
Robust Multi-threading

Jeff Napper Lorenzo Alvisi

Department of Computer Sciences

The University of Texas at Austin
�jmn,lorenzo�@cs.utexas.edu

1. Introduction

Networked services are increasingly in demand
as traditional services become web-enabled. These
high-throughput services today use a pool of worker
threads to service requests in parallel on multi-
processor machines [15, 8]. As businesses stream-
line practices, these services are often critical (e.g.,
web services for an online retailer or just-in-time
supply chaining), requiring methods to manage
faults.

The relatively little attention devoted so far to
improving the robustness of these applications has
focused on fault tolerance techniques—such as
rollback-recovery [2] and state machine replica-
tion [12]—that can be added transparently to exist-
ing applications. Unfortunately, conjugating trans-
parency with practicality has proven especially dif-
ficult in these applications. The proposed recovery-
based techniques have not moved beyond the design
stage, while implementations based on state machine
replication require strong assumptions about the in-
terface used to access shared data that are often vi-
olated by real programs. Indeed, it is precisely the
lack of a suitable consistent, widespread interface in
use for accessing shared data and resources that com-
plicates transparent approaches. Without a clean,
concise interface to support transparency (e.g., net-
work send/receive operations for message passing
applications), an implementation may be forced to
use a lower level interface not well-suited to fault-
tolerance (e.g., thread scheduling in [12]). Exist-
ing interfaces to shared data provide synchronization

without addressing failures. We instead propose an
interface that is inherently well-suited to the imple-
mentation of robust applications because it incorpo-
rates fault-tolerance as a first class citizen: multi-
object transactional operations.

Using a transactional interface to shared data, a
thread may fail safely at any time during execution
without inhibiting the rest of the application. To
ensure an application can still make progress un-
der these conditions, we provide lock-free access
to shared data. Failed threads may then be treated
independently, either be restarted, recovered using
rollback-recovery techniques, or simply ignored, de-
pending on the application’s needs.

For example, when requests are independent,
clients could simply retry failed requests. Recovery
of a failed thread would typically be unnecessary,
although thread failures may trigger the creation of
new threads to maintain throughput. Note that to
ensure highly available services, the system should
recover resources from failed and stalled threads to
prevent resource leaks.

Admittedly, it is not enough that correct threads
have unfettered access to shared data and avail-
able resources—under some failure models we need
to also prevent failed threads from corrupting both
shared data and another thread’s private data (e.g.,
by corrupted pointer dereferencing or Byzantine fail-
ures). This remains an intriguing area of future re-
search. For example, it may be possible to design
systems where threads can be failed intentionally—
to recover runaway resources, to rejuvenate the sys-
tem, or to terminate threads that violate security

1



constraints—while other threads continue to service
requests.

In the rest of this document, we focus on the im-
plementation of lock-free data structures. In Sec-
tion 3 we present our approach, but first we put our
work in the larger research context in the next sec-
tion.

2. Background

Wait-free synchronization [5] offers an elegant ap-
proach to handling threads that fail or are delayed.
It advocates building wait-free implementations of
concurrent objects, i.e. implementatations that guar-
antee that any thread can complete any operation in
a finite number of steps, irrespective of the execu-
tion speed of other threads. Unfortunately, elimi-
nating starvation has proved in general difficult to
implement efficiently [5, 3], thereby motivating the
introduction of weaker progress guarantees. Lock-
free (or nonblocking) concurrent objects [5] guaran-
tee progress to at least one thread, allowing starva-
tion but not livelock; obstruction-free concurrent ob-
jects [6] guarantee progress only in the absence of
contention, thus allowing both starvation and live-
lock.

While many have devised specific wait-free and
lock-free implementations for individual data struc-
tures, a general and efficient approach applicable to
any data structure is clearly more desirable. Her-
lihy [5] has shown that compare-and-swap (CAS),
an operation that atomically and conditionally mod-
ifies a memory location, is universal—sufficient to
provide wait-free implementations of arbitrary data
structures. The CAS primitive and the similar LL/SC
are the only widely available universal primitives.
Researchers have extended CAS to provide an ef-
ficient multi-word CAS (MWCAS) [4]. MWCAS
greatly simplifies the task of implementing wait-
free and lock-free data structures compared to sim-
ple CAS, but maintains the same interface. Transac-
tional memory has also been proposed as a different
interface to provide nonblocking access [13]. Un-
fortunately, implementations often i) require static
transactions (i.e., memory locations are predeter-

mined) [13], ii) cannot return early indication of fail-
ure, or iii) require a different API for read-only trans-
actions [7].

3. Lock-Free Transactional Objects

Neither MWCAS nor transactional memory pro-
vide the best interface for developers. Though MW-
CAS is a useful primitive, developers using MW-
CAS must address the low-level details of concur-
rent updates to the memory representations of data
structures and keep track of expected values for con-
ditional update. The API provided by transactional
memory is typically easier than MWCAS for the
developer, but the approach yields a host of new
problems and still does not avoid the fundamental
problem of MWCAS—programmers must focus on
memory layouts of objects rather than operations
thereupon.

We propose a new approach—lock-free transac-
tional object operations. Rather than requiring atten-
tion to objects’ memory representations, we provide
a transactional framework that ensures that lock-free
multi-object operations occur in a serializable order.
Our framework restricts neither the representations
of the objects nor the operations that the objects sup-
port. For example, our framework supports both
copying an entire object or saving only modified por-
tions of the object during an operation, allowing de-
velopers to optimize their implementation according
to the size of the object.

The many drawbacks of transactional memory dis-
appear: our framework i) allows dynamic transac-
tions (where operations are not predetermined) ii) re-
turns early failure indication, and iii) does not use a
special API for read-only transactions. Finally, our
algorithm is disjoint-access parallel [9] for multi-
object updates, relies only on CAS as a hardware
primitive, and supports an implementation compati-
ble with current nonblocking garbage collectors [10].

Our system models a pool of cooperating threads
that operate on shared data. Shared data is repre-
sented as a set of objects that support read or write
operations. Threads may run simultaneously (as on a
multi-processor) and there are no bounds on relative

2



speeds between threads. A thread may fail by halt-
ing or be arbitrarily delayed (e.g., by a page fault).
Threads execute a transaction on a set of objects. We
consider only a single transaction per thread and do
not address nested transactions. Our transactions fol-
low the restricted model [14] in which a transaction
has a beginning, performs one or more read opera-
tions, and may attempt write operations on objects
that it has read previously. A thread then either at-
tempts to commit or abort the transaction so that
all operations are either visible or not, respectively.
Until a transaction commits or aborts, it is pending.
Operations from different transactions may be inter-
leaved during an execution provided that the execu-
tion is 1-copy serializable (1-SR) [1]—equivalent to
an execution in which transactions execute sequen-
tially on a single copy of the objects.

For our applications of interest (e.g., web ser-
vices), read-only transactions can significantly out-
number update transactions—hence, we take special
care in allowing read-only transactions to proceed
concurrently with writes. Borrowing from multiver-
sion databases, we keep several versions of an object
so that reads can proceed in parallel as new versions
are written. Our multiversion approach also allows
a thread to keep all writes to its particular version
local, reducing cache contention on multi-processor
machines.

We keep versions in a lock-free queue [11], but a
thread performing a transaction keeps all reads and
writes locally. When a thread attempts to commit
the transaction it (i) adds write operations to the ob-
ject version queues, (ii) checks for violations of 1-
SR, and iii) commits the transaction if consistent.
Read-only transactions do not need a special API.
They simply do not enqueue any updates and thus
also cannot interfere with write operations. The lock-
free queues guarantee a thread can access particu-
lar versions and can always enqueue a new opera-
tion. A thread can help commit any transaction, in-
cluding transactions that it did not initiate, provided
that a write of the transaction has been enqueued. A
thread attempting to commit a transaction only helps
another transaction if both transactions write to the
same object and the other transaction’s operation is

enqueued earlier.
Transactions are allowed to commit if the execu-

tion is 1-copy serializable using a multiversion seri-
alization graph (MVSG) representing transaction de-
pendencies: Bernstein and Goodman show that the
execution is 1-SR iff the MVSG is acyclic. Keep-
ing track of the multiversion serialization graph dy-
namically as transactions execute enables many of
the desirable features of our framework, including
dynamic transactions (where operations do not need
to be predeclared), and early failure indication. By
checking for 1-SR consistency at every operation, at
commit a thread need only check that write opera-
tions were enqueued in the desired order (otherwise
conflicting transactions may be forced to abort to en-
sure 1-SR). Finally, our algorithm cleanly garbage
collects old versions, though the specifics of our ap-
proach are beyond the scope of this paper.

4. Conclusions

We believe that robust multi-threaded applications
are becoming increasingly important as networked
services face increased demand and require multi-
threading to maintain throughput on multi-processor
machines. Our approach to improve robustness is to
create an environment that can tolerate thread fail-
ures, be they accidental or intentional, without af-
fecting the safety properties of the application and
with minimal disruption to its liveness properties.
This paper outlines the first step in this direction,
lock-free object transactions.

References

[1] P. A. Bernstein and N. Goodman. Multi-
version concurrency control—theory and algo-
rithms. ACM Trans. Database Syst., 8(4):465–
483, 1983.

[2] O. P. Damani, A. Tarafdar, and V. K. Garg. Op-
timistic recovery in multi-threaded distributed
systems. In Proc. IEEE SRDS, pages 234–243,
October 1999.

[3] M. Greenwald. Non-Blocking Synchronization
and System Design. PhD thesis, Standford Uni-
versity, 1999.

3



[4] T. Harris, K. Fraser, and I. Pratt. A practical
multi-word compare-and-swap operation. In
Proc. IEEE DISC, pages 265–279, 2002.

[5] M. Herlihy. Wait-free synchronization. ACM
TOPLAS, 13(1):124–149, 1991.

[6] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-
ended queues as an example. In Proc. IEEE
ICDCS, pages 522–529, 2003.

[7] M. Herlihy, V. Luchangco, M. Moir, and
W. N. S. III. Software transactional memory for
dynamic-sized data structures. In Proc. ACM
PODC, pages 92–101, July 2003.

[8] J. Hu, I. Pyarali, and D. C. Schmidt. The
object-oriented design and performance of
JAWS: A high-performance web server opti-
mized for high-speed networks. PDCP, 3(1),
March 2000.

[9] A. Israeli and L. Rappoport. Disjoint-access-
parallel implementations of strong shared
memory primitives. In Proc. ACM PODC,
pages 151–160. ACM Press, 1994.

[10] M. M. Michael. Safe memory reclamation for
dynamic lock-free objects using atomic reads
and writes. In Proc. ACM PODC, pages 21–
30, July 2002.

[11] M. M. Michael and M. L. Scott. Simple,
fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proc. ACM
PODC, pages 267–275, 1996.

[12] J. Napper, L. Alvisi, and H. Vin. A fault-
tolerant java virtual machine. In Proc. IEEE
DSN, pages 425–434, June 2003.

[13] N. Shavit and D. Touitou. Software transac-
tional memory. In Proc. ACM PODC, pages
204–213, 1995.

[14] R. E. Stearns, P. M. Lewis, and D. J.
Rosenkrantz. Concurrency control for database
systems. In Proc. IEEE FOCS, pages 19–32,
1976.

[15] The Apache Software Foundation. Apache per-
formance tuning, 2004.

4


