
Byzantine Replication for
Trustworthy Systems

Jean-Philippe Martin, Lorenzo Alvisi
Laboratory of Advanced Systems Research

Department of Computer Sciences
University of Texas at Austin

1. Introduction
A trustworthy networked information system (NIS)

must continue to operate correctly even in the presence
of environmental disruptions, human errors, and hos-
tile attacks [10]—in other words, it must be both fault-
tolerant and secure. Reasoning about such a system is,
unfortunately, very hard. Our limited success to date in
building reliable NISs is an indication of the complexity
involved with guaranteeing “just” fault-tolerance; once
security is added, complexity runs the risk of becom-
ing unmanageable. To compound the challenge, fault-
tolerance and security do not seem to integrate nicely.
On the one hand, they often duplicate efforts, since both
are concerned with maintaining data integrity and avail-
ability. On the other hand, they can be at odds with each
other—for instance, the very replication that improves
data integrity and availability against faults, harms con-
fidentiality.

An attractive approach toward managing this com-
plexity is to model a component whose security has been
compromised as faulty according to the Byzantine fail-
ure model. A system can then be hardened to guarantee
its correct operation even if a subset of its components,
up to a given threshold, suffer Byzantine faults.

This approach can potentially yield significant ad-
vantages. First, it holds the promise of simplifying rea-
soning about trustworthy systems by making security a
byproduct of fault tolerance. Second, it opens the possi-
bility of leveraging for security purposes the large body
of existing research in Byzantine fault tolerance (BFT).
Third, it suggests that it may be possible to assemble un-
trustworthy components into a trustworthy system, just
as traditional fault-tolerance protocols assemble unreli-
able components to build reliable systems. This is es-
pecially attractive given the economics of today’s mar-

ketplace, where few components are rigorously tested or
verified.

At the same time, this approach raises several con-
cerns. First, Byzantine fault tolerance is notoriously ex-
pensive. It is not just that Byzantine protocols, to op-
erate correctly, typically require participants to engage
in numerous rounds of communication; much more im-
portantly, they require a very high degree of replica-
tion, The cost associated with this replication may be
prohibitively high, especially when considering thatn-
version programming (or opportunistic n-version pro-
gramming) may be required to reduce the possibility of
a large number correlated Byzantine faults caused by a
single security exploit.

Second, traditional Byzantine fault-tolerance tech-
niques do not address confidentiality, which is a crucial
aspect of security. Indeed, the replication required by
most existing Byzantine fault-tolerance techniques can
actuallyhurt confidentiality.

Third, the very soundness of modeling nodes com-
promised as a result of a security attack as if they were
Byzantine faults is problematic. The ability to choose an
accurate value forf , the maximum number of faults that
can occur at any time, is critical to the safety of any BFT
protocol. When Byzantine fault tolerance is not used
against security attacks, it is reasonable to treat Byzan-
tine failures as independent and computef accordingly.
But it is not obvious how to computef so the system is
safe when an attacker finds a new vulnerability in an op-
erating system—when that happens, the probability that
all replicas running the same OS will shortly be compro-
mised increases sharply. It is not clear whether the diver-
sity introduced throughn-version programming is suffi-
cient to reduce significantly the probability of this type
of correlated faults.

Our research agenda over the last three years has been
to determine whether or not hardening distributed sys-
tems against Byzantine faults is a practical and sound
approach towards increasing trustworthiness. We have
focused on two architectural primitives, state-machines
and quorum systems, with encouraging results [1, 3, 2,
8, 5, 6, 11].

We are currently moving our agenda forward along
three directions.

Stronger confidentialityWe have shown [11] how, by
restructuring state machine replication around separate
agreement and execution replica clusters (see Figure 1),
it becomes possible to insert between them aprivacy
firewall, whose mission is to filter responses so that
Byzantine execution replicas cannot communicate con-
fidential values to faulty clients. Our current firewall is



Agreement Cert.
Request Cert.

Agreement Cert.
Request Cert.

P

P

P

C

E E

EE
A

C

A

A

A

Certificate
Reply

Certificate
Request Reply

Certificate
Reply
Certificate

Reply
CertificateCertificate

Request Request
Certificate

Certificate
Agreement

Reply
Certificate

Certificate
Request

E EEE

AAAA

EEE

A A A A

P

Reply
CertificateAgreement/Execution

C

(c)(b)(a)

Agreement Agreement

Execution Execution (Optimized)

Priv. Firewall

Figure 1: High level architecture of (a) traditional Byzantine fault tolerant state machine replication, (b) separate
Byzantine fault tolerant agreement and execution, and (c) new optimizations enabled by the separation of agreement
and execution.

still vulnerable to timing attacks and provides a level of
confidentiality roughly equivalent topossibilistic non-
interference[7].

We are investigating how to strengthen our firewall so
that it becomes impossible for an adversary to affect the
timing, ordering, and replication of symbols produced
by our state machine. We propose to design and build
an architecture that in a synchronous system guarantees
fail-safe confidentiality—intuitively, when the correct
component of the system meet their timeliness require-
ments, the system should be fully confidential; when
they don’t, the system should fall back to our version
of possibilistic non-interference.

Better performanceWe have shown how the principle
of separating agreement from execution can reduce sig-
nificantly the replication costs incurred by services im-
plemented as BFT state machines. Fundamentally, this
separation allows our architecture to assign the tasks
that require a high degree of replication—i.e. achiev-
ing the Byzantine agreement necessary to produce a
linearizable order of client requests—to a cluster of
genericagreement nodesthat can be simple and inex-
pensive because they are application independent.Exe-
cution nodes, which sit behind the agreement cluster, are
instead application-dependent and expensive, but fewer
of them are necessary in our architecture than in earlier
ones.

We are developing novel approaches to reduce the la-
tency and increase the throughput of BFT state machines
where, once again, the principle of separating agreement
from execution enables promising directions for investi-
gation.

A firmer foundation for BFT security The soundness
of using BFT to build trustworthy NISs rests on a cru-

cial assumption, namely, that failures across replicas are
not highly correlated. It is indeed possible, as some have
argued [9], thatn-version programming combined with
proactive recovery [4] provides sufficient diversity to in-
hoculate the NIS against correlated faults in the face of
security exploits. However, to our knowledge, there is
no quantitative evidence supporting this claim.

One of our goals is to determine the extent to which
this claim is indeed defensible. To this end, we are cur-
rently working on developing a plausible methodology
for quantifying the effectiveness ofn-version program-
ming against security exploits.

2. Fast Byzantine Paxos

As part of the agenda outlined above, we have re-
cently developed FaB Paxos, a fast Byzantine Paxos pro-
tocol that, in the common case, is optimal in the num-
ber of communication steps required to reach consensus.
Since consensus is at the core of state machine replica-
tion, FaB Paxos leads to state machine replication proto-
cols that have lower common case latency than the cur-
rent ones.

To properly discuss FaB Paxos, a quick review of
Paxos is in order. Paxos [2] phrases the consensus prob-
lem in terms of the actions taken by three classes of
agents:proposers, who propose values,acceptors, who
together are responsible for choosing a single proposed
value, andlearners, who must learn the chosen value.
Informally, the protocol’s safety properties require that
only a single value be chosen from among those that are
proposed and that only chosen values be learned; live-
ness instead consists in making sure that eventually, pro-
posed values will be chosen and chosen values will be

2



learned. More specifically, in Paxos one of the proposers
is elected leader and it communicates with the accep-
tors. Paxos guarantees progress only when the leader is
unique and can communicate with sufficiently many ac-
ceptors, but it ensures safety even with no leader or with
multiple leaders.

One of the properties that make Paxos attractive for
practical applications is that it can be made very effi-
cient ingracious executions, i.e. executions where there
is a unique correct leader, all correct acceptors agree on
its identity, and all correct replicas and all links between
them are timely.

Except in pathological situations, it is reasonable to
expect that gracious executions will be the norm—and
so it is desirable to optimize for them. Indeed, it has been
shown that for in non Byzantine environment, Paxos-
like consensus protocol can terminate successfully af-
ter only two communication steps (matching the lower
bound for the problem) in the common case of gracious
executions.

Unfortunately, this is not the case for Byzantine ver-
sions of Paxos, like the ones at the core of PBFT [1] and
of the state machine replication protocol that we have
proposed in a recent paper [3]. After a client request has
been received by the leader, Byzantine protocols require
a minimum of three additional communication steps be-
fore the reply can be determined.

The difficulty in making Byzantine protocols fast in
the common case is that they must continue to be cor-
rect in the uncommon case. For instance, while in tra-
ditional Paxos a faulty leader can at most be silent, in
Byzantine Paxos one has to consider scenarios in which
a faulty leader may (i) try to communicate inconsistent
values to the acceptors, possibly poisoning their state
forever; (ii) try to trick acceptors into assigning the same
sequence number to two distinct requests; or (iii) col-
lude with faulty acceptors to have distinct correct learn-
ers learn different values. Byzantine protocols use the
extra round precisely to defend against these and other
similar eventualities.

Our approach for breaking this stalemate is uncon-
ventional: we use a higher number of acceptors nodes
than in traditional protocols and treat the resulting set
of acceptors as a Byzantine quorum system. FaB Paxos
uses the extra acceptors as a sort of “institutional mem-
ory” for the actions taken by the leader. If the leader
is faulty, correct nodes of good can query appropriately
this quorum system to obtain an accurate account of the
status of the system, allowing us to eliminate in the pro-
cess the need for an extra communication step.

For traditional implementations of the state machine

approach, the extra replication required by our approach
would probably make the tradeoff uninteresting, ex-
cept perhaps for the applications most bent on reducing
latency. However, in Byzantine state machines where
agreement and execution are separated, as is the case for
the architecture that we have recently proposed [3], ac-
ceptors correspond to the cheap agreement nodes and
can be used more liberally—making the design point
that we explore much more attractive.

References

[1] L. Alvisi, D. Malkhi, E. Pierce, and M. Reiter. Proba-
bilistic techniques for fault detection in Byzantyne quo-
rum systems. InProceedings of the Seventh IFIP Inter-
national Working Conference on Dependable Computing
for Critical Applications (DCCA-7), pages 357–372, Jan-
uary 1999.

[2] L. Alvisi, D. Malkhi, E. Pierce, and M. Reiter. Fault
detection for Byzantine quorum systems.IEEE Trans-
actions on Parallel and Distributed Systems, 12(9):996–
1007, September 2001.

[3] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. Wright.
Dynamic Byzantyne quorum systems. InProceedings
of the International Conference on Dependable Systems
and Networks (DSN 2000 and FTCS 30), pages 283–292,
June 2000.

[4] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton. Soft-
ware rejuvenation: analysis, module, and applications. In
Proceedings of the 25rd Fault-Tolerant Computing Sym-
posium, pages 381–390, June 1995.

[5] J.P. Martin, L. Alvisi, and M. Dahlin. Small Byzantyne
quorum systems. InProceedings of the International
Conference on Dependable Systems and Networks (DSN
2002 and FTCS 32), DCC Track, pages 374–383, June
2002.

[6] J.P. Martin, L. Alvisi, and M. Dahlin. Small Byzan-
tyne quorum systems. InProceedings of the 16th In-
ternational Symposium on Distributed Computing (DISC
2002), pages 311–326, October 2002.

[7] J. McLean. A general theory of composition for a class
of ’possibilistic’ security properties.IEEE Transactions
on Software Engineering, 22(1):53–67, January 1996.

[8] E. Pierce and L. Alvisi. A framework for semantyc rea-
soning about Byzantyne quorum systems. InBrief An-
nouncements, Proceedings of the 20th ACM Symposium
on the Principles of Distributed Computing (PODC),
pages 317–319, August 2001.

[9] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. InProceedings of
the 18th ACM Symposium on Operating Systems Princi-
ples, 2001 October.

[10] Fred B. Schneider, editor.Trust in Cyberspace. National
Academy Press, 1999.

3



[11] J. Yin, J.P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault-tolerant services. InProceedings of the
Nineteenth Symposium on Operating System Principles,
pages 253–268. ACM SIGOPS, October 2003.

4


