
Integrating End-to-end Security and Fault Tolerance

Andrew C. Myers

Computer Science Department

Cornell University

andru@cs.cornell.edu

1 Trustworthiness by construction
A trustworthysystem should tolerate both benign failures and malicious attacks, while providing confiden-
tiality, integrity, and availability. That is, it should keep sensitive data confidential, resist data corruption,
and remain available despite attacks and failures.

Many useful mechanisms have been developed for building trustworthy distributed systems: for exam-
ple, encryption, digital signatures, replication, access controls, capabilities, and various distributed proto-
cols. Having built a system using these mechanisms, how does the designer know that the desired trust-
worthiness goals have been achieved? There are several reasons why this is difficult. First, there are no
established techniques for specifying all the aspects of trustworthiness or for showing that these specifica-
tions are satisfied. Second, distributed systems are complex and it is difficult to reason about what might
happen in the presence of a malicious attacker or of failures. Finally, distributed systems in general must
enforce the security of more than one participant, and these participants might not trust one another.

While current work on validating secure protocols continues to make progress, scaling this approach
up to complete software implementations does not seem tractable because techniques based on exhaustive
search do not scale. Further, analyses of communications protocols alone do not give assurance that the
system as a whole is trustworthy.

A possible alternative is to build systems that are trustworthyby construction. The idea is that programs
are written with explicit annotations specifying high-level requirements for confidentiality, integrity, and
availability. Using these annotations, a compiler statically analyzes the program and, if necessary, transforms
the program into a distributed system that performs the original computation in a trustworthy way. The
program transformation automatically composes standard distributed system implementation techniques,
driven by these explicit trustworthiness annotations.

Each principal explicitly expresses a certain degree of trust in the host machines that are used for compu-
tation and storage. Program trustworthiness policies (which apply to data and computation) are alsoowned
by principals, so principals can disagree about how trustworthy the data, computation, and hosts in the sys-
tem need to be. If components of the system fail—perhaps maliciously—the damage that can be caused is
strictly bounded. A policy captured in a program annotation can be violated only if some host that is trusted
by the owning principal to enforce that policy has failed.

This approach has been demonstrated for enforcing security properties such as confidentiality and in-
tegrity [ZZNM02, ZCMZ03], using underlying techniques that include partitioning, replication, encryption,
capabilities, access control, and commitment. Because the compiler instantiates these mechanisms in re-
sponse to explicit security policy annotations, the validation problem is lifted from the program to the com-
piler that transforms it. The same approach may be able to enforce certain kinds of availability as well,
resulting in a single enforcement mechanism that gives assurance for all three major aspects of trustworthi-
ness. This paper sketches some ideas in this direction.

1



2 Dependency and end-to-end policies
End-to-end trustworthiness propertiesconstrain the end-to-end behavior of the system and therefore place
stronger constraints on system behavior than local mechanisms such as access control. For example, access
control can mediate access to a file, but doing so offers no guarantees about whether the information in the
file is subsequently leaked. Access control is useful, but in large systems deciding how to set access control
permissions becomes a difficult problem in itself (and one that end-to-end security analyses can help with).

In developing mechanisms such as access control, the security community has often ignored the end-
to-end view of trustworthiness, whereas the fault tolerance community has typically had an end-to-end
view. This difference in perspective seems to arise because security can often be phrased as a safety prop-
erty [Sch01], whereas availability cannot. Thus, for many security properties, it is possible to halt the system
when a security violation is about to occur. Clearly the strategy of halting the system is not helpful when an
availability violation is about to occur, because this violates the very policy that is to be enforced!

However, there is also some commonality in these two notions of trustworthiness. To reason about
whether a system is trustworthy in an end-to-end sense, it seems to be necessary to understand how data and
computation depend on results computed earlier. The ultimate goal is to show that the observable output
(and whether there is output) depends both on inputs and on the trustworthiness of host machines only in
ways permitted by the security and availability specification.

3 Information flow
In the security domain, information flow analysis can be used to reason about end-to-end confidentiality and
integrity. For example, to ensure that information remains confidential, it is necessary to prevent improper
information flows. Information flow is simply a form of dependency. If a high-level input influences a
low-level output, then information can be potentially learned from a change to that output.

Information flow control has been enforced for both confidentiality and integrity properties with in-
creased precision using a variety of type systems and static dependency analyses (e.g., [DD77, VSI96,
ML97, ZZNM02, PS02, BN02]). An example of this approach is the Jif language [Mye99, MZZ+03],
which extends Java with security annotations. In Jif, every value has asecurity typewith two parts: an ordi-
nary type such asint, and a sensitivity label that describes how the value may be used. Any type expression
t may be decorated with any label expression{l}; the resulting type expression is written ast{l}. A label
defines an information flow policy on the use of the labeled data. Security types make security policies
explicit in the system design, making these decisions auditable and verifiable.

Labels in Jif are defined by thedecentralized label model(DLM) [ML98, ML00]. For example, the label
{p: q} describes information that principalp owns and principalq can read. One labelL1 may be at least
as restrictive as another labelL2, if the restrictions on the use of data labeled byL1 are at least as strong as
those on data labeled byL2. This relationship is denoted formally asL2vL1; it indicates the direction in
which information may securely flow. For example, we have{p: q,r} v {p: q} because the label{p: q}
allows fewer readers.

4 Availability policies
Dependency analyses can identify potential availability vulnerabilities too. If computation A depends on
results from computation B, but those results are unavailable, then A must also be unavailable. This is the
same kind of analysis that is needed to analyze whether confidential information flows from B to A, or
whether low-integrity information does.

For example, an availability policyA1 on data might demand that the data be available as long as the
hardware hasn’t suffered a random failure and the site password file has not been compromised. Because it
allows more failures, this is a weaker availability policy than a policyA2 that guarantees the data available

2



only as long as the hardware hasn’t failed. Because the implicationA2 ⇒ A1 holds, it is acceptable for
a program to assign more-available data labeledA2 into a less-available location labeledA1. Thus, the
statementA2vA1 holds when the policies are interpreted as information flow labels. (The syntactic form
of policiesA1 andA2 is deliberately left abstract.)

Integrity and availability are superficially similar, but they promise different things. If data has integrity,
then that data will be correct—if it is provided. If it is available, then it will be provided—but it might not
be correct. Integrity and availability also behave differently in the presence of replication. Suppose there are
two sources 1 and 2 of the same data, with integritiesI1 andI2 and availabilitiesA1 andA2. Then reading
both data values and proceeding only if they agree increases integrity (toI1 u I2) but decreasesavailability
(to A1 tA2), because both replicas must be available to do the check. (Hereu and t are respectively
the greater lower bound and least upper bound for the orderv .) Thus, a more accurate analysis of the
trustworthiness of replicated computation is obtained by treating integrity and availability separately. More
complex protocols can also be analyzed similarly, though it is not yet clear how far this approach can be
pushed.

The decentralized label model can be extended so principals can express availability policies. We can
then ask whether a system satisfies the availability policies of all principals with a stake in the security of
the computation. The insight is that principals on the right-hand side of a DLM policy can be interpreted as
modes of failure (where a failure may result from a successful attack). A confidentiality policy{p:q} is an
assertion thatp believes the data will remain confidential as long asq does not fail to keep it confidential.
For integrity,p believes the data will have integrity unlessq fails to provide correct data. As an availability
label, it says thatp believes that the data is available as long as failureq does not occur. In each case the
policy componentq can be interpreted as a failure that may compromise some aspect of security.

It is also possible to capture the independence or dependence of different possible failure modes through
a conjunction operator (∧) that operates on failures. The failureq1 ∧ q2 represents the simultaneous failure
of q1 and q2. If q1 ∧ q2 = q1, then the failure ofq1 is always accompanied by the failure ofq2. By
defining a suitable algebra over failures, many different failure models can be represented in this label
system. For example, independence of failures is captured by a conjunction operator that simply multiplies
failure probabilities when appropriate.

5 Conclusions
The extended label model sketched above provides a basis for specifying all three major aspects of trustwor-
thiness: confidentiality, integrity, and availability. Program dependency analysis can provide an end-to-end
enforcement mechanism for all three aspects. And there is an appealing way to satisfy security policies
by rewriting programs onto a distributed system. Integration of these two threads is clearly the next step
to take: a compiler back end that can rewrite programs to enforce availability, using not simple replication
but more complex distributed protocols that can improve both integrity and availability in the presence of
Byzantine failure. If this approach works, the result will be a unified way to build distributed systems that
are trustworthy by construction.

Acknowledgments
I would like to thank Lantian Zheng and Lorenzo Alvisi for many interesting discussions on availability
policies and on enforcing availability, and Fred Schneider for many suggestions on an earlier version of this
text.

3



References
[BN02] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confinement in a Java-like

language. InIEEE Computer Security Foundations Workshop (CSFW), June 2002.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information flow.Comm.
of the ACM, 20(7):504–513, July 1977.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control. InProc. 17th
ACM Symp. on Operating System Principles (SOSP), pages 129–142, Saint-Malo, France, 1997.

[ML98] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with decentralized labels. In
Proc. IEEE Symposium on Security and Privacy, pages 186–197, Oakland, CA, USA, May 1998.

[ML00] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.ACM
Transactions on Software Engineering and Methodology, 9(4):410–442, October 2000.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProc. 26th ACM Symp. on
Principles of Programming Languages (POPL), pages 228–241, San Antonio, TX, January 1999.

[MZZ+03] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. Jif: Java
information flow. Software release. Located athttp://www.cs.cornell.edu/jif, July 2001–2003.

[PS02] François Pottier and Vincent Simonet. Information flow inference for ML. InProc. 29th ACM Symp. on
Principles of Programming Languages (POPL), pages 319–330, 2002.

[Sch01] Fred B. Schneider. Enforceable security policies.ACM Transactions on Information and System Security,
3(1):30–50, 2001. Also available as TR 99-1759, Computer Science Department, Cornell University,
Ithaca, New York.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

[ZCMZ03] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic. Using replication and parti-
tioning to build secure distributed systems. InProc. IEEE Symposium on Security and Privacy, pages
236–250, Oakland, California, May 2003.

[ZZNM02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure program partition-
ing. ACM Transactions on Computer Systems, 20(3):283–328, August 2002.

4


