
A Framework for Dynamic Byzantine Storage

Jean-Philippe Martin, Lorenzo Alvisi
Laboratory for Advanced Systems Research

The University of Texas at Austin
{jpmartin,lorenzo}@cs.utexas.edu ∗

Abstract

We present a framework for transforming sev-
eral quorum-based protocols so that they can dynamically
adapt their failure threshold and server count, allow-
ing them to be reconfigured in anticipation of possible
failures or to replace servers as desired. We demon-
strate this transformation on the dissemination quo-
rum protocol. The resulting system provides confirmable
wait-free atomic semantics while tolerating Byzan-
tine failures from the clients or servers. The system can
grow without bound to tolerate as many failures as de-
sired. Finally, the protocol is optimal and fast: only the
minimal number of servers —3f + 1— is needed to toler-
ate any f failures and, in the common case, reads require
only one message round-trip.

1. Introduction

Quorum systems [5] are a valuable tool for building
highly available distributed data services. These systems
store a shared variable at a set of servers and perform read
and write operations at some subset of these servers (a
quorum). To access the shared variable, protocols define
some intersection property for the quorums which, com-
bined with the protocol description themselves, ensure that
read and write operations obey precise consistency seman-
tics. In particular, a shared register can provide, in or-
der of increasing strength, safe, regular, or atomic seman-
tics [11].

Malkhi and Reiter [13] have pioneered the study of
Byzantine quorum systems (BQSs), in which servers may
fail arbitrarily. Their masking quorum systems guaran-
tee data integrity and availability despite compromised
servers; they also introduce dissemination quorum systems
that can be used by services that support self-verifying
data, i.e., data that cannot be undetectably altered by a

∗ This work was supported in part by grants from the Texas Advanced
Technology Program and Sandia National Laboratories and by an
Alfred P. Sloan Fellowship.

faulty server, such as data that have been digitally signed
or associated with message authentication codes (MACs).

Traditional BQS protocols set two parameters—N , the
set of servers in the quorum system, and f , the resilience
threshold denoting the maximum number of servers that
can be faulty1—and treat them as constants throughout the
life of the system. The rigidity of these static protocols is
clearly undesirable.

Fixing f forces the administrator to select a conserva-
tive value for the resilience threshold, one that can tolerate
the worst case-failure scenario. Usually, this scenario will
be relatively rare; however, since the value of f determines
the size of the quorums, in the common case quorum op-
erations are forced to access unnecessarily large sets, with
obvious negative effects on performance.

Fixing N not only prevents the system administrator
from retiring faulty or obsolete servers and substituting
them with correct or new ones, but also greatly reduces the
advantages of any technique designed to change f dynam-
ically. For a given Byzantine quorum protocol, N must
be chosen to accommodate the maximum value fmax of
the resilience threshold, independent of the value of f that
the system uses at a given point in time. Hence, in the
common case the degree of replication required to toler-
ate fmax failures is wasted.

Alvisi et al. [2] take a first step towards addressing
these limitations. They propose a protocol that, for a
fixed N , can dynamically raise or lower f within a range
[fmin...fmax] at run time without relying on any con-
currency control mechanism (e.g., no locking). Improv-
ing on this result, Kong et al. [10] propose a protocol that
can dynamically adjust f and, once faulty servers are de-
tected, can ignore them to obtain quorums that exhibit
better load2, effectively shrinking N . The protocol how-
ever does not allow to add new servers to N . While other
quorum-based systems such as Rambo [12], Rambo II [8],
and GeoQuorums [6] can adjust dynamically both f and

1 Papers such as [13] consider generalized fault structures, offering a
more general way of characterizing fault tolerance than a threshold.
However, such structures remain static.

2 Given a quorum system S, the load of S is the access probability of
the busiest quorum in S, minimized over all strategies.

http://www.cs.utexas.edu/users/jpmartin
http://www.cs.utexas.edu/users/lorenzo
http://www.utexas.edu

N , they cannot tolerate Byzantine failures.
In this paper we propose a methodology for transform-

ing static Byzantine quorum protocols into dynamic ones
where both N and f can change, growing and shrinking
as appropriate3 during the life of the system. We have suc-
cessfully applied our methodology to several Byzantine
quorum protocols [9, 13, 14, 17, 18]. The common charac-
teristic of these protocols is that they are based on the Q-
RPC primitive [13]. A Q-RPC contacts a responsive quo-
rum of servers and collects their answers, making it a nat-
ural building block for implementing quorum-based read
and write operations. Our methodology is simple and non-
intrusive: all that it requires to make a protocol dynamic is
to substitute each call to Q-RPC with a call to a new primi-
tive, called DQ-RPC for dynamic Q-RPC. DQ-RPC main-
tains the properties of Q-RPC that are critical for the cor-
rectness of Byzantine quorum protocols, even when N and
f can change.

Defining DQ-RPC to minimize changes to existing pro-
tocols is challenging. The main difficulty comes from
proving that read and write operations performed on the
dynamic version of a protocol maintain the same consis-
tency semantics of the operations performed on the static
version of the same protocol. In the static case, these
proofs rely on the intersection properties of the responsive
quorums contacted by Q-RPCs while performing the read
and write operations. Unfortunately, these proofs do not
carry easily to DQ-RPC. When N changes, it is no longer
possible to guarantee quorum intersection: given any two
distinct times t1 and t2, the set of machines in N at t1
and t2 may be completely disjoint. We address this prob-
lem by taking a fresh look at what makes Q-RPC-based
static protocols work.

Traditionally, the correctness of these protocols relies
on properties of the quorums themselves, such as intersec-
tion. Instead, we focus our attention on the properties of
the data that is retrieved by quorum operations such as Q-
RPC. In particular, we identify two such properties, sound-
ness and timeliness. Informally, soundness states that the
data that clients gather from the servers was previously
written; timeliness requires this data to be as recent as
the last written value. We call these properties transquo-
rum properties, because they do not explicitly depend on
quorum intersection. We prove that transquorum proper-
ties are sufficient to guarantee the consistency semantics
provided by each of the protocols that we consider. Now,
all that is needed to complete our transition from static to
dynamic protocols is to show an instance of a quorum op-
eration that satisfies the transquorum properties even when
f and N are allowed to change: we conclude the paper by
showing that DQ-RPC is such an operation.

3 We focus on the mechanisms necessary for supporting dynamic quo-
rums. A discussion of the policies used to determine when to adjust
N and f is outside the scope of this paper. Some examples of such
policies are given in [3, 10].

Unfortunately, space limitation force us to state, rather
than prove, the theorems and lemmas that we claim in this
paper. The proofs are presented in a technical report [15].

The rest of the paper is organized as follows. We cover
related work and system model, respectively, in Section 2
and Section 3. We specify the transquorum properties in
Section 4 and show in Section 5 that our DQ-RPC satisfies
the transquorum properties before concluding.

2. Related work

Alvisi et al. [2] are the first to propose a dynamic BQS
protocol. They let quorums grow and shrink depending
on the value of f , which is allowed to range dynamically
within an interval [fmin, ..., fmax]. This flexibility, how-
ever, comes at a cost: because their protocol does not al-
low to change N , it requires 2(fmax−fmin) more servers
than an equivalent static protocol to tolerate a maximum
of fmax failures.

The Agile store [10] modifies the above protocol by in-
troducing a special, fault-free node that monitors the set
of servers in the quorum system. The monitor tries to de-
termine which are faulty and to inform the clients, so that
they can find a responsive quorums more quickly. In the
Agile store servers can be removed from N , but not added.
Therefore, if the monitor mistakenly identifies a node as
faulty and removes it from N , the system’s resilience is re-
duced: The system tolerates fmax Byzantine faulty servers
only as long as the monitor never makes such mistakes.

The Rosebud project [19] shares several of our goals.
Rosebud envisions a dynamic peer to peer system, where
servers can fail arbitrarily, the set of servers can be modi-
fied at run-time, and clients use quorum operations to read
and write variables. It is hard to compare our protocols
to Rosebud, because the only Rosebud reference we have
identified [19] does not give specific details of the proto-
cols they intend to use to achieve their goals. Nonetheless,
Rosebud, by requiring loosely synchronized clocks and as-
suming servers with a cryptographic co-processor, appears
to make stronger assumptions than we do in this paper.
Also, Rosebud’s handling of view changes appears to dif-
fer from ours in at least two ways. First, when an opera-
tion in Rosebud detects that the set of servers is changing,
it simply restarts; second, Rosebud allows N to change
only at pre-set intervals. In contrast, we allow operations
to continue even as N is changing, and we allow N (and
f) to change at any time.

Several quorum-based protocols allow to change N and
f , but only tolerate crash failures. Rambo and Rambo
II [8, 12] provide the same interface as our protocols: read,
write and reconfigure. They guarantee atomic semantics in
an unreliable asynchronous network despite crash failures.

4 Partial-atomic semantics guarantees that reads either satisfy atomic
semantics or abort [18].

name can tolerate (crash,Byz) client failures semantics servers required
crash (f, 0), without signatures crash atomic 2f + 1
U-dissemination [17] (0, b), using signatures crash atomic 3b + 1
hybrid-d [9] (f, b), using signatures crash atomic 2f + 3b + 1
U-masking [18] (0, b), without signatures correct partial-atomic4 4b + 1
hybrid-m [9] (f, b), without signatures correct partial-atomic4 2f + 4b + 1
Phalanx [14] (0, b), without client signatures Byzantine partial-atomic4 4b + 1
hybrid Phalanx (f, b), without client signatures Byzantine partial-atomic4 2f + 4b + 1

Figure 1: List of quorum protocols that can be made dynamic using DQ-RPC

In GeoQuorums [6] the world is split into n focal points
and servers are assigned to the nearest (geographically) fo-
cal point. The system provides atomic semantics as long
as no more than f focal points have no servers assigned to
them. Servers can join and leave; however, neither n nor f
can change with time.

Abraham et al. [1] target large systems, such as peer-
to-peer, where it is important for clients to issue reads and
writes without having to know the set of all servers, and it
is important for servers to join and leave without having to
contact all servers. Their probabilistic quorums meet these
goals (for example, clients only need to know O(

√
n)

servers), provide atomic semantics with high probability,
and can tolerate crash failures of the servers.

View-oriented group communication systems provide a
membership service whose task is to maintain a list of the
currently active and connected members of a group [4].
The output of the membership service is called a view. If
we consider the set of servers in the quorum system as a
group, then in our protocol the membership service is triv-
ially implemented by an administrator, who is solely re-
sponsible for steering the system from view to view (see
Section 5.1).

An interesting property of our protocol is that it al-
lows processes who are outside the quorum systems —
i.e. the clients in our protocol—to query servers within the
quorum system to learn the current view. Note that our
clients do not learn about views from the membership ser-
vice, but rather indirectly, through the servers. Nonethe-
less, our protocol guarantees that, despite Byzantine fail-
ures of some of the servers, a correct client will only ac-
cept views created by the administrator and will never ac-
cept as current a view that is obsolete (see Section 5.1).

3. System model

Our system consists of a set N of n servers. Servers
can dynamically join and leave the system, i.e. both N
and n can change during execution. To prevent Sibyl at-
tacks [7], the identity of every server is verified before it
is allowed to join the system. Servers can be either cor-
rect or faulty. A correct server follows its specification;
a faulty server can arbitrarily deviate from its specifica-
tion. The set of clients of the service is disjoint from N .

Clients perform read and write operations on the variables
stored in the quorum system. We assume that these oper-
ations return only when they complete (i.e. we consider
confirmable operations [16]).

Our dynamic quorum protocols maintain the same as-
sumptions about client failures of their static counter-
parts. Clients communicate with servers over point-to-
point, asynchronous fair channels. A fair channel guaran-
tees that a message sent an infinite number of times will
reach its destination an infinite number of times. We al-
low channels to drop, reorder, and duplicate messages.

4. A new basis for determining correctness

The first step in our transition to dynamic quorum pro-
tocols is to establish the correctness of the static proto-
cols we consider (shown in Figure 3) on a basis that does
not rely on quorum intersection. To do so, we observe that
at the heart of all these protocols lies the Q-RPC prim-
itive [13]. This primitive takes a message as argument,
sends that message to a quorum of responsive servers, and
returns the response from each server in the quorum. Our
approach to extend quorum protocols to the case where
servers are added and removed (and thus quorums may
not intersect anymore) is to define correctness in terms of
the properties of the data returned by quorum-based op-
erations such as Q-RPC. In this section, we first specify
two properties that apply to the data returned by Q-RPC;
then, we prove that these properties are sufficient to en-
sure correctness. In Section 5 we will show that it is pos-
sible to implement Q-RPC-like operations that guarantee
these properties even when quorums do not intersect.

4.1. The transquorum properties

In the protocols listed in Figure 3, quorum-based oper-
ations such as Q-RPC are the fundamental primitives on
top of which read and write operations are built. Not all
Q-RPCs are created equal, however. Some Q-RPC opera-
tions change the state of the servers (e.g. when the mes-
sage passed as an argument contains information that the
servers should store), others do not. Some Q-RPCs need
to return the latest data actually written in the system, oth-
ers are content with returning data that is not obsolete,

READ

1. Q := Q-RPC(“READ”)
// Q is a set of 〈ts, writer id, data〉writer

2. reply r := φ(Q) // returns largest valid value
3. Q := Q-RPC(“WRITE”,r)
4. return r.data

WRITE(D)

1. Q := Q-RPC(“GET TS”)
2. ts := max{Q.ts} + 1
3. m := 〈ts, writer id,D〉writer

4. Q := Q-RPC(“WRITE”,m)

READ

1. Q := TRANS-QR(“READ”)
// Q is a set of 〈ts, writer id, data〉writer

2. reply r := φ(Q) // returns largest valid value
3. Q := TRANS-QW (“WRITE”,r)
4. return r.data

WRITE(D)

1. Q := TRANS-QT (“GET TS”)
2. ts := max{Q.ts} + 1
3. m := 〈ts, writer id,D〉writer

4. Q := TRANS-QW (“WRITE”,m)

Figure 2: U-dissemination protocol (fail-stop clients). On the left: Q-RPC. On the right: TRANS-Q.

whether it was written or not. To capture this diversity,
we introduce two properties, timeliness and soundness. We
call them transquorum properties because, as we will see
in Section 5, they do not require quorum intersection to
hold. Intuitively, timeliness says that any read value must
be as recent as the last written value, while soundness says
that any read value must have been written before. Note
that not all Q-RPCs need to be both timely and sound. For
example, Q-RPCs used to gather the current timestamps
associated with the value stored by a quorum of servers do
not need to be sound—all that is required is that the re-
turned timestamps be no smaller than the timestamp of the
last write.

We then define three sets W , R, and T of Q-RPC-like
quorum operations. Each Q-RPC-like operation in a pro-
tocol belongs to zero or more of these sets.

Let w → r (w “happens before” r) indicate that the
quorum operation w ended (returned) before the quorum
operation r started (in real time). Further, let o be an or-
dering function that maps each quorum operation to an el-
ement of an ordered set M. We define the transquorum
properties as follows:

(timeliness) ∀w ∈ W,∀r ∈ T , o(r) 6= ⊥ :

w → r =⇒ o(w) ≤ o(r)

(soundness) ∀r ∈ R, o(r) 6= ⊥ :

∃w ∈ W s.t. r 6→ w ∧ o(w) = o(r)

In this paper we always choose o so that when applied
to a Q-RPC-like operation x, it returns both a timestamp
and the data that is associated with x (i.e. either read or
written). This allows us to use the timeliness property to
ensure that readers get recent timestamps and the sound-
ness property to ensure that reads get data that has been
written.

4.2. Proving correctness with transquorums

Transquorum properties are all that is needed to prove
that the protocols listed in Figure 3 correctly provide the

consistency semantics that they advertise. We present the
complete set of proofs in an extended technical report [15].
Space considerations limit us to consider in this paper only
the first three protocols in the figure. All three protocols
have the same client code, shown on the left in Figure 2
and all three guarantee atomic semantics. The server code
is also identical: servers simply store the highest timese-
tamped data they see and send back to the client the data
or its timestamp (in reply to READ or GET TS requests,
respectively). The protocols differ in the size of the quo-
rums they use and in the degree of fault tolerance they
provide: U-dissemination protocols [16] (a variant for fair
channels of the dissemination protocol presented in [13])
can tolerate b Byzantine faulty servers, crash can tolerate
f fail-stop faulty servers, and hybrid-d can tolerate both
b Byzantine failures and f fail-stop failures (f + b fail-
ures in total). To simplify our discussion, since the three
client protocols are identical we will only discuss the U-
dissemination protocol here; all we say also applies to the
crash and hybrid-d protocols, except that the crash pro-
tocol does not use any signatures. Another simplification
is that we show the transformation on the non-optimized
version of the U-dissemination protocol. The technical re-
port [15] shows how to shorten reads to a single message
round-trip in the common case by skipping the write-back
when it is not necessary.

4.2.1. Dissemination protocols with transquorums To
illustrate that we only rely on the transquorum properties
and not on the specific implementation of Q-RPC, we re-
place all Q-RPC calls in the protocol (Figure 2) with an
“abstract” function TRANS-Q that we postulate has the
transquorum properties. TRANS-Q takes the same argu-
ments and returns the same values as Q-RPC.

The U-dissemination protocol on the right of Figure 2
uses TRANS-Q as its low-level quorum communication
primitive. We have annotated each call to indicate which
set it belongs to (R,W , or T).

We use the notation 〈a〉b to show that a is signed by
b. Note that data is signed before being written, and ver-
ified before being read. The function φ(Q) returns the

Operations of this form are assigned this order and this set

r = TRANS-Q(“READ”) o(r) = φ(rret) R
w = TRANS-Q(“WRITE”, ts, writer id,D) o(w) = (warg.ts, warg.writer id, warg.D) W
t = TRANS-Q(“GET TS”) o(t) = (max(tret) + 1,⊥,⊥)5 T

Figure 3: The o mapping

largest value in the set Q that has a valid signature us-
ing lexicographical ordering: since our values are triplets
(ts, writer id,D), φ selects the largest valid timestamp,
using writer id and then D to break ties.

We assign each TRANS-Q quorum operation to one of
the sets (R,W or T) and define the ordering o(x) for each
quorum operation x. Our assignment is shown in the ta-
ble below. The assignment is fairly intuitive: operations
that change the server state have been assigned to the W
set and the ordering function consists either of what is be-
ing written, or of what the caller extracts from the set of re-
sponses to its query. More precisely, to define o(x) we ob-
serve that any quorum operation x has two parts: the argu-
ments passed to x and the value that x returns. We use the
notation xarg to refer to the arguments that were passed to
the x operation, and xret to indicate the value returned by
x (that value is always a set).

We want to show that the U-dissemination protocol
with TRANS-Q operations offers atomic semantics. In-
formally, atomic semantics requires all readers to see the
same ordering of the writes, and furthermore that this or-
der be consistent with the order in which writes were
made. Note that atomic semantics is concerned with user-
level (or, simply, user) reads and writes, not to be confused
with the quorum-level operations (or, simply, quorum op-
erations) such as Q-RPC and TRANS-Q. We use lower-
case letters to denote quorum-level operations, and capital
letters to denote user-level operations (e.g. R or W). Sim-
ilarly, we use the mapping o to denote the ordering con-
straint that the transquorum properties impose on quorum
operations, and the mapping O to denote the ordering con-
straints imposed by the definition of atomic semantics on
user read and write operations.

Atomic semantics can be defined precisely as follows.

Definition 1. Every user read R returns the value that
was written by the last user write W preceding R in the
ordering “<”. “<” is a total order on user writes, and
W → X =⇒ W < X and X → W =⇒ X < W for any
user write W and user read or user write X .

We use O, which maps every user read and write opera-
tion to an element of some ordered set M′, to define com-
pletely the ordering relation“<”: X < X ′ ⇐⇒ O(X) <
O(X ′).

5 We do not explicitly require this value to be larger than any times-
tamp previously sent by this client because we do not allow clients

We are now ready to prove our first theorem, showing
that we can replace Q-RPC with any operation that satis-
fies the transquorum properties without compromising the
semantics of the U-dissemination protocol. The proof is
structured around the following three lemmas, which are
proved in our technical report [15]:

Lemma 1. Our ordering relation “<” is a total order on
user writes; further, W → X =⇒ W < X and X →
W =⇒ X < W for any user write W and user read or
user write X .

Lemma 2. All user reads R return the value that was writ-
ten by the last user write W preceding R in the “<” or-
dering.

Combining the two lemmas proves our first theorem:

Theorem 1. The U-dissemination protocol provides
atomic semantics if (i) the TRANS-Q operations have the
transquorums properties for the function o defined in Fig-
ure 3, and (ii) for all r ∈ R : o(r) 6= ⊥.

5. Dynamic quorums

The transquorum properties allows us to reason about
quorum protocols without being forced to use quorums
that physically intersect. In this section, we leverage this
result to build DQ-RPC, a quorum-level operation that sat-
isfies the transquorum properties but also allows both the
set of servers and the resilience threshold to be adjusted.

We must first introduce some way to describe how our
system evolves over time, as N and f change.

5.1. Introducing views

We use the well-established term view to denote the
set N that defines the quorum system at each point in
time. Each view is characterized by a set of attributes, the
most important of which are the view number t, the set
of servers N(t) and the resilience threshold f(t). In gen-
eral, view attributes include enough information to com-
pute the quorum size q(t). The responsibility to steer the
system from view to view is left with an administrator,
who can begin a view change by invoking the newView
command.

to issue multiple concurrent writes.

When the administrator calls newView, the view in-
formation stored at the servers is updated. We say that a
view t starts when a server receives a view change mes-
sage for view t (for example because the administrator
called newView(t, . . .)). A view t ends when a quorum
q(t) of servers have processed a message indicating that
some later view u is starting. After starting and before end-
ing, the view is active. A view may start before the previ-
ous view ended, i.e. there may exist multiple active views
at the same time; our protocol makes sure that the pro-
tocol semantics (e.g. atomic) is maintained despite view
changes, even if client operations happen concurrently to
them.

The newView function has the property that after
newView(t) returns, all views older than t have ended
and view t has started. At this point the administrator can
safely turn off server machines that are not in view t.

Obviously, we must restrict who can call the newView
command. In our system, this is solely the privilege of
the administrator. If the administrator is malicious then we
cannot provide any guarantee (for example, it could start
a view containing no server to deny service to all clients).
However, the system can tolerate crash failures of the ad-
ministrator. This problem remains even if the administra-
tor algorithm is run in a Byzantine fault tolerant manner, as
long as that program takes its inputs from a person: the ma-
chine through which these inputs are transmitted must not
have been tampered with. Since the determination of fu-
ture values of f and the decision of adding computers to
the system (possibly purchasing new ones as necessary) is
best done by a person, we consider a single crash-only ad-
ministrator machine for the remainder of this paper.

Since our system uses views to discretize time, so does
our definition of faults. We say that a server is correct in
some view t if it follows the protocol from the beginning
of time until view t ends. Otherwise, it is faulty in view
t. Note that a server may be correct in some view t and
faulty in a later view u. However, faulty servers will never
be considered correct again. If some server recovers from
a failure (for example by reinstalling the operating sys-
tem after a disk corruption), it takes on a new name be-
fore joining the system. The notion of resilience thresh-
old is also parameterized using view numbers. For exam-
ple, a static U-dissemination protocol requires a minimum
of n ≥ 3f + 1 servers: this requirement now becomes
|N(t)| ≥ 3f(t) + 1 for each view t. Our system assumes
that between the start and the end of view t, at most f(t)
of the servers in N(t) are faulty. Since views can over-
lap this means that sometimes a conjunction of such con-
ditions must hold at the same time.

5.2. A simplified DQ-RPC

We begin with a simplified version of DQ-RPC
that, while suffering from serious limitations, al-

lows us to present more easily several of the key features
of DQ-RPC—the full implementation of DQ-RPC is pre-
sented in Section 5.3.

The easiest way to implement DQ-RPC is to ensure
that different views never overlap, i.e. that at any point in
time there exists at most one active view. Since we know
that the protocols in Figure 3 are correct for a static quo-
rum system, we can simply make sure to evolve the sys-
tem through, as it were, a sequence of static quorum sys-
tems. We can do so as follows.

• Replies from servers are tagged with a view number
• Once a client accumulates q(t) responses tagged with

view t, the DQ-RPC returns these responses.

Our simplified DQ-RPC has two outputs: a view t (that
we call DQ-RPC’s current view) and a quorum of q(t) re-
sponses. If we assume that clients have some external, in-
fallible way to know which servers are in an active view
then the above simple scheme is sufficient: DQ-RPC sends
its messages to servers in an active view and it makes sure
that it only picks active views as its current view6.

Showing how DQ-RPC can determine which views are
active is the subject of the rest of this section.

5.2.1. View changes To determine whether a view is ac-
tive, it is important to specify how the system starts (and
ends) views.

To initiate a view change, the administrator’s computer
first tells a quorum of machines on the old view that their
view has ended. These machines immediately stop accept-
ing client requests. Clients can thus no longer read from
the old view since they will not be able to gather a quo-
rum of responses. The administrator then performs a user-
level read on the machines from the old view to obtain
some value v. Finally, the administrator tells all the ma-
chines in the new view that the new view is starting, and
provides them with the initial value v. At this point, the
machines in the new view start accepting client requests.

Naturally, it is not always possible for the administrator
to make sure it has contacted all the new machines: if some
server is faulty then it could choose not to acknowledge,
causing the administrator to block forever. In our simpli-
fied DQ-RPC we remove this problem by simply assum-
ing that the administrator has some way to contact all the
servers. We will see in Section 5.3 how the full DQ-RPC
ensures that all view changes terminate.

A delicate point to consider when performing a view
change is that, after view t ends, so does the constraint
that at most f(t) of the machines in view t can be faulty.
For example, if the view was changed to remove some de-
commissioned servers, it is natural to expect that the se-
mantics of the system from then on does not depend on
the behavior of the decommissioned servers.

6 It is necessary to pick an active view: after some DQ-RPC writes
data to the latest view, reads to a view that has ended would return
old data since different views may have no servers in common.

And yet, the decommissioned machines know some-
thing about the previous state of the system. If they all be-
came faulty (as it may happen, since they are no longer un-
der the administrator’s watchful eye) they would be able
to respond to queries from clients that are not yet aware of
the new servers and fool them into accepting stale data, vi-
olating atomic semantics. To prevent the system from de-
pending on servers that have been decommissioned, the
view change protocol must ensure that no client can read
or write to a view after that view has ended. Our forget-
ting protocol enforces this property.

Safe View Certification through “Forgetting” The simpli-
fied DQ-RPC requires the client to receive a quorum of re-
sponses with view t’s tag before it returns that value and
considers view t current. If the servers are correct, then
this ensures that no DQ-RPC chooses t as current after t
ends (recall that views end once a quorum of their servers
have left the view).

The forgetting protocol ensures that this property holds
despite Byzantine failure of the servers. Clients tag their
queries with a nonce e. Server i tags its response with
two pieces of information: 1) server i’s view certificate
〈i,meta, pub〉admin, signed by the administrator, and 2) a
signature for the nonce 〈e〉priv , proving that server i pos-
sesses the private key associated with the public key in the
view certificate. The key pair pub, priv is picked by the
administrator. In the certificate, meta contains the meta
information for the view, namely the view number t, the
set of servers N and the resilience threshold f . The quo-
rum size q can be computed from these parameters.

When servers leave view t, they discard the view cer-
tificate and private key that they associated with that view.
The challenge is to ensure that even if they become faulty
later, they cannot recover that private key and thus can-
not vouch for a view that they left. We now discuss how
our protocol addresses this issue.

The private key is only transmitted when the admin-
istrator informs the server of the new view. Our network
model allows the channel to duplicate and delay this mes-
sage, which may therefore be received after the server has
left the view. To prevent the decommissioned server from
recovering the private key we encrypt the message using a
secret key that changes for every view.

The administrator’s view change message for view t to
server i contains the following:

(NEW VIEW, t, oldN,

encrypt
(

(〈i,meta, pub〉admin, priv), kt
i

))

We use the notation encrypt(x, k) for the result of en-
crypting data x using the secret key k. The view key kt

i

is shared by the administrator and server i for view t. It
is computed from the previous view’s key using a one-
way hash function: kt

i := h(kt−1

i). The administrator and
server i are given k0

i at system initialization.

When correct servers leave a view t, they discard view
t’s certificate, private key priv and view key kt

i . As a result
they will be unable to vouch for view t later even if they
become faulty and gather information from duplicated net-
work messages. This ensures that client following the sim-
plified DQ-RPC protocol will not pick view t as its current
view after t ends.

5.2.2. Finding the current view In the previous section
we have seen how clients can identify old views. We now
need to make sure that the clients will be able to find the
current view, too.

If the set of servers that the client contacts to perform
its DQ-RPC intersects with the current view in one correct
server i, then the client will receive up to date view infor-
mation from i and will be able to find the current view.

If that is not the case, then the client can consult well-
known sites to which the administrator publishes the list
of the servers in the current view. Our certified tags ensure
safety: even if the information the client retrieves from one
of these sites is obsolete, the client will never pick as cur-
rent a view that has ended. Therefore it suffices that the
client eventually learn of an active view from one of the
well-known sites.

In the case of a local network, clients could also broad-
cast a query to find the servers currently in N . This solu-
tion has the advantage of simplicity but it only works if all
servers are in the same subnet.

5.2.3. Summary Clients only accept responses if they
all have valid tags for the same view. Until they accept a
response, clients keep re-sending their request (for read or
write) to the servers. Clients use the information in the tags
to locate the most recent servers, and periodically check
well-known servers if the servers do not respond or do not
have valid tags. Tags are valid if their view certificate has a
valid signature from the administrator and the tag includes
a signature of the client-supplied nonce that matches the
public key in the certificate.

Replacing Q-RPC with this simplified DQ-RPC in a
dissemination quorum protocol from Figure 3 results in
a dynamic protocol that maintains all the properties listed
in the figure.

However, simplified DQ-RPC has two significant lim-
itations. First, it requires the administrator’s newView
command to wait for a reply from all the servers in the new
view, which may never happen if some servers in the new
view are faulty. Second, it does not let DQ-RPCs (and,
implicitly, user-level read and write operations issued by
clients) complete during a view change: instead the opera-
tions are delayed until the view change has completed. We
address both limitations in the next section.

5.3. The full DQ-RPC for dissemination quorums

The full DQ-RPC for dissemination quorums follows
the same pattern as its simplified version: it sends the mes-

DQ-RPC(msg)

1. Sender sdr := new Sender(msg)
2. static ViewTracker g vt := new ViewTracker
3. repeat
4. sender.sendTo(g vt.get().N)
5. (Q, t) := g vt.consistentQuorum(sdr.getReplies())
6. if running for too long then g vt.consult()
7. until Q 6= ∅

// t is the current view associated with this operation
8. return Q // sender stops sending at this point

Figure 4: Dynamic quorum RPC

sage repeatedly until it gets a consistent set of answers,
and picks a current view in addition to returning the quo-
rum of responses. DQ-RPC uses the technique described
in the previous section to determine whom to send to, but
it can decide on a response sooner than the simplified DQ-
RPC because it can identify consistent answers without re-
quiring all the responses to be tagged with the same view.
The full DQ-RPC also runs a different view change proto-
col that terminates despite faulty servers.

We split the implementation of DQ-RPC into three
parts. The main DQ-RPC body (Figure 4) takes a mes-
sage and sends it repeatedly to the servers believed to con-
stitute the current view. The client’s current view changes
with the responses that it gets; if no responses are received
for a while then DQ-RPC consults well-known sources for
a list of possible servers (line 6). The repetitive sending
is handled by the Sender object, and the determination of
the current view is done by the ViewTracker object (Fig-
ure 6). The client exits when it receives a quorum of con-
sistent answers. In the simplified protocol, answers were
consistent if they all had the same tag. In this section we
develop a more efficient notion of consistent responses.

The Sender is given a message and a destination and it
repeatedly sends the message to the destination. The desti-
nation can be changed using the sendTo method and the
replies are accessed through getReplies (The code for
the Sender object can be found in [15]).

The ViewTracker acts like a filter: Sender must go
through it to read messages. The ViewTracker looks at
the messages and keeps track of the most recent view
certificate it sees. As we saw in the forgetting protocol,
messages are tagged with a signed view certificate and a
signed nonce. Messages that do not have a correct sig-
nature for the nonce are not considered as vouching for
the view (line 3 of ViewTracker.consistentQuorum).
However, even if the nonce signature is invalid, View-
Tracker will use valid view certificates to learn which
servers are part of the latest view (line 5). The most re-
cent view certificate can be accessed through the get
method. The ViewTracker can also get new candidates
from well-known servers with the consult method.
Finally, the ViewTracker has the responsibility of de-

ciding when a set of answers is consistent, through the
consistentQuorum method.

5.3.1. Introducing generations Our dynamic protocols
only require the minimal number of servers [16] to toler-
ate f faults: 3f + 1. The price for this minimal replication
is that every time new servers are added, the data must be
copied to them.

When more machines are available, it is possible to use
the additional replicas to speed up view changes. We offer
this capability through the new spread parameter. When
the spread parameter m is non-zero, quorum operations
involve more servers than strictly necessary. This mar-
gin allows the quorums to still intersect when a few new
servers are added, allowing these view changes to proceed
quickly. As a result, there are now two different kinds of
view changes: one in which data must be copied and one
in which no copy is necessary. In the second case we say
that the old and new views belong to the same generation.
Each view is tagged with a generation number g that is in-
cremented at each generation change.

These two parameters, m and g, are stored in the view
meta-data alongside with N , f and t.

The additional servers do not necessarily need to be
used to speed up view changes. Using a smaller m with
a given n makes the quorums smaller and reduces the load
on the system. The parameter m therefore allows the ad-
ministrator to trade-off low load and quick view changes.

Intra-Generation: When Quorums Still Intersect When
clients write using the DQ-RPC operation, their message
is received by a quorum of responsive servers. The size
of the quorum depends on the parameters of the current
view t (recall that t is also determined in the course of
a DQ-RPC). The quorum size depends on the failure as-
sumptions made by the protocol. For a U-dissemination
Byzantine protocol that tolerates b faulty servers, the quo-
rum size is q(n, b,m) = d(n + b + 1)/2 + m/4e.

In the absence of view changes, our quorums intersect
in b+1+m/2 servers. If m new (blank) servers are added
to the system, then our quorums intersect in b + 1 servers,
which is still sufficient for correctness: one of the servers
is correct and the reader will recognize the signature on the
correct data. Thus, up to m servers can be added to the sys-
tem before data must be copied to any of the new servers.

Similarly, if m of the servers that were part of a write
quorum are removed, new quorums will still intersect in
b+1 servers and the system will behave correctly. Finally,
if b is increased or reduced by up to m (causing the quo-
rums to grow or shrink accordingly), new quorums will
still intersect the old ones in b + 1 servers.

More generally, if after a write a servers are added, d
servers are removed, b is modified by c, and m is reduced
to mmin then the quorums will still intersect sufficiently as
long as a + d + c ≤ mmin. If a view change would break
this inequality then the value must be copied to some of

the new servers before the view change completes: we say
that the old and new views are in different generations.

limbo

joining ready

newView
we are not part of

newView we
are part of

newView
we are part of

finished reading
from previous view

or new view is
in same generation

powered off

Figure 5: Server transitions for the dissemination protocol

5.3.2. View changes: closing the generation gap The
copying of data across generations is done as part of the
view change protocol. Unlike the view change protocol
that is associated with simplified DQ-RPC, the full view
change protocol terminates.

View changes are initiated by the administrator when
some machines need to be added, removed or moved, or
when the resilience f or the spread m have to be changed.
The newView method first determines whether the new
view will be in the same generation as the previous one,
using the relation in Section 5.3.1. It then computes the
key pairs and certificates for the new view. Finally the ad-
ministrator encodes the certificates using the appropriate
shared key and sends them to all servers in t, re-sending
when appropriate and waiting for a quorum of responses.

Servers switch states according to the diagram in Fig-
ure 5. When they receive a new view message for a new
generation (and they are part of that generation), servers
piggyback that message on top of a read they perform on
a quorum from the old view. They then update their value
with what they read (if it is newer than the value they cur-
rently store) and update their view certificate. If they are
part of the new view but there is no generation change then
the servers just update their view information as per the
forgetting protocol. If they are not part of the new view
then the servers update their certificates too. In that case
they will not be able to vouch for the new view since they
have no valid view certificate for it, but they will still be
able to direct clients to the current servers.

Servers are in the limbo state initially and after leaving
the view. They are in the joining state while they copy in-
formation from the older view, and they are in the ready
state otherwise. Servers process client requests in all three
states. Servers in the joining state use the view certificate
for the old view (if they have it) until they are ready.

The administrator’s newView waits for a quorum of
new servers to acknowledge the view change and then it
posts the new view to the well-known locations and re-
turns. At this point, the administrator knows that the data

stored in the machines that were removed from the view
are not needed anymore and therefore the old machines
can be powered off safely.

There may still be some machines in the joining stage at
this point. These machines do not prevent operations from
completing because DQ-RPC operations only need f + 1
servers in the new generation to complete, and any dis-
semination quorum contains at least f + 1 correct servers.

When newView returns, the old view has ended and
the new view has started and matured, meaning that at
least one correct server is done processing the view change
message for it. This means that reads and writes to the new
view will succeed and reads and writes to the old view will
be redirected to the new view (either by the old servers or
after consultation of the well-known locations).

The protocol as presented here requires the administra-
tor to be correct. If the administrator crashes after send-
ing the new view message to a single faulty new server,
the new server can cause the servers in the old view to
join the limbo state without informing the new servers that
they are supposed to start serving. In the extended techni-
cal report [15] we show a variant that tolerates crashes in
the sense that if the administrator machine crashes at any
point during the view change and never recovers then read
and write operations will still succeed even though it is not
possible to change views anymore.

5.3.3. DQ-RPC satisfies transquorums for dissemina-
tion quorums We now prove our final theorem:

Theorem 2. U-dissemination, crash and hybrid-d based
on DQ-RPC provide atomic semantics.

The proof is presented in our technical report [15]. The
main lemmas used in the proof are listed below.

Lemma 3. The view t chosen by a DQ-RPC operation is
concurrent with the DQ-RPC operation.

Lemma 4. The DQ-RPC protocol in Figure 4 provides the
transquorum properties for the ordering function o of Fig-
ure 3.

Lemma 5. When using DQ-RPC for the U-dissemination,
crash or hybrid-d protocol, no R operation returns ⊥.

6. Conclusions

We present a methodology that easily transforms sev-
eral existing Byzantine protocols for static quorum sys-
tems [9, 13, 14, 17, 18] into corresponding protocols that
operate correctly when the administrator is allowed to add
or remove servers from the quorum system, as well as
to change its resilience threshold. Performing the trans-
formation does not require extensive changes to the pro-
tocols: all that is required is to replace calls to the Q-
RPC primitive used in static protocols with calls to DQ-
RPC, a new primitive that in the static case behaves like
Q-RPC but can handle operations across quorums that

(meta) ViewTracker.get()
// returns the latest view meta-data

1. return m maxMeta

ViewTracker.consult
// ask well-known servers for the latest meta-data

1. Choose a server j at random from the list of well-
known view publishers

2. Send (CONSULT,m maxMeta) to j

(sender, reply,meta) ViewTracker.receive(nonce)
// used by the Sender object when gathering replies

1. if there is no message waiting, then return false
2. receive (msg,meta) from sender
3. if not validCertificate(meta) then return false
4. if meta.t > m maxMeta.t then
5. m maxMeta := meta
6. if msg == CONSULT-ACK then goto 1
7. return (sender,msg,meta)

(messages, view) ViewTracker.consistentQuorum(messageTriples)
// returns a consistent quorum of messages (if any) and the current view

1. msgInQuorun := {m ∈ messageTriples : m.sender ∈ m maxMeta.N}
2. if |msgInQuorun| < q(|m maxMeta.N |,m maxMeta.f ,m maxMeta.m) then return (∅,⊥)

// fail if there is no consistent quorum of messages
3. validMessages := {m ∈ msgInQuorun : validTag(m)}
4. recentMessages := {m ∈ validMessages : m.meta.g == m maxMeta.g}
5. if |recentMessages| < m maxMeta.f + 1 then return (∅,⊥) // fail if the view is not mature
6. return (msgInQuorun,m maxMeta)

ViewTracker.consult // consults well-known servers for the latest meta-data

1. Choose a server j at random from the list of well-known view publishers
2. Send (CONSULT,m maxMeta) to j

Figure 6: Definition of the ViewTracker object

may not intersect while still guaranteeing consistency. Our
methodology is based on a novel approach for proving the
correctness of Byzantine quorum protocols: through our
transquorum properties, we specify the characteristics of
quorum-level primitives (such as Q-RPC) that are crucial
to the correctness of Byzantine quorum protocols and pro-
ceed to show that it is possible to design primitives, such as
DQ-RPC, that implement these properties even when quo-
rums don’t intersect. We hope that designers of new quo-
rum protocols will be able to leverage this insight to easily
make their own protocols dynamic.

7. Acknowledgments

The authors would like to thank Eunjin Jung and Jeff
Napper for several interesting conversations and feedback
on the paper presentation.

References
[1] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic sys-

tems. In Proc. 17th Intl. Symp. on Distributed Computing (DISC),
Oct. 2003.

[2] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. Wright. Dynamic
Byzantine quorum systems. In Proc. of the Intl. Conference on De-
pendable Systems and Networks (DSN), June 2000.

[3] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection
for byzantine quorum systems. IEEE Trans. Parallel Distrib. Syst.,
12(9):996–1007, 2001.

[4] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communica-
tion specifications: a comprehensive study. ACM Computing Sur-
veys (CSUR), 33(4):427–469, 2001.

[5] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a
partitioned network: a survey. ACM Computing Surveys (CSUR)
Volume 17, Issue 3, pages 341–370, Sept. 1985.

[6] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geo-
quorums: Implementing atomic memory in mobile ad hoc net-

works. In Proc. 17th Intl. Symp. on Distributed Computing (DISC),
Oct. 2003.

[7] J.R. Douceur. The sybil attack. In Proc. of the IPTPS02 Workshop,
March 2002.

[8] S. Gilbert, N. Lynch, and A. Shvartsman. Rambo II: Rapidly re-
configurable atomic memory for dynamic networks. In Proc. 17th
Intl. Symp. on Distributed Computing (DISC), pages 259–268, June
2003.

[9] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Ef-
ficient consistency for erasure-coded data via versioning servers.
Technical Report CMU-CS-03-127, Carnegie Mellon University,
2003.

[10] L. Kong, A. Subbiah, M. Ahamad, and D.M. Blough. A reconfig-
urable byzantine quorum approach for the agile store. In Proc. 22nd
Intl. Symp. on Reliable Distributed Systems (SRDS), Oct. 2003.

[11] L. Lamport. On interprocess communications. Distributed Com-
puting, pages 77–101, 1986.

[12] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic
memory service for dynamic networks. In Proc. 16th Intl. Symp.
on Distributed Computing (DISC), pages 173–190, Oct. 2002.

[13] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed
Computing 11/4, pages 203–213, 1998.

[14] D. Malkhi and M. Reiter. Secure and scalable replication in Pha-
lanx. In Proc. 17th IEEE Symp. on Reliable Distributed Systems
(SRDS), Oct 1998.

[15] J-P. Martin and L. Alvisi. A framework for dynamic byzantine stor-
age. Technical Report TR04-08, The University of Texas at Austin,
2004.

[16] J-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage.
In Proc. 16th Intl. Symp. on Distributed Computing (DISC), pages
311–325, Oct. 2002.

[17] J-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum
systems. In Proc. of the Intl. Conference on Dependable Systems
and Networks (DSN), pages 374–383, June 2002.

[18] E. Pierce and L. Alvisi. A framework for semantic reasoning
about byzantine quorum systems. In Brief Announcements, Proc.
20th Symp. on Principles of Distributed Computing (PODC), pages
317–319, Aug. 2001.

[19] R. Rodrigues, B. Liskov, and L. Shrira. The design of a robust peer-
to-peer system. In Tenth ACM SIGOPS European Workshop, Sept.
2002.

http://doi.acm.org/10.1145/503112.503113
http://doi.acm.org/10.1145/503112.503113
http://doi.acm.org/10.1145/5505.5508
http://doi.acm.org/10.1145/5505.5508
http://www.cs.utexas.edu/users/jpmartin/papers/MinByz-DISC.pdf
http://www.cs.utexas.edu/users/jpmartin/papers/smallByz_DSN.pdf

	Introduction
	Related work
	System model
	A new basis for determining correctness
	The transquorum properties
	Proving correctness with transquorums
	Dissemination protocols with transquorums

	Dynamic quorums
	Introducing views
	A simplified DQ-RPC
	View changes
	Finding the current view
	Summary

	The full DQ-RPC for dissemination quorums
	Introducing generations
	View changes: closing the generation gap
	DQ-RPC satisfies transquorums for dissemination quorums

	Conclusions
	Acknowledgments

