp[∗, q].

In protocolΠ+
|Log|, all processes piggyback their stability

matrix instead of their dependency matrix. Doing so allows a
processp to compute a more accurate value ofSMatp. The set
of update rules is:

1. When processp receives a messagem from q:

(a) p incrementsDMatp[p, p] by one.DMatp[p, p] is now
the value of the receive sequence number ofm.

(b) Consider a determinant #m′ piggybacked onm. If
m′.rsn > DMatp[p,m′.dest] thenp is receiving #m′
for the first time. Call such a determinantnew top.
For any determinant #m′ new to p, p �∈ Log(m′)q

and so|Log(m′)|p is set to|Log(m′)|q + 1. Processp
computes a new valueSMatq ′ of SMatq that reflects
this fact. Specifically,p first setsSMatq ′ to SMatq.
Then, for each determinant #m′ new to p, let s be
|Log(m′)|q as computed from the piggybacked sta-
bility matrix, i.e., SMatq[s + 1,m′.dest] < m′.rsn
andm′.rsn ≤ SMatq[s,m′.dest]. p setsSMatq ′[s +
1,m′.dest] tomax(SMatq ′[s + 1,m′.dest],m′.rsn).

(c) p setsDMatp[p, ∗] to be the maximum of the current
value ofDMatp[p, ∗] and ofPBC(m).

(d) p setsDMatp[q, ∗] to the component-wise maximum
of the current value ofDMatp[q, ∗] and ofPBC(m).

(e) For all values ofi : 1 ≤ i ≤ n, p setsDMatp[q, i] to be
the component-wise maximum of the current value of
DMatp[q, i]andofPBC(m)[i].Thisbringsp’s estimate
of q’s weak dependency vector up to date.

(f) For all values ofi : 1 ≤ i ≤ n, p setsDMatp[i, i] to
the maximum value ofDMatp[i, ∗].

(g) p setsSMatp[i, q] to the larger of its current value and
of the ith largest value ofDMatp[r, q] for all r ∈ N .
This is the rule given above for generating a stability
matrix from a dependency matrix.

(h) Finally, for all values ofi : 1 ≤ i ≤ n, p sets
SMatp[i, ∗] to the component-wise maximum of the
current value ofSMatp[i, ∗] and the modified version
of the piggybackedSMatq ′[i, ∗] obtained from rule (b).

2. When processq receives an acknowledgement for mes-
sagem from p, it setsDMatq[p, ∗] to be the component-
wise maximum of the current value ofDMatq[p, ∗] and of
PBC(m).

4 A multi-setS is a set in which the same value may occur more
thanonce.Thekth largestvalue inS is defined recursively as follows:
the first largest value inS is the largest value that occurs inS, and the
kth largest value inS is the(k − 1)st largest value of the multi-set
of S with the first largest value removed. Thus, the first and second
largest values of{2, 1, 2} are both 2, and the third largest value is 1.

Causality tracking in causal message-logging protocols 9

4.4.3 ImplementingΠ+
Det

ProtocolΠ+
Detrequires processp to inform q of which deter-

minants have become stable. Recall that for each processj,
SMatp[f +1, j] is the highest receive sequence number of any
message delivered byj thatp knows to be stable (i.e. thatp
knows to have been logged by at leastf+1 processes). Hence,
p can fulfill its requirement simply by piggybacking rowf +1
of its stability matrix on themessages it sends toq.We call the
vector corresponding toSMatp[f + 1, ∗] processp’s stability
vector, orSVp.

In addition to the steps (a)—(d) ofΠDet, in protocol
Π+

Deta processp that receives a messagem from q takes the
following steps:

(e) For all values ofi : 1 ≤ i ≤ n, p setsSVp[i] to the
f +1st largest value inDMatp[∗, i], thei-th column ofp’s
dependency matrix.

(f) For all values ofi : 1 ≤ i ≤ n, p setsSVp[i] to the
component-wise maximum of the current value ofSVp[i]
and the piggybackedSVq[i].

Π+
Det’s management of acknowledgements is identical to that

ofΠDet.
Π+

Det uses the stability vector to get a more accurate esti-
mate of which determinants should be part ofUnstableDLp.
For such a determinant #m, both of the following condi-
tions must hold: (1)f or fewer entries ofDMatp[q,m.dest]
are greater thatm.rsn (just as inΠDet), and (2)m.rsn >
SVp[m.dest].

5 Comparing piggyback overheads

We start our comparison of the different protocols by examin-
ing their asymptotic piggyback overheads. These bounds are
expressed in terms of the numberD of determinants piggy-
backed on the message and the sizew of a determinant. These
two values are not independent:w must be larger than the log
of D. In the worst caseD can be as large as the number of
receive events any process can execute. Additionally,w must
be larger thanlog(n) since the determinant encodes the source
and destination of a message, but it is not hard to imagine runs
inwhichD ismuch larger thann. (In any real implementation,
w is most likely a constant, such as 64 bits.)

• ΠDet: only the determinants are added, and so the over-
head isO(Dw).

• Π|Log|: with each piggybacked determinant for somemes-
sagem′ the estimate|Log(m′)| is included. Since we
can express this estimate inlog(f) bits, the overhead is
O(D(w + log(f))).

• ΠLog: with each piggybacked determinant for some mes-
sagem′ the estimateLog(m′) is included. This estimate
cannot include more thanf process ids, and so the over-
head isO(D(w + f log(n)).

• Π+
Det: the stability vector is piggybackedoneachmessage.

A stability vector containsn elements, where each element
is a receive sequence number. If we usew bits to represent
a receive sequence number, then the overhead isO((D +
n)w).

• Π+
|Log|: the stability matrix is piggybacked on each mes-

sage. Again, if we usew bits to represent a receive se-
quence number, then the overhead isO((D + nf)w).

• Π+
Log: thedependencymatrix is piggybackedoneachmes-

sage. Again, if we usew bits to represent a receive se-
quence number, then the overhead isO((D + n2)w).

At this level of abstraction onemight tempted to conclude,
for example, thatΠ|Log| should be a better choice thanΠDet

because the former tracks causality better while piggybacking
only a logarithmic number of bits more per determinant than
the latter. And, given thatD can be huge, the last three pro-
tocols appear attractive because the additional number of bits
used to increase the precision of causal tracking over than of
ΠDet is independent ofD. Whether these observations hold
in practice, though, depends strongly on the communication
pattern exhibited by the application.

To understand the relative performance of the different
protocols, we developed a synthetic application model that
we call theBBL application model. This model specifies
how bursty communication is (burstiness), what percentage
of the total number of processes process communicates with
(branchiness), and how slowly acknowledgements return (la-
tency). We construct synthetic applications for different com-
binations of these three parameters. For each constructed ap-
plication, we measure the piggyback overhead for each pro-
tocol for different values off .

We then construct three other synthetic applications not
within the BBLmodel and again measure the piggyback over-
head for the FBL protocols. These three applications have
communication structures that resemble specific system struc-
tures.

5.1 The BBL model

The BBL communication model is similar to other models
that have been proposed (for example, [3,7,21]). The model
assumes that processes do not crash and that channels are reli-
able and maintain FIFO ordering. Each process alternates be-
tween two stages of operation: acommunication stageduring
which the process sends messages, and acomputation stage
during which the process receives and acknowledges mes-
sages. During any communication stage a process never sends
more than one message to any other process. The processes
to which processp sends messages in a run are called the
neighborsof p for that run.

The model is parameterized by the five-tuple〈n,M , bu,
br, l〉 wheren is the number of processes in the system and
M is the total number of messages sent in the system. The
value ofbr determines the size of the set of neighbors. At the
beginning of each run, each processp is assigned a random set
of neighbors. This size of this set is pulled from a restricted
uniform distributionn × U(br).5 For example, if the random
5 The restricted uniform distributionU(m) is a uniform distribu-

tion that has an expected value ofm and a maximum value of2m:
m = 0.5 : the uniform distribution from 0 to 1

0 < m < 0.5 : the uniform distribution from 0 to2m
0.5 < m < 1 : the uniform distribution from2m − 1 to 1

10 L. Alvisi et al.

variablebr = 0.1, then on average each process will have as
neighbors 10% of the remaining processes.

The value ofbu determines the number of messages a pro-
cess sends in each communication stage. Specifically, letbup,i

be a random variable that indicates the fraction of neighbors
to which processp sends messages during theith communi-
cation stage. The value ofbup,i is pulled from the restricted
uniform distributionU(bu). For example, ifbr = 0.1 and
bu = 0.5, then on average each process will send messages
to 5% of the other processes during each communications
stage. The message recipients are selected randomly without
replacement from the process’ neighbors.

The value ofl models the speed of the underlying com-
munication system. This parameter determines how quickly,
on average, acknowledgement are received by the sender. The
time is measured in terms of the number of events the sender
executes between sending the message and receiving the ac-
knowledgement. Specifically, letlp,i be a random variable that
determines the number of events processed byp before it re-
ceives the acknowledgement for theith message that it sent.
The value of this random variable is pulled from the restricted
uniform distribution�2n ∗ U(l)�.

Consider a point in the five-dimensional space that has co-
ordinatesn,M, bu, br, andl. Let acommunication graphbe
a run of a synthetic application, represented as a partial order-
ing of events of then processes and generated stochastically
from a distribution defined by the tuple〈n,M, bu, br, l〉. By
generatingmany communication graphs for different points in
this space, we can evaluate the performance of the message-
logging protocols as a function of the parameters of themodel.

Wefixed thenumberof processesnat 10and thenumberof
messagesM at 500.We found that larger values ofM did not
significantly change our evaluation. Thus, the space is reduced
to a 3-dimensional subspace of the original model with axes
bu, br, andl, whose values range from 0 to 1.We examine the
64 points(.2, .4, .6, .8)× (.2, .4, .6, .8)× (.2, .4, .6, .8) in this
subspace.

We generated 21 communication graphs for each of these
64 points and ran each of the six causal logging protocols with
four values off ∈ {2, 3, 4, 9}. This resulted in over 32,000
runs. The performance of the protocols at each point in the
application space was averaged over the 21 communication
graphs. The results presented are accurate to 95% confidence.
Weusesmall valuesoff since for real systemsof tenprocesses
the probability of having more than a few failures at any time
is very small. We includef = 9 since this allows recovery
from total failures.

Table 1 summarizes the parameters of the BBL model.

5.1.1 Exploring the BBL space

Π+
Det,Π

+
|Log|, andΠ

+
LogaugmentΠDet,Π|Log|, andΠLog by

sending information about stable determinants. Two questions
regarding these protocols are:
1. Howmuch does information about stable determinants re-
duce the number of piggybacked determinants?

2. Does this reduction in determinants, if any, lead to a re-
duction in the overall number of bits piggybacked?
Figure 5 shows summary statistics for each protocol av-

eraged over the sampled application space. The first graph

Table 1.Parameters of the BBL model

symbol meaning values used

n number processes 10

M number messages sent in run 500

bu communication burstiness 0.2, 0.4, 0.6, 0.8

br communication branchiness 0.2, 0.4, 0.6, 0.8

l communication latency 0.2, 0.4, 0.6, 0.8

a Number of piggybacked
determinants

b Number of piggybacked bits

Fig. 5a,b. A comparison of the performance of the standard vs.
“plus”’ protocols

shows the average number of determinants piggybacked over
the course of the run. ProtocolsΠ+

Det, Π
+
|Log|andΠ

+
Logsend

6.3%, 9.1% and 10.6% fewer determinants respectively than
the corresponding standard protocol. This shows that the extra
information that these protocols send is useful. However, as
Fig.5b shows, the cost of sending this extra information can
far exceed the benefit. ProtocolΠ+

Det sends 6.9% more bits
than protocolΠDet. ProtocolsΠ

+
|Log|andΠ

+
Logsend 59.8%

and 100.1% more bits than their corresponding standard pro-
tocol.

Recall that protocolsΠ+
Det, Π

+
|Log|, andΠ

+
Logadd fixed

sizeddata structures toeachmessage.ForΠ+
Det this data struc-

ture is a vector of sizen, for Π+
|Log|a matrix of sizef × n,

and forΠ+
Loga matrix of sizen

2. Assumingn = 10 and 32
bit words, this overhead is between 320 and 3,200 bits. Since
500 messages are sent in a run, the accumulated overhead is
between 160,000 and 1,600,000 bits. The latter value, which
is the overhead ofΠ+

Log, accounts for 61.5% of the average
number of bits sent. This overhead is directly related to the
O(n) size of vector clocks, which has been shown to be a
lower bound [20]. So, at least for the part of the BBL space
that we consider,Π+

|Log|andΠ
+
Logare not competitive.

To understand the relative performance of the protocols
we compared them as follows: for each point sampled in the
BBL space, we counted the number of times one protocol sig-
nificantly outperformed the other. One protocol significantly
outperformed the other when it piggybacked on average fewer
bits and the 95% confidence intervals did not overlap. Table 2
shows thepairwise comparisonof the six protocols.Thevalues
in the table represent the number of points in the BBL space
where the protocol in the column outperformed the protocol
in the row. For example, the value of 43 in the first column,
second row, is the number of points at which protocolΠDet

piggybacked on average significantly fewer bit than protocol
Π+

Det.

Causality tracking in causal message-logging protocols 11

Table 2.Pairwise comparison of the relative performance of the pro-
tocols as measured by the total number of bits piggybacked

ΠDet Π+
Det Π|Log| Π+

|Log| ΠLog Π+
Log

ΠDet - 0 0 0 0 0

Π+
Det 43 - 25 0 25 0

Π|Log| 0 0 - 0 0 0

Π+
|Log| 256 256 256 - 256 24

ΠLog 59 20 56 0 - 0

Π+
Log 256 256 256 192 256 -

These results again show thatΠ+
|Log|andΠ

+
Logarenot com-

petitive with the other protocols. (The table also shows that,
overmost of the space,Π+

|Log|outperformsΠ
+
Log.Weexpected

this for smallf but not forf = 9). Because they are not com-
petitive, we exclude protocolsΠ+

|Log|andΠ
+
Logfrom the rest

of the discussion and concentrate on the performance of the
four remaining protocols.

ProtocolΠDet. Table 2 shows that over all the points sam-
pled, no protocol ever piggybacks significantly fewer bits than
ΠDet. This suggests that if no knowledge about the applica-
tion’s characteristic is known thenΠDet is a good choice.We
therefore useΠDet as our baseline protocol.

The regression equation for the number of bits piggy-
backed byΠDet is:6

number of bits= 237, 000bu + 481, 100br − 4942l
+860, 100(f/10) + Cdet.

The R-Squared significance test of this regression of 0.63.
This regression equation suggests that the performance of

ΠDet is dominated by the value off for the protocol. Recall
that Manetho is essentiallyΠDet instantiated withf = n.
Since there is no difference in the number of piggybacked bits
for f = n − 1 andf = n,7 ΠDet piggybacks forf = 9
the same number of bits as Manetho. However, given the high
sensitivity tof , ΠDet appears to piggyback much fewer bits
than Manetho whenf is small.

Figure 6 examines this issue. In this figure, we compare
the number of piggybacked bits ofΠDet and Manetho as a
function off . The figure shows that forf = 2, protocolΠDet

sends 47% fewer bits thanManetho. These performance gains
decrease asf increases. As we show in Sect.5.2, this is an
artifact ofn being relatively small: withΠDet’s relative inac-
curacy in tracking causality, it does not take long for a deter-
minant to be piggybacked to a substantial fraction of the ten
processes.

The regression equation also shows thatΠDet is relatively
insensitive to the latency of the underlying communication
system, and moderately sensitive to the size of the commu-
nication neighborhood and the burst frequency. This makes
sense intuitively. When the neighborhood size is small, pro-
cesses sendmoremessages to the same recipients, resulting in
tighter synchronization among them. Once a process has sent
6 We write the equation in terms of(f/10) rather thanf so that

the ranges of all of the independent variables are between 0 and 1.
7 In both cases, a processp piggybacks a determinant#m to q

whenq 	∈ Log(m)p.

Fig. 6.Piggyback overhead ofΠDet as function off , normalized to
Manetho’s piggyback overhead

a determinant to its neighbor, it never needs to send it to the
same neighbor again. When the size of the neighborhood is
small, the neighborhood quickly becomes saturated with the
determinant. The reasoning for the sensitivity tobu is similar.
When this parameter is high, processes broadcast messages to
a high percentage of their neighbors, therefore saturating their
neighborhood.

ProtocolΠ|Log|. The performance of protocolΠ|Log| is sta-
tistically indistinguishable from our baselineΠDet. The extra
integer per determinant piggybacked inΠ|Log| can reduce the
number of piggybacked determinants when the communica-
tion graph has long linear paths. In the sampled applications
there are few linear paths since each process sends messages
in each round. Overall,Π|Log| is able to send only 1.2% fewer
determinants thanΠDet, not enough to reduce the extra cost
associated with this protocol.

Onemight, in fact, argue fromTable 2 thatΠDet is slightly
better thanΠ|Log|, since there are 59 points whereΠDet sig-
nificantly outperformsΠLog and only 56 points whereΠ|Log|
significantly outperformsΠLog. Similarly,ΠDet does better
more often in comparison toΠ+

Det thanΠ|Log|.

ProtocolΠLog. Figure 5 shows that overall, the extra infor-
mation carried byΠLog reduces the number of piggybacked
determinants by over 10% as compared withΠDet. Looking
at the pairwise comparison betweenΠLog andΠDet, we see
that at 197 pointsΠLog is statistically indistinguishable from
ΠDet, andat 59pointsΠLog performssignificantlyworse than
ΠDet.

Figure7shows thebreakdownof the59pointswhereΠLog

performs poorly as a function off , br, bu and latency. This
figure shows that the performance ofΠLog as compared with
ΠDet is linearly correlated withbr. As br increases, there are
more cases whereΠLog performs poorly.

In addition,ΠLog is also affected by the value off . We
sampled 64 points forf = 2, and for 35 of theseΠLog per-
forms worse thanΠDet.

Figure 7 also shows that the performance ofΠLog is in-
dependent of the latency, and indeterminate with respect to
bu.

ProtocolΠ+
Det. Overall,Π

+
Det is indistinguishable fromΠDet

over most of the runs. In 43 of the 256 points,Π+
Det does

12 L. Alvisi et al.

Fig. 7.Performance ofΠLog

Fig. 8.Performance ofΠ+
Det

significantlyworse thanΠDet. Figure8 showshow the relative
performance varies as a function of each of the dimensions.

Like protocolΠLog,Π
+
Det is inversely sensitive tobr. Un-

like ΠLog, Π
+
Det seems to perform relatively better for low

values off .

5.2 The client/server model

The BBL model has the processes communicate asyn-
chronously in a bursty manner. While this is not unusual for
many scientific applications,manyother applications aremore
synchronous in their communications. Hence, we construct
three additional synthetic applications. Each application uses
40 processes.

CS1 This application has a client-server-like communication
structure. A process is chosen at random without replace-
ment from the 40 processes. The chosen process sends a

message to another process, again chosen randomly with-
out replacement. The message chain continues until 20
processes are selected. The twentieth process sends a reply
message to the nineteenth process. This reply chain con-
tinues until the first process receives a reply message. This
process of generating request and reply chains of depth 20
is repeated 20 times.

CS3 This application also has a client-server-like communi-
cation structure. Instead of generating chains of length 20,
though, this application generates ternary trees of depth
four (and hence, containing 40 processes).A non-leaf pro-
cess sends three messages, one each to three processes
chosen at randomwithout replacement.A leaf process im-
mediately sendsa reply to its parent, andanon-leaf process
sends a reply to its parent once it receives the three replies
from its children. The application generates 20 of these
trees.

SG This application has a group-based communication struc-
ture. A process is chosen at random without replacement.
The chosen process selects eight processes and sends each
of themamessagewithoutwaiting for acknowledgements;
thus, a degree-eight tree of depth one is constructed. Each
process sends a reply to the original process. When the
original process receives the eight replies, a new tree with
a randomly-chosen process is constructed.The application
generates 20 of these trees.

All three applications repeatedly generate trees, which are
trivially shortcut-free. Given this simple pattern, onemight be
tempted to conclude thatΠDet would be the best protocol.
However, as Figs.9 and 10 show,ΠLog performs significantly
better than the other protocols for all but the smallest values
of f . Each figure shows the piggyback overhead of the four
protocolsΠDet,Π|Log|,ΠLog andΠ

+
Det as a function off ∈

{2, 3, 10, 20, 30, 40}.
The reason for this behavior is that the communication

graph is in fact not a tree: a processp that receives a mes-
sage fromq in one iteration may in another iteration send a
message toq. A determinant may follow a very complex path,
which, as we saw in the BBL model, is a situation for which
ΠLog performswell. In addition, Manetho performs relatively
poorly both overall and in comparison withΠDet. It is not un-
til f = 20 thatΠDet effectively piggybacks determinants to
all processes.

For SG, however,ΠLog (andΠ
+
Det) do poorly.Π|Log| and

ΠDet have similar piggyback loads, withΠDet edging out
Π|Log| for larger values off . In fact, byf = 10 the piggyback
load for all protocols has reached 80% of their piggyback load
for f = n. In SG, the process at the root of each tree quickly
learns that the determinants it piggybacks are logged in at least
ninedifferent processes. For smaller valuesoff , the additional
information provided byΠ|Log| is helpful in spreading the fact
that these determinant are stable, but for larger values off
determinants spread quickly around the system, in which case
ΠDet does best.

Causality tracking in causal message-logging protocols 13

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

0 5 10 15 20 25 30 35 40

bi
ts

f

ΠΠDet

Π |Log|

Log

ΠDet
+

Fig. 9. Piggyback overhead
for CS1 as a function off

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 5 10 15 20 25 30 35 40

bi
ts

f

ΠΠDet

Π |Log|

Log

ΠDet
+

Fig. 10.Piggyback overhead
for CS3 as a function off

5.3 Discussion

The results of the simulations are specific to the application
models inwhich theywere run.Here, we give somegeneral in-
tuition that couldhelpapplicationprogrammers chooseamong
the protocols.

The “plus” protocols are theoretically attractive because
theyconveysomuch informationusinga representationwhose
size is independent from the number of determinants piggy-
backed on a message. The results from our simulations in-

dicate, though, that there are no situations whereΠ+
|Log|and

Π+
Logare appropriate.
ProtocolΠ|Log| performs very similarly toΠDet, and is

somewhat better when the average fanout of messages is low
andf is small. However, if it is known that the application
fanout is low, thenΠLog is a more logical choice since it does
much better in this case and is less sensitive tof .

These recommendations would most likely change for
larger values ofn and for other patterns of communications.
Another issue worth studying is how the results change with

14 L. Alvisi et al.

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 5 10 15 20 25 30 35 40

bi
ts

f

ΠΠDet

Π |Log|

Log

ΠDet
+

Fig. 11.Piggyback overhead
for SG as a function off

the frequency of checkpointing. The more frequent check-
pointing occurs, the more determinants can become stable via
checkpointing. Frequent checkpointing, though, imposes an
overhead both on storage and on computation.

6 Conclusions

In causal message logging protocols, each process tracks
causality to estimate both the number and the identities of pro-
cesses that store a copy of a determinant. We have shown that
the tradeoff between excess piggybacking due to inaccurate
causality tracking and the extra piggybacked information to
increase theaccuracyof causality tracking is both complexand
application specific. We have given some situations in which
the simplest of the FBL protocols is the best choice with re-
spect to piggyback overhead, and then given some heuristics
for when to use other protocols. The choice almost always
comes down between the simplest protocol,ΠDet, and one of
the more accurate protocols,ΠLog.

The piggyback overhead of causal logging can become
large, and so understanding how to reduce the piggyback over-
head is important. Further reduction can be accomplished by
compressing the information that is piggybacked (see, for ex-
ample, [3]). We don’t believe that such compression would
change the relative rankings we have found for the various
FBL protocols. If there is considerable locality in the commu-
nications patterns, though, then large parts of the dependency
matrix may not change very frequently, and so compression
of the dependency matrix based on difference encoding might
makeΠ+

Logcompetitive. This question (and the related one
concerning compression of the stability matrix) would be best
explored by considering real, rather than synthetic, applica-
tions.

Piggyback overhead is not the only metric with which
one could compare the different FBL protocols. For exam-
ple, the overhead of processing individual determinants may
makeprotocols likeΠ+

Logadvantageous.Amore detailed com-
parison, however, would most likely depend on very specific
environmental factors, such as the relative processor speed
with respect to the communication bandwidth and the over-
head (and hence the frequency) of checkpointing.

Putting these results in a broader context, causal message
logging protocols are related to causal multicast [25] which
in turn are related to global state detection [1,14]. All of these
protocols track causal dependencies to implement some level
of distributed knowledge about the execution history of some
application. For example, in [4] we showed how a causal mes-
sage logging protocol can be derived starting from causalmul-
ticast. And, iff = n then casual message logging ensures
that each process has stored locally all of the nondeterminis-
tic choices made in the causal past of that process. A simple
extension to causal message logging would allow a process to
have locally all “important” events in its causal past available
for debugging or for global state detection purposes. Hence,
the tradeoffs explored in this paper should be useful to those
studying other protocols that build upon causality tracking.

The simulator and the data we generated for the analysis
in this paper is available from the authors upon request.

Acknowledgements.We thank Bruce Hoppe and Fred Schneider for
their help in refining our ideas and bothWanda Chiu andAlessandro
Amoroso for their detailed comments on our work. We also thank
Elmootazbellah N. Elnozahy for his comments on an earlier draft of
this paper and for helping uswith implementation details ofManetho.
Finally, we thank the anonymous referees for their careful reading
and their constructive criticism of the original manuscript.

Causality tracking in causal message-logging protocols 15

References

1. S. Alagar, S. Venkatesan. An optimal algorithm for distributed
snapshots with causal message ordering. Inform Process Lett
50:311–316, June 1994

2. L. Alvisi. Understanding the Message Logging Paradigm for
Masking Process Crashes. PhD thesis, Cornell University De-
partment of Computer Science, January 1996

3. L. Alvisi, B. Hoppe, K. Marzullo. Nonblocking and Orphan-
Free Message Logging Protocols. In: Proceedings of the 23rd
Fault-Tolerant Computing Symposium, pp145–154, June 1993.

4. L. Alvisi, K. Marzullo. Message Logging: Pessimistic, Op-
timistic, Causal and Optimal. IEEE Trans Software Eng
24(2):149–159, February 1998

5. A. Borg, J. Baumbach, S. Glazer.AMessage SystemSupporting
FaultTolerance. In: Proceedingsof theSymposiumonOperating
Systems Principles, pp90–99. ACM SIGOPS, October 1983

6. K.M. Chandy, L. Lamport. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM Trans Comput Syst
3(1):63–75, February 1985

7. S. Chodnekar, V. Srinivasan, A.S. Vaidya, A. Sivasubramaniam,
C.R.Das.Towards aCommunicationsCharacterizationMethod-
ology for Parallel Applications. In: Proceedings Third Interna-
tional Symposium on High-Performance Computer Architec-
ture, pp310–319, February 1997

8. E.N. Elnozahy. Personal communication, 12 September 1997
9. E. N. Elnozahy, L. Alvisi, Y.M. Wang, D.B. Johnson. A Survey
of Rollback-Recovery Protocols in Message-Passing Systems.
Technical Report CMU-CS-99-148, Carnegie Mellon Univer-
sity, 1999

10. E.N. Elnozahy, W. Zwaenepoel. Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback
and Fast Output Commit. IEEE Trans Comput 41(5):526–531,
May 1992

11. D.B. Johnson,W. Zwaenepoel. Sender-basedMessage Logging.
In: Digest of Papers: 17th Annual International Symposium on
Fault-Tolerant Computing, pp14–19. IEEE Computer Society,
June 1987

12. D.B. Johnson,W. Zwaenepoel. Recovery in Distributed Systems
Using Optimistic Message Logging and Checkpointing. JAlgo-
rithms 11:462–491, 1990

13. L. Lamport. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM 21(7):558–565,
July 1978

14. K. Marzullo, G. Neiger. Detection of global state predicates. In:
Proceedings of Fifth International Conference on Distributed
Algorithms, pp257–272, October 1991

15. D. Massonet, F. Adragna. Synthetic Aperture Radar: New Pro-
cessingConcepts. In: Proceedings of the 10th International Geo-
science and Remote Sensing Symposium, pp1323–1326, May
1990

16. F. Mattern. Virtual Time and Global States of Distributed Sys-
tems. In: M. Cosnard et al. (ed) Parallel and Distributed Al-
gorithms, pp215–226. Amsterdam: Elsevier Science Publishers
B.V., 1989

17. M.L. Powell, D.L. Presotto. Publishing: a Reliable Broadcast
Communication Mechanism. In: Proceedings of the Ninth Sym-
posium on Operating System Principles, pp100–109. ACM
SIGOPS, October 1983

18. S. Rao, L. Alvisi, H. Vin. The cost of recovery in message log-
ging protocols. IEEE Trans Knowledge Data Eng 12(2):160–
173, March/April 2000

19. F.B. Schneider. Byzantine Generals in Action: Implementing
Fail-Stop Processors. ACM Trans Comput Syst 2(2):145–154,
May 1984

20. R. Schwarz, F. Mattern. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distrib Com-
put 7(3):149–174, 1994

21. J.P. Singh, E. Rothberg, A. Gupta. Modelling Communications
in Parallel Algorithms: a Fruitful Interaction Between Theory
and Systems? In: Proceedings of the SixthACM Symposium on
Parallel Algorithms and Architectures, pp189–199, June 1994

22. A.P. Sistla, J.L. Welch. Efficient Distributed Recovery Us-
ing Message Logging. In: Proceedings of the Eighth Sym-
posium on Principles of Distrib Comput, pp223–238. ACM
SIGACT/SIGOPS, August 1989

23. R.B. Strom, S.Yemeni. Optimistic Recovery in Distributed Sys-
tems. ACM Trans Comput Syst 3(3):204–226, April 1985

24. R.E. Strom, D.F. Bacon, S.A. Yemini. Volatile Logging in n-
Fault-Tolerant Distributed Systems. In: Proceedings of the 18th
Annual International Symposium on Fault-Tolerant Computing,
pp44–49, 1988

25. R. vanRenesse.Why bother with CATOCS?Operating Syst Rev
28(1):22–27, January 1994

26. S. Venkatesan, T.Y. Juang. Efficient Algorithms for Optimistic
Crash Recovery. Distrib Comput 8(2):105–114, June 1994

Lorenzo Alvisi is an Assistant Professor and Faculty Fellow in the
Department of Computer Sciences at the University of Texas at
Austin, as well as anAlfred P. Sloan Research Fellow and a Fellow of
IBM’s Center for Advanced Studies in Austin, Texas. He received a
Laureasumma cum laudein Physics from the University of Bologna,
Italy, and theM.S. and Ph.D. degrees in Computer Science fromCor-
nell University in 1994 and 1996. Dr. Alvisi’s research interests are
primarily in reliable distributed computing.

Karan Bhatia completed his dissertation on a novel fault tolerance
mechanism for wide-area, partitionable computing environments.
This research has a wide range of potential applications, including
wide-area scientific environments (Computational Grids), as well as
mobile and wireless computing infrastructures. Before starting his
Ph.D. research at the University of California, San Diego (UCSD),
he received an M.S. in Computer Science specializing in Machine
Learning and Data Mining, also from UCSD; and a Bachelors of
Science in Electrical Engineering and Computer Science from the
University of California, Berkeley. He has a wide range of work ex-
perience in both government and industrial research laboratories. He
currently works in the Advanced Technology Group at Entropia, a
peer-to-peer distributed computing company based in San Diego.

Keith Marzullo is an Associate Professor in the Computer Science
and Engineering Department of the University of California, San
Diego. He is also an Associate Professor at Large at the University
of Tromso in Northern Norway. He received his Ph.D. from Stan-
ford University in 1984 and was on the Computer Science Faculty at
Cornell University. His research interests are in fault tolerance and
in distributed systems.

