
1. Introduction
Large-scale distributed services such as content distri-

bution networks, overlay networks, peer-to-peer storage,
distributed hash tables, and scientific and business Grid
applications, have received substantial interest from
researchers and industry over the past few years. But little
attention has been paid to developing standard tools, tech-
niques, and workloads for evaluating key properties of
these systems, particularly robustness. As a result, proto-
type implementations are often subjected to the evalua-
tions that are easiest to conduct, such as measuring system
performance under benign operating conditions, while
leaving robustness evaluation to limited scenarios or to
simulations that may abstract away important details.
Moreover, the lack of a standard robustness evaluation
framework requires each team of developers to create their
own infrastructure and makes it difficult to evaluate design
tradeoffs across multiple implementations of the same ser-
vice. We believe that distributed service robustness can be
enhanced significantly if prototype implementations can
be easily and carefully evaluated in a standard way.

Network emulation environments such as Emulab [22]
and Modelnet [20], and real-world testbeds such as Planet-
Lab [3], have enabled application evaluation on realistic
network topologies. Our vision is to extend the scope of
such platforms into the application software stack, by
adding a framework to automatically apply workloads,
to perturb, and to measure complete distributed services,
based on a user’s specification. Such a framework allows
services to be easily and comprehensively evaluated both
under normal conditions and in the face of a flexible set of
“stressful” events, thereby enabling a high degree of rigor
and consistency in evaluating system robustness. Along
with this framework we envision domain-specific stan-
dardized robustness benchmarks.

In this paper we discuss the research issues we have
uncovered in building a prototype of a such a framework
(ACME) [11] that runs on Emulab, Modelnet, and Planet-
Lab; some details of the framework itself; and some dis-
coveries we have made in using it. We define robustness
as the Quality of Service that a system provides during and
after disruptive events that we call perturbations (a gener-
alization of the traditional concept of a fault). Such mea-
sures are sometimes also called performability. We do not
consider security issues, although some of the evaluation
techniques that we describe apply to that aspect of system
dependability as well.

2. Research issues
Building a reusable infrastructure for evaluating large-

scale distributed services raises a number of challenging
research questions.

2.1. Defining robustness benchmarks
The systems community has developed benchmarks

for a number of domains, including CPUs [17], web serv-
ers [17], and databases [19]. But no widely accepted
benchmarks exist for emerging distributed services such as
those mentioned earlier. And although performance evalu-
ations of distributed service prototypes are common, thor-
ough robustness evaluations of such implementations are
relatively rare in the literature and are not standardized.
This is surprising because robustness is one of
the principal features of many distributed services. More-
over, while the absence of robustness benchmarks may be
acceptable for applications that usually run in a managed
single-site datacenter, such an omission is less acceptable
for distributed applications that run across failure-prone
wide-area networks and that may use end-user machines,
where much can go wrong. To remedy this situation, we
advocate distributed service robustness benchmarks.

Robustness benchmarks have four components: the
workload, perturbation load, metrics, and test environ-
ment. The goal is to measure the Quality of Service a sys-
tem provides during and after perturbations. Benchmark
workloads must be defined on a per-application-class
basis. For example, we have used ACME to build a proto-
type benchmark for structured peer-to-peer overlay net-
works, in which the workload is requests to discover
which node owns randomly-generated distributed hash
table (DHT) keys. The test environment for a distributed
service includes the number and type of nodes used, and
the network topology and link characteristics interconnect-
ing those nodes. In our benchmark, we used 150 nodes
running on an emulated transit-stub network. Some
metrics are generic across most services--for example, in
our benchmark we measured end-to-end request latency,
percentage of requests that completed, and amount of net-
work bandwidth used. Other metrics are service-specific,
such as consistency of the responses returned when multi-
ple nodes make the same request at the same time (a met-
ric we used in our benchmark) and correctness of the
results returned. Finally, some perturbations are generic to
any networked system, while others are service-specific.
Examples of the former that we included in our benchmark
include nodes joining or leaving the network temporarily
(as in a node failure, network partition, or an end-user
turning off her computer for the night) or permanently (as
in membership “churn”), possibly at a rapid pace and/or
many at a time. Other examples of generic perturbations
include network congestion and correlated node failures.
Examples of service-specific perturbations include sudden
load spikes, configuration errors, and bogus network mes-
sages due to programmer error. Creating robustness
benchmarks for the wide variety of emerging “planetary

Towards a framework for automated robustness evaluation of distributed services

David Oppenheimer, Vitaliy Vatkovskiy, and David A. Patterson
University of California, Berkeley

{davidopp, vatkov, pattrsn}@cs.berkeley.edu

scale” services is very much an open research question.
Defining robustness benchmarks raises not just a stan-

dardization issue, but also an acceptance one. A question
that we have faced in our work has been: What degree of
robustness should prototypes of robust systems be
required to attain, in order to “prove” that they are robust?
On the one hand, prototypes by their very nature will have
bugs and implementation short-cuts, and some of these
may hurt the prototype’s robustness. On the other hand,
there is a danger that researchers will overlook genuinely
important aspects of robustness when designing their sys-
tems if they do not strive for a high degree of robustness
even in their prototypes. Standard benchmarks help to
ensure that researchers focus on all aspects of robustness
that the community deems important, not just those
aspects that a system’s authors have chosen to showcase.

2.2. Standard monitoring and control interfaces
Harnessing a wide range of metrics and perturbation

injection points within a single evaluation framework
requires standard interfaces between the framework and
the entities that are measured and perturbed. In building
ACME, we found that the sensor and actuator abstractions
[15] [21] for collecting data and invoking actions worked
well. A user describes her experiment scenario using
XML, and ACME translates this description into the
appropriate sensor and actuator invocations at the right
times. This mapping requires a translation layer between
user-friendly abstractions (e.g., “load”) and the syntax of
those invocations, which are specific to each sensor and
actuator. The translation layer also enables the same ex-
periment to run on multiple platforms (e.g., Emulab, Mod-
elnet, and PlanetLab). Such a layer could potentially lever-
age industry standards such as CIM [8], which provides
schemas for describing a wide variety of system compo-
nents. ACME currently uses an ad hoc, platform-specific
translation layer for the three platforms on which it runs.

ACME includes sensors that measure for four peer-to-
peer overlay networks (Chord [18], FreePastry [16], Tap-
estry [25], and Bamboo [13]) the benchmark metrics
described in Section 2.1, and for Tapestry also application
routing table contents and the number of application-level
messages routed. ACME also interfaces to sensors written
by others that collect operating system metrics such as
CPU load and memory consumption. ACME includes
actuators that allow experimenters to insert the benchmark
perturbations described in Section 2.1 and to start and kill
nodes at the beginning and end of the experiment, to copy
logfiles to a central node for analysis, to reboot physical
nodes, to modify the emulated network topology and link
characteristics (latency, bandwidth, and loss rate) on Emu-
lab, to cause application-level message loss, and to modify
the rate at which the workload generator attached to each
overlay network node instance issues lookup requests.

Thus although we do not believe it is possible to build
a universal workload generator or perturbation injector, we
have found that the extensibility afforded by standard

interfaces to such components has allowed easy integra-
tion of data sources, perturbations, and application-spe-
cific workloads into our framework.

2.3. Scalable and robust data collection,
coordination, and control

Applying a repeatable workload and perturbation load
to a large-scale distributed system is challenging. One
approach is simply to pre-load every workload-generating
node with a time-based workload model and every
service-providing node with a time-based perturbation
model. Assuming that any randomness in the generators is
configurable (e.g., by seeding a random number generator)
and that the evaluation infrastructure provides a distrib-
uted “barrier” operation so that all nodes can start the
experiment at the same time, this approach may be suffi-
cient to enable reasonably repeatable and flexible experi-
ments. But this approach does not permit perturbations
that are described as a function of system conditions other
than elapsed time. For example, injecting a fault whenever
a node detects that a node in its application-level routing
table has died, requires coordination between the sensor
that provides routing table information and the actuator
that injects the fault. Even more challenging are perturba-
tions that trigger on global system conditions, e.g., “keep
increasing the workload request rate until the average load
across all nodes doubles, and then kill half of the nodes.”
Executing such rules require a robust event dissemination
mechanism to invoke the action and a resilient distributed
monitoring facility to detect the specified condition. Note
that this monitoring facility must perform double-duty: it
writes the bulk of its measurements to local disk for post-
mortem analysis (to avoid perturbing the network during
the evaluation), and it disseminates the metrics used in
user-defined rules as needed to trigger perturbations.

To implement such user-defined experiment control
rules, ACME contains a simple distributed query
processor that queries sensors for the necessary metrics
and aggregates the results as they are routed through a
spanning tree overlay network to an “experiment control
node.” (Metrics not required to evaluate user rules remain
where they are collected until post-mortem analysis.) That
node also runs ACME’s trigger engine that uses the data
streams supplied by the query processor, in combination
with the user’s XML experiment description file, to decide
when to invoke the appropriate actuators. (We are cur-
rently working on distributing the trigger logic, so that
node-local conditions can be detected and responded to
autonomously.) To achieve scalability and robustness,
ACME uses the Tapestry overlay network for routing, and
in-network aggregation of sensor values. Details of
ACME’s current architecture, implementation, perfor-
mance, and rule language can be found in [11].

Query processing facilities and event dissemination
mechanisms that can meet the scalability and robustness
challenges of not just cluster testbeds but also planetary-
scale testbeds are active topics of research [4] [5] [9] [12]

[21]. Identifying the properties of such systems that are
most important when they are used to monitor and control
large-scale system evaluations, and how to specialize them
for such uses, remain open questions.

2.4. Turning information into knowledge
Producing informative metrics from large-scale experi-

ments is not a trivial task. If an evaluator’s goal is simply
to compute end-to-end performance perceived from one
vantage point, then only simple analysis facilities are
needed. But more complicated metrics for benchmarking
and debugging distributed services, such as the number of
redundant copies of an application-level data unit, load
balance, and consistency of responses, require correlating
data from multiple observation points. Additionally, some
metrics require correlating measurements across system
layers, such as average network bandwidth consumption
per application request, or historically across system ver-
sions, as when performing regression tests. Ideally the
evaluation framework offers a query language that allows
users to easily specify such metrics as part of both runtime
rules and post-mortem analyses. ACME users can conduct
such analyses, excluding historical ones, at runtime using
the XML query/rule language with sensors as the data
sources, and at the experiment’s end using Perl scripts that
process log files. We are currently integrating these two
facilities. Exactly what an experiment control and analysis
language should look like is an open question. Such a lan-
guage might facilitate not just computation of single met-
rics, but also visualization and complex statistical analyses
[1] [2] [6]. Scaling such analyses to very large systems and
distributing them are interesting open problems.

2.5. Network topology and node mapping
To facilitate research and development in wide-area

networked services, universities and companies have tra-
ditionally constructed off-the-shelf PC clusters outfitted
with special network emulation software. Although hard-
ware costs are constantly declining, system management
costs are not. This fact, combined with the large number of
open source developers unaffiliated with large organiza-
tions, lead us to believe that shared testbed infrastructures
such as PlanetLab, which distribute management responsi-
bility (and therefore costs) across many sites, will become
increasingly popular as evaluation platforms. Because the
single network topology of such a platform cannot match
the varied topologies of interest to an experimenter, the
experimenter will want to select the subset of available
nodes that most closely matches the topology of interest
for the experiment. This “topology embedding” problem
[7] becomes even more interesting when the experimenter
adds per-node constraints, as when exploring the robust-
ness of a service to node heterogeneity and/or jobs com-
peting for CPU and memory resources Thus we believe
that scalable, robust resource discovery is an essential part
of a distributed service evaluation framework. We are

beginning to address this in ACME by combining existing
monitoring data sources with an optimization framework
that matches a user’s desired “virtual testbed” to an appro-
priate subset of the testbed resources that are available.

3. Results from a peer-to-peer overlay
network benchmark

To validate the design and usefulness of ACME, we
used an early version of it to run the structured peer-to-
peer overlay robustness benchmark described in Section
2.1. From this, we discovered a number of interesting
properties of the early versions of Tapestry, Chord, and
FreePastry that were written, and made available on the
web, by those systems’ authors. We found, and were able
to quantify, the following effects. One of the systems’
communication layers was too bandwidth-intensive to
start up large (150-node) networks on our emulated topol-
ogy. All of the remaining systems consumed too much
steady-state network bandwidth to run over dialup
modems. One of the systems was unable to recover from
loss of 20% of the nodes in a 150-node network due to a
vicious cycle of background maintenance probes and rout-
ing table repair traffic causing congestion that led nodes to
believe that nodes that were still alive were actually dead.
One system’s proactive rebuilding of the routing table
upon detection of failed neighbors significantly improved
recovery time compared to another system’s lazy recovery,
but at the expense of higher bandwidth usage. Finally,
under high churn, one of the systems experienced a sub-
stantial number of timeouts that grew as churn continued.

We do not indicate here which systems showed which
of these behaviors, because many of these behaviors have
been modified by the authors in the current versions of
their software. But note that these benchmarks did not just
reveal poorly-set “knobs”--they also provided insights into
how to design for higher robustness. For example, they
helped to motivate the Bamboo design for resilience under
high churn, particularly its congestion-aware recovery and
its actively probing neighbors to determine good timeout
values for inter-node heartbeats [13]. Some results from
this type of evaluation can also be found in [11] and [25].

4. Conclusion
In this paper we have argued that robustness evaluation

of wide-area distributed services is important, and that
there are challenging research issues in building a reusable
infrastructure for such experiments and in defining stan-
dard evaluations in the form of benchmarks. Our work in
building ACME and defining a structured peer-to-peer
overlay network benchmark is but a small step in this
direction. We believe that standardized platforms and eval-
uation criteria for large-scale distributed services will lay
the groundwork for high distributed service dependability,
while offering researchers from a number of computer sci-
ence disciplines a host of challenging research questions
worthy of their attention.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. Proceedings of 19th ACM Sympo-
sium on Operating Systems Principles, 2003.

[2] P. Barham, R. Isaacs, R. Motier, and D. Narayanan. Magpie:
real-time modelling and performance-aware systems. Pro-
ceedings of the 9th Workshop on Hot Topics in Operating
Systems (HotOS IX), 2003.

[3] A. Bavier, L. Peterson, M. Wawrzoniak, S. Karlin, T. Spalink,
T. Roscoe, D. Culler, B. Chun, and M. Bowman. Operating
systems support for planetary-scale network services. Pro-
ceedings of the 1st USENIX/ACM Symposium on Networked
Systems Design and Implementation, 2004.

[4] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald: achiev-
ing a global event notification service. Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems
(HotOS-VIII),2001.

[5] M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron.
SCRIBE: a large-scale and decentralised application-level
multicast infrastructure, IEEE Journal on Selected Areas in
Communications, 20(8), 2002.

[6] M. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox, and
E. Brewer. Path-based failure and evolution management.
Proceedings of the 1st Symposium on Networked System
Design and Implementation, 2004.

[7] J. Considine, J. W. Byers, and K. Meyer-Patel. A constraint
satisfaction approach to testbed embedding services. Pro-
ceedings of HotNets-II, 2003.

[8] Distributed Management Task Force. Common information
model (CIM). http://www.dmtf.org/standards/cim

[9] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S.
Shenker, and I. Stoica. Querying the internet with PIER.
VLDB, 2003

[10] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
approach to universal topology generation. Proceedings of
the International Workshop on Modeling, Analysis and Sim-
ulation of Computer and Telecommunications Systems-
MASCOTS, 2001.

[11] D. Oppenheimer, V. Vatkovskiy, H. Weatherspoon, J. Lee,
D. A. Patterson, and J. Kubiatowicz. Monitoring, analyzing,
and controlling internet-scale systems with ACME. UC
Berkeley Technical Report UCB-CSD-03-1276, 2003.

[12] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Appli-
cation-level multicast using content-addressable networks.
Third International Workshop on Networked Group Com-
munication, 2001.

[13] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. U.C. Berkeley Technical Report, UCB//
CSD-03-1299, 2003.

[14] S. Rhea, T. Roscoe, and J. Kubiatowicz. Structured peer-to-
peer overlays need application-driven benchmarks. Pro-
ceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS '03), 2003.

[15] T. Roscoe, L. Peterson, S. Karlin, and M. Wawrzoniak. A
simple common sensor interface for PlanetLab. PlanetLab
Design Node PDN-03-010, 2003.

[16] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer sys-
tems". Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), 2001.

[17] Standard Performance Evaluation Corporation.
http://www.specbench.org/

[18] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM, 2001.

[19] Transaction Processing Performance Council.
http://www.tpc.org/

[20] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J.
Chase, and D. Becker. Scalability and accuracy in a large-
scale network emulator. Proceedings of 5th Symposium on
Operating Systems Design and Implementation, 2002.

[21] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: an
information plane for networked systems.” Proceedings of
HotNets-II, 2003.

[22] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems
and networks. Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation, 2002.

[23] J. Winick and S. Jamin. Inet-3.0: Internet topology genera-
tor. University of Michigan Technical Report CSE-TR-456-
02, 2002.

[24] W. W. Zegura, K. Calvert and S. Bhattacharjee. How to
model an internetwork. Proceedings of IEEE Infocom,
1996.

[25] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph,
and J.Kubiatowicz. Tapestry: a resilient global-scale overlay
for service deployment. IEEE Journal on Selected Areas in
Communications, 2003.

