
Detection and Removal of Malicious Peers in Gossip-Based Protocols∗

Márk Jelasity, Alberto Montresor, Ozalp Babaoglu

Department of Computer Science, University of Bologna, Italy
e-mail: jelasity,montreso,babaoglu@cs.unibo.it

1 Introduction

In addition to the popular structured peer-to-peer (P2P)
overlays [2], a class of P2P protocols rely purely on
gossip-based communication in anunstructuredcom-
munication topology [6]. Examples of problems that
can be solved through these protocols include mem-
bership management, information dissemination (as in
lpbcast [5] andnewscast [7]), and computation of ag-
gregate functions (such as average and maximum) over
distributed collections of numeric values [8, 10].

Since they do not rely on specific topologies such
as trees, rings, butterflies, etc., gossip-based protocols
over unstructured topologies are potentially more ro-
bust to massive benign failures. They are also ex-
tremely responsive and can adapt rapidly to changes in
the underlying communication structure. And finally,
they can be used as robust components to build other
protocols. For example, [12] describes a technique for
repairing or jump-starting a structured overlay using
newscast.

Properties that make unstructured gossip-based pro-
tocols attractive (in particular responsiveness and
adaptivity) when all peers cooperate correctly become
a detriment when even a small number of peers may be
maliciousand compromise the integrity of the system.

In our opinion, a broader and more significant ex-
ploitation of the gossip paradigm will be possible only
if we can develop a better understanding of the issues
related to security in such protocols. This short paper
is aimed at raising the problem and suggesting some
initial ideas towards solutions. We first give a brief
overview of the gossip paradigm. Then, we introduce
a general framework for solving the security problem
in such systems. Finally, we illustrate some prelimi-
nary results for the case of an aggregation protocol.

∗This work was partially supported by the Future & Emerging
Technologies unit of the European Commission through Project
BISON (IST-2001-38923).

2 Gossip-Based Protocols

Figure 1 illustrates the skeleton of a generic gossip-
based protocol. Each node possesses a local state and
executes two different threads. Theactive one peri-
odically initiates astate exchangewith a random peer
by sending it a message containing the local state and
waiting for a response. Thepassivethread waits for
messages sent by an initiator and replies to them with
the local state. The random peer selection is based on
the set of neighbors as determined by a membership
protocol [5, 7].

MethodUPDATE builds a new local state based on the
previous local state and the state received from the ran-
dom peer. Semantics of the node state and the method
UPDATE define the behavior and function of the proto-
col. For example, inmembership management, a fixed-
size set of peer addresses called thepartial viewconsti-
tutes the state. MethodUPDATE can be implemented (as
in lpbcast) by computing the new state through a ran-
dom sampling of the union of the old view and the re-
ceived view. In this case, selection of the random peer
is done using the old view itself. Inepidemic broad-
casting, the state is a flag that records if the node isin-
fectedor not. MethodUPDATE sets the state to infected
if the received state is infected.

To make our reasoning concrete, the discussion that
follows is based onaggregation. Here, the state of a
node is a numeric value. In a practical setting, this
value can be any attribute of the environment, such as
the current load or storage capacity. The task of the
protocol is to calculate an aggregate value over the set
of all numbers stored at nodes. Several aggregate func-
tions are possible, including extremal values, average,
sum, counting, etc. For example, if we are interested in
theaverage, methodUPDATE simply returns the arith-
metic mean of the two states. The resulting protocol is
know to result in exponential convergence to the cor-
rect global average at each node [8, 10].



do forever
wait(T time units)
p← RANDOMPEER()
sends to p
sp ← receive(p)
s← UPDATE(s, sp)

(a) active thread

do forever
sp ← receive(*)
sends to sender(sp)
s← UPDATE(s, sp)

(b) passive thread

Figure 1: The skeleton of a gossip-based protocol
wheres denotes the local state andsp the state of the
peerp.

3 Defense against Malicious Attacks

A malicious node can deviate from its protocol in es-
sentially three ways: First, it can communicate more
frequently than prescribed by the protocol, “pumping”
unwanted information into the system. In a broadcast
application, this may lead to denial-of-service attacks.
Second, it can communicate less frequently than pre-
scribed. This behavior can be considered as a general
benign failure; gossip-based protocols are extremely
robust with respect to this, so no new measures are
needed. Third, a malicious node can respect com-
munication frequency but it might apply an incorrect
UPDATE method, which can arbitrarily change the col-
lective behavior. For example, in average aggregation,
a malicious node can maintain a large constant value,
which eventually causes the global average to incor-
rectly grow instead of converging.

We can identify four subproblems that need to be
solved in order to maintain system integrity in the pres-
ence of malicious peers. The first problem isidentity
assignment: how to guarantee that a real-worldentity
(person, organization) obtain only a limited number of
virtual identities[4], that these identities be unforge-
able and that the source of information in the system
be attributable to a valid identity. These goals can
be achieved through public-key cryptography and a
trusted certificate authority (CA) as described in [1].
The central CA is not a performance bottleneck be-
cause it does not participate in the protocol and it can
even be offline.

The second problem is thereal-world interface,
which is present in any setting where peers in the
system inject information derived from their external
environment. Typical examples are sensor networks
where unstructured gossip-based protocols may find

applications. Preventing such attacks is an application-
specific problem where techniques like smoothing,
interval bounding, background knowledge, machine
learning, etc. can be applied. In this work we do not
address this problem.

In the following we focus on the two remaining
problems: detection of nodes that do not behave ac-
cording to the prescribed protocol and their removal
from the system. Space limitations force us to give
only sketches of our solutions. Additional information
and details may be found in [9].

3.1 The Detection Problem

The goal of detection is to find aproof that a node
deviated from the behavior prescribed by its protocol.
Our solution to this problem is not unlike the random
auditing technique described in in [11], in that it in-
volves participating nodes to periodically verify each
other’s actions. Verification is achieved throughcom-
munication logsthat nodes maintain locally and pro-
vide to others when asked for. A communication log
is a list of records corresponding to all communication
events (both initiated and incoming) at a node within a
given time window of fixed size that ends with sending
the log.

We augment the protocol in Figure 1 so that during
each state exchange, the peers agree on a unique ex-
change ID and exchange local timestamps. With this
additional information, each log record is built to con-
tain the local timestamp, the remote timestamp, the
exchange ID and the identity of the remote peer in-
volved in the communication. All information origi-
nating at remote peerp is signed byp. Additionally,
each record may contain application-specific data re-
lated to the communication event.

A given log is said to belegal if it conforms both to
the syntactic structure defined above and to the seman-
tic structure defined by the application. Two logs are
said to be mutuallyinconsistentif it is logically impos-
sible for both of them to be legal at the same time.

Each time nodeA contacts a peerB according to
the protocol in Figure 1, it asksB for its log, denoted
LB, in addition to its state. NodeA subsequently picks
a random peer ofB, sayC, from B’s log and asksC
for its log, LC , as well. The key idea is that if we de-
fine the semantics of the log properly, then if eitherB
or C is malicious, then at least one of the following is
true with significant probability: (a) one or both ofLB

andLC are provably illegal, (b) both logs are legal but

2



they are provably inconsistent. As described below,
these conditions can be verified byA so it can make a
decision whetherB or C or both are malicious. All in-
formation included in the logs being signed by specific
identities, the pair of logs constitute a proof that one
or more malicious identities have behaved incorrectly.
These proofs cannot be forged.

To provide an example of the log verification pro-
cess, we discuss the case in which a malicious node ap-
plies a wrongUPDATE method to its state. Application-
specific data are necessary to detect this kind of cheat-
ing, so we concentrate on average calculation.

In average calculation, we require nodes to attach to
each log record their current local value and the value
received from the peer. In a legal log, the local value
recorded has to be the average of the previous local
value and the previous received value. Furthermore,
a node cannot forge a received value (recall that we
require each piece of information to be signed by its
originator in the system). Using these properties, it is
clear that forC to forge its log, it has to either forge at
least one record by changing its local value in it, orC
has to remove all records preceeding the last cheating
so as to avoid detection of the inconsistency.

In the first case, if the forged record is the one un-
der examination, the verification process will discover
the inconsistency, because the other log under exami-
nation will contain a completely different record. The
removal of multiple records in the log will be detected
more easily, because several other nodes may contain
records in their logs proving that the node had actually
communicated during the log time window.

It is important to note that a single isolated mali-
cious act could pass undetected by this mechanism:
it is possible that two logs whose comparison would
lead to a proof, are never randomly selected. This is
not always a problem: for example, in the aggregation
protocol, a single false value in a large scale system
does not modify the average in a significant way. Fur-
thermore, if a malicious node stops acting maliciously
after some point, it is no longer necessary to remove
it anyway. Nevertheless, a malicious node that keeps
acting maliciously will eventually be detected by some
peer reasonably rapidly, depending on the frequency
of malicious acts and depending also on the specific
application and the semantics of the log.

Clearly, to assess the correctness of this detection
mechanism, a complete analysis of all possible attacks
would be needed. Several details did not find their way
in the brief description above. For example, we have

not discussed what happens if a node refuses to pro-
vide its log; this problem can be easily solved through
an indirection mechanism, that forces nodes to make
their logs available if they want to participate in the
protocol. Other problems to be considered include fre-
quency attacks (where nodes start more exchanges than
prescribed by the protocol), cooperation among nodes,
etc. For additional details, please consult [9].

3.2 The Removal Problem

It is possible to remove detected malicious nodes
through a centralized solution. Yet, in our framework,
we make full use of the power of gossip-based database
updates [3]. Let each node maintain ablacklist of
identities. Nodes will not accept connections from
blacklisted identities and will not initiate connections
to them, effectively cutting them off from the network.

We can think of the blacklist as a database of mali-
cious node identities. When a node detects a malicious
node, it simply inserts it in its blacklist and propagates
this information as a database update using a classical
gossip-based protocol of choice [3].

Malicious nodes may of course want to propagate
correct nodes as blacklist updates. Since this requires
proof, which they cannot forge, it is not possible.

4 An Illustrative Example

To prove the effectiveness of our approach, we present
an example scenario based on our aggregation protocol
for averaging [8]. In this example, aggregation is used
to compute the network size as follows. Exactly one
node sets its initial value to 1, while all the others set it
to 0. The averaging is then started and the values held
by all nodes converge exponentially to1/N , whereN
is the network size. Since convergence is very fast, the
protocol is restarted every 20 cycles (anepoch), and
the converged value at the end of each epoch is used as
a dynamic approximation of1/N .

Size estimation has two remarkable characteristics.
First, it is highly sensitive to malicious attacks. In the
initial cycles, if a node that started with value 1 com-
municates with a malicious node that always reports
0 as its current value (irrespective of the values it re-
ceives from other peers), it is possible that a large share
of the initial 1 value is removed from the network, thus
increasing the network size estimate. Second, in this
problem the real-world interface problem is not present

3



10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400

E
st

im
at

ed
 n

um
be

r o
f h

os
ts

Cycles

Individual experiments
Average

Figure 2:Response to sudden collective attack. 500 nodes in a
network of104 nodes start to behave maliciously at cycle 40 by
reporting 0 as their current value. The network size estimated dur-
ing 20 independent experiments is shown using dashed lines. The
thick line represents the average computed over those experiments.

because the numbers to average are defined by the pro-
tocol itself; only values included in the interval[0, 1]
are possible.

Figure 2 shows the results. In the attack we con-
sider, many malicious nodes enter the system at once.
Although the system we consider is not synchronous,
it is convenient to subdivide the computation into cy-
cles — consecutive wall clock intervals during which
every node has the chance to perform a state exchange.

In a network of104 nodes,500 (random) nodes be-
come malicious at cycle40. They communicate with
the correct frequency, but during each value exchange,
they always report 0 as their value. We can see that as
the malicious nodes gradually get blacklisted the ap-
proximation approaches the correct value of 9500.

5 Conclusions

In this paper, we have discussed the security problem
in gossip-based protocols. We have suggested a frame-
work for maintaining integrity in a class of unstruc-
tured gossip-based P2P protocols in a fully autonomic
fashion (except for the identity problem).

It is interesting to note that non-cooperative, mali-
cious nodes are a problem not only for gossip-based
protocols, but in general for any kind of peer-to-peer
system in which the correct functioning of the protocol
is based on the cooperation among nodes. We believe
that the solution we have sketched in this paper can po-
tentially be applied also to other, more structured pro-
tocols.

References

[1] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. S. Wallach. Secure Routing for Structured Peer-
to-Peer Overlay Networks. InProc. 5th Usenix Symp.
on Op. Sys. Design and Implementation (OSDI 2002),
Boston, Massachusetts, 2002.

[2] F. Dabek and B. Zhao. Towards a Common API for
Structured Peer-to-Peer Overlays. InProc. of the 2nd
Int. Workshop on Peer-to-Peer Systems, Berkeley, CA,
USA, Feb. 2003.

[3] A. Demers et al. Epidemic Algorithms for Replicated
Database Management. InProc. 6th ACM Symp. on
Principles of Dist. Comp. (PODC’87), pages 1–12,
Vancouver, August 1987. ACM.

[4] J. R. Douceur. The sybil attack. InProc. 1st Int. Work-
shop on P2P Sys. (IPTPS’02), March 2002.

[5] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-
M. Kermarrec, and P. Kouznetsov. Lightweight Prob-
ablistic Broadcast.ACM Trans. on Comp. Sys.

[6] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulíe. From Epidemics to Distributed Com-
puting. IEEE Computer, 2003.

[7] M. Jelasity, W. Kowalczyk, and M. van Steen. News-
cast computing. Technical Report IR-CS-006, Vrije
Universiteit Amsterdam, Department of Computer
Science, Amsterdam, The Netherlands, Nov. 2003.

[8] M. Jelasity and A. Montresor. Epidemic-Style Proac-
tive Aggregation in Large Overlay Networks. InProc.
of the 24th Int. Conference on Distributed Computing
Systems (ICDCS 2004), Tokyo, Japan, 2004.

[9] M. Jelasity, A. Montresor, and O. Babaoglu. Towards
secure epidemics: Detection and removal of mali-
cious peers in epidemic-style protocols. Technical Re-
port UBLCS-2003-14, University of Bologna, Dept.
of Computer Science, Bologna, Italy, Nov. 2003.

[10] A. Montresor, M. Jelasity, and O. Babaoglu. Robust
Aggregation Protocols for Large-Scale Overlay Net-
works. InProc. of the Int. Conf. on Dependable Sys-
tems and Networks (DSN 2004), Firenze, Italy, 2004.

[11] T.-W. Ngan, D. S. Wallach, and P. Druschel. Enforcing
Fair Sharing of Peer-to-Peer Resources. InProc. 2nd
Int. Workshop on P2P Sys. (IPTPS’03), Berkeley, CA,
USA, February 2003.

[12] S. Voulgaris and M. van Steen. An Epidemic Pro-
tocol for Managing Routing Tables in Very Large
Peer-to-Peer Networks. InProc. 14th IFIP/IEEE Int.
Workshop on Dist. Sys.: Operations and Management,
(DSOM 2003), number 2867 in LNCS. Springer, 2003.

4


