
Byzantine Fault Tolerance in Long-Lived Systems

Rodrigo Rodrigues and Barbara Liskov
MIT Computer Science and Artificial Intelligence Laboratory

1 Introduction
Byzantine fault tolerance comprises a set of techniques
for building fault-tolerant systems where no assumptions
are made about the behavior of faulty nodes. This makes
Byzantine-fault-tolerant systems particularly attractive as
a defense against malicious attacks that may cause faulty
nodes to exhibit arbitrary behavior.

A service that tolerates Byzantine failures (e.g., [1, 8])
must store the service state at a set of replicas. The replicas
carry out a protocol that tolerates failures of a subset of
them. Usually the system contains �� � � replicas, and
the protocols guarantee correct behavior provided no more
than � of them are faulty at the same moment.

These systems do well provided the assumption about
the number of simultaneous failures is valid. But if more
than � replicas fail, the system fails and no guarantees can
be made about its behavior. The question we address in
this paper is: what can be done to increase the probability
that no more than � replicas are faulty simultaneously?

We address this question using the following simple
model. For any attack that could be mounted, there is an
attack window,�; this is the length of time needed to com-
promise more than � replicas using that attack. Different
attacks have different attack windows. Some attacks re-
quire a very small�. For example, if the code on the repli-
cas has a deterministic software bug that allows an attacker
to exploit a buffer overrun, then an attacker can launch
such legal calls simultaneously and bring the system down
in a very short time. Other attacks require more time. For
example, an attack that relies on a non-deterministic error
might take quite a while, since it is hard to coordinate the
time when bugs surface on different machines.

A system has a window of vulnerability, � , during
which it allows an adversary to mount an attack. We would
like to have� � � since this means that the system can-
not be compromised by an attack. This condition is un-
likely to be satisfied in a long-lived system with no de-
fenses against the accumulation of faulty nodes; in this
case� is infinite (or at least equal to the system lifetime)
and therefore we can expect that ultimately an attack will
succeed.

This paper proposes counter-measures that can be de-
ployed as part of a replicated system to reduce the size
of � , and thus reduce the class of attacks to which the
system is vulnerable. Obviously it will not be possible to
withstand all attacks via this technique, in particular at-

tacks with very small �. But we will propose techniques
that can reduce� to quite a small value.

In the remainder of this paper, we discuss how to lower
the value of� . We begin by discussing attacks. Then we
discuss some prior work in this area and why it is insuffi-
cient. The final section describes the approach we propose.

2 Attacks
This section presents a rough categorization of attacks, as
a basis for deciding what countermeasures are needed. We
looked at existing taxonomies from the security commu-
nity (e.g., [6]) but they make distinctions that aren’t rel-
evant to us. Additionally they are concerned about both
privacy and integrity of stored information while we are
concerned only with the latter.

In a distributed system, there are two things that can
be attacked: the nodes and the network.

Attacks on the network can remove, insert, delay, and
corrupt messages. They can also detect hidden informa-
tion, e.g., the key used to sign a message. We assume
the standard defenses against such attacks, e.g., the use
of encryption, signatures, and nonces. In addition, we as-
sume replication algorithms are designed to work in asyn-
chronous networks that may lose or duplicate messages.
These defenses imply that attacks on the network cannot
cause a node to malfunction: an attack can affect liveness
but not safety. An attack that corrupts or discards all a
node’s messages, or an attack on a router that cuts off part
of the network, can prevent a node from communicating
with others. A denial of service attack might flood a node
with bad requests, thus preventing it from making much
progress on good ones. These kinds of attacks can prevent
the service as a whole from making progress. We assume
that such an attack has a certain duration, i.e., it ends even-
tually. The mechanisms to deal with these attacks are out-
side the scope of this paper. Our concern is on attacks that
cause nodes to malfunction. Such attacks can corrupt one
or more of the following:

� Code – An attacker can corrupt or replace the run-
ning service code, or any other code that surrounds
the service application (e.g., the OS code).

� Data – An attacker can wipe out or modify the data
stored by the service.

� Hardware – An attacker can modify the hardware
so that it no longer performs as expected, e.g., by
corrupting memory to contain different values.



Nodes can be attacked via the network or physically.
A physical attack is one involving a person at the physical
location of the node. A network attack either exploits a
bug in the code (either OS or application code), or it relies
on discovering a secret, e.g., learning the node’s root pass-
word. Either kind of attack can corrupt the code or data at
the node. Only a physical attack can corrupt the hardware.
Also a physical attack can exploit avenues not open to a
network attack, e.g., replacing the disk that stores the code
with a different disk.

An attacker might use several different attack methods
in one attack, e.g., corrupt one node via a physical attack,
and another by stealing a root password.

Another point is that it is necessary to assume very
clever attacks: this is the nature of the game in Byzantine
Fault Tolerance. For example, the attacker might launch a
lying in wait attack, in which corrupted code continues to
perform properly until a sufficient number of nodes have
been corrupted, at which point all corrupted nodes destroy
their stored state.

3 Prior Work
In this section we discuss two earlier proposals for han-
dling attacks.

First, there have been a number of code attestation pro-
posals [4, 3], consisting of the following:

� Each processor stores the node’s private key, and
can sign and decrypt messages without exposing this
key. Furthermore, some proposals include mecha-
nisms that prevent a node from producing valid dig-
ital signatures if the processor is tampered with [5].

� The node executes code only from a special region
of memory. Replies to client requests contain a signed
fingerprint of the code that executed the request. If
the code has been modified, the fingerprint will be
wrong.

� The processor maintains a tamper-resistant finger-
print of the data stored in memory. It checks this
fingerprint against the actual data being used, en-
abling it to detect attacks on the memory.

Code attestation was developed to solve a different prob-
lem than the one we are interested in: it allows a user
of an unreplicated service to tell whether to trust the re-
ply. For example, the approach would allow a user to ver-
ify that a result is generated by the right program (e.g., a
SETI@home computation can be validated to avoid cheat-
ing).

Code attestation is both insufficient and overkill for a
replicated system. It is insufficient because it contains no
mechanism for recovering from an attack, and therefore,
corrupted nodes can accumulate over time. It is overkill
because the client of a replicated service relies on getting

enough valid matching replies and doesn’t actually need to
know about the status of an individual replica.

The other approach is proactive recovery [2]. Here
each replica is assumed to have a secure coprocessor that
holds its private key and a watchdog timer that periodi-
cally interrupts processing and hands control to a recovery
monitor, which restarts the node, e.g., every 10 minutes.
When the node is restarted, the machine reinitializes its
code from a copy on a read-only disk. The idea is that at
this point the code is correct. Then the node runs a restart
protocol that corrects its data if that has been corrupted.

Proactive recovery takes care of some of our concerns
but not all. It is vulnerable to a physical attack that cor-
rupts the coprocessor or replaces the disk that stores the
code copy used at restart. A further point is that the node
isn’t monitored between restarts, and therefore it can run
in a corrupted manner for a considerable period, which
might be enough to allow an attack, i.e., � is still rather
large in this approach.

4 Defenses
We can sum up the previous work as follows. Code at-
testation detects problems, but provides no provision for
reacting to them other than by rejecting a reply. Proactive
recovery doesn’t detect problems, but does recover from
certain kinds of attacks. What is missing in both cases is a
way of removing a node that cannot be recovered, e.g., it
is dead or the code disk has been replaced with a bad copy.

Removal implies that there must be a way of replac-
ing a bad replica with some other node since otherwise at
best it turns a Byzantine failure into a failstop failure. The
other node might be a spare kept around for just this pur-
pose. Or there might be a pool of nodes used to replicate
many services and replacements are chosen from this pool.
In either case, when a node becomes responsible for run-
ning a service that wasn’t previously its concern, it carries
out a state transfer protocol by interacting with the nodes
that used to be responsible for that service. Provided state
transfer can occur before more than � of these nodes be-
come faulty, we can guarantee that the service continues
to operate correctly.

Of course to remove a node we must first detect that
it can’t be recovered. One possibility is to have a person
take on this responsibility: monitor nodes, decide when
they are faulty, and remove them. But this isn’t a very ro-
bust approach: human errors can be a significant source
of disruption in computer systems [7]. Therefore we pro-
pose instead to use a configuration management (CM) sys-
tem that probes nodes periodically and removes those that
don’t respond properly; a way of accomplishing removal
is discussed in [9]. The exact form of the CM is not of
concern here; it could run at a single highly secure node,
or at a (BFT) replica group that is either separate from the



replicas being monitored or that runs on some subset of
these replicas.

Now we can describe our approach.
We assume the hardware only executes code from a

special region and that it has a private key that changes in
the case of an attack on the hardware [5]. We also assume
proactive recovery: nodes recover periodically, restoring
both their code and data, except when this is not possi-
ble, e.g., if the secure coprocessor has been compromised,
or the code copy has been corrupted. We modify proac-
tive recovery in one respect: when the secure coprocessor
reads the code copy from disk, it computes the fingerprint
of this copy and records this in its private memory. This
change will allow us to detect a corrupted code copy.

The CM probes all nodes periodically. Each probe
contains a nonce. The secure coprocessor sends a reply
containing the nonce, the stored code fingerprint, a finger-
print of the current code, signed by the node’s key. Then
the coprocessor restarts the node if the fingerprints differ.

There are three possible responses to a probe:

� A valid reply. This is signed with the expected key,
contains the nonce, and both code fingerprints are
identical and match what is expected. In this case
the CM assumes the node is functioning properly.

� An error reply. This is signed with the expected
key and contains the nonce, but it contains incorrect
fingerprints. If the fingerprint of the code copy is
wrong, the node has been compromised and the CM
immediately removes it from service, causing some
other non-compromised node to take over. It also
removes the node if the fingerprint of the executable
code is wrong and this is a recurring situation.

� An invalid or missing reply. This covers the case of
a reply that is not signed with the proper key, or that
doesn’t contain the nonce. One missing or invalid
reply means nothing. But if the CM gets this kind
of response after repeated probes over a long period,
it will conclude the node has failed and evict it from
the system. Note that it is important for the system
to be slow to remove a node due to invalid or miss-
ing replies because otherwise we open an avenue of
attack: a denial-of-service against good nodes could
cause the replies from these nodes to take longer,
and then the nodes would be evicted and the frac-
tion of compromised nodes in the system would in-
crease.

Our approach protects against many of the possible at-
tacks. It provides a very small� equal to the probe period
in case of an attack on the code or a physical attack on the
hardware. It provides a larger� equal to the proactive re-
covery restart interval in case of an attack on the data that
doesn’t also show up as an attack on the code.

Note that the scheme permits software upgrades. The

CM must be told the fingerprint of the new code in advance
and would allow nodes running either the old or new code.
It could monitor upgrade progress and enforce deadlines,
e.g., require all nodes to upgrade within some time period.

In closing, we want to discuss a couple of questions.
� Could nodes monitor themselves and cause them-

selves to be replaced when necessary? This is obvi-
ously not possible: a node that is dead, or that has
been tampered with, cannot be counted on to notice
that it is bad.

� Could all monitoring be done via client requests?
Clients could notice error responses and bring them
to the attention of an authority that would remove
that node. But we also need to handle missing and
invalid responses, and clients can’t do this: clients
can be corrupted too, and therefore their informa-
tion about missing and invalid responses cannot be
trusted. (Client information about valid and error re-
sponses can be trusted since they must produce the
signed response.) A final point is that attestation is
expensive and not doing it on every client request is
a win. Probes are relatively infrequent and therefore
the cost of signing them is small compared to the
cost of useful work being done by the node.

References
[1] M. Castro and B. Liskov. Practical Byzantine Fault Toler-

ance. In Proceedings of the Third USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Feb.
1999.

[2] M. Castro and B. Liskov. Proactive Recovery in a Byzantine-
Fault-Tolerant System. In Proceedings of the 4th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 2000), Oct. 2000.

[3] B. Chen and R. Morris. Certifying program execution with
secure processors. In Proceedings of the 9th Workshop on
Hot Topics in Operating Systems, May 2003.

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of the 19th Symposium
on Operating System Principles, October 2003.

[5] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Con-
trolled physical random functions. In Proceedings of the
18th Annual Computer Security Conference, Dec. 2002.

[6] J. Howard and T. Longstaff. A common language for com-
puter security incidents. Sandia Report SAND98-8667, Oct.
1998.

[7] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do internet services fail, and what can be done about it? In
Proc. 4th USITS, Mar. 2003.

[8] M. Reiter. The Rampart toolkit for building high-integrity
services. Theory and Practice in Distributed Systems, pages
99–110, 1995.

[9] R. Rodrigues and B. Liskov. Rosebud: A scalable byzantine-
fault-tolerant storage architecture. Technical Report MIT
CSAIL TR/932, Massachusetts Institute of Technology, Dec.
2003.


