
Securely Improving Performance
Through

Speculative Predictive Remote Execution

Bennet S. Yee

March 23, 2004

Abstract

We describe and analyze the use of a remote execution
framework to implement Mobile Code-enhanced Remote
Procedure Calls (McRPCs). This uses mobile code to
implement a variation of remote procedure call (RPC)
which enhances performance for some applications that
are latency-bound.

The McRPC remote execution framework includes rel-
atively straightforward modifications to standard RPC
servers and the addition of untrusted remote execution en-
gines. The untrusted remote execution service permits
mobile code to use its CPU, memory, and network in a
restricted manner; no accesses to other local resources
are permitted. Nevertheless, this sandbox allows latency-
bound computations to improve performance by using
McRPCs in lieu of standard RPCs.

The use of McRPCs trades privacy of the client com-
putation and total resource usage for decreased time-to-
completion. While privacy may be lost, no compromise is
made on the correctness of the computed results.

1 Introduction

Process technology improvements give us faster proces-
sors and greater bandwidth, making all computations
faster. For those distributed computations that require
many communications roundtrips between clients and
servers, however, the physical separation between clients
and servers induces a lower-bound on completion time
arising from the communications delay. Unless we can
move the client computation closer to the server (or vice
versa), this delay appears inevitable.

If we could remotely run the client code at or near the
server, the latency component of the run-time largely dis-
appears. One important question is the security of remote
execution. While we may trust the local client and the re-
mote RPC server, we might not feel the same way about
a remote execution engine. In this case, verifying the cor-
rectness of remote executions is needed. Though check-

ing the results of RPCs is theoretically possible [1], the
method is as yet impractical for use in real systems.

This paper examines the use of rollback and mobile
code to improve performance. The mobile code runs on an
untrusted remote execution server and we use it to predict
client requests. The RPC server optimistically processes
these requests, but maintains a small amount of logs to
permit rollback. The user trusts the RPC server and the
local client as in the standard RPC model. The remote
execution engine will be able to obtain details about the
client-side computation, but as I show below, will be un-
able to tamper with it.

I call this scheme Mobile Code-enhanced Remote Pro-
cedure Calls or McRPCs. The McRPC idea takes the no-
tion of using speculative execution to prefetch data [2, 3]
and uses it in the context of remote execution and mobile
code.

2 McRPCs

Client computation (trusted)

....

Server Computer

RPC service (trusted)

t

t
Client Computer

Figure 1: RPC execution time
The horizontal axis is time. The width of the boxes on the
client time line indicate computation between RPCs, and
the width of the boxes on the server time line indicate RPC
processing. Here each RPC request/response message
travels from the client computer to the server computer,
incurring a distance-induced delay each time. The network
message latencies dominate the job’s time-to-completion.

Due to space limitations, I will make the case for

1

McRPCs in pictures. While Figure 1 may exaggerate
communications delays relative to processing time, it
shows how improving CPU power and communications
bandwidth will inevitably lead to a situation where latency
becomes the bottleneck. If we could migrate the client
code to a trusted server that is physically close to the RPC
server, Figure 2 shows the improved communcations per-
formance.

RPC service (trusted)

Client computation (trusted)

RPC Server

Agent Server

Agent computation (not trusted)

t

t

t

....

Client Computer

Figure 2: Mobile Agents Hide Latency
We can see graphically that the number of boxes (repre-
senting useful computation) per unit time is higher. By us-
ing mobile code to migrate closer to the remote resource,
we eliminate much of the overhead arising from communi-
cations latency.

Of course, if the execution engine in Figure 2 is cor-
rupted, it might not be possible to detect this, and even
if we could, to recover to a safe state. Instead, we use
the strategy in Figure 3: the requests generated by the mi-
grated copy of the client program—which we will call the
“shadow client”—is checked at every request by the lo-
cal copy: the McRPC server includes a copy of the orig-
inal request (or a one-way hash of it) in its authenticated
response. The client “speculates” that the shadow client
will execute correctly, and that it will correctly make pre-
dictive requests to the RPC server. Note that the client
program does not make normal RPCs any more—instead,
it is linked against an ABI-compatible McRPC library
which transparently performs the remote fork and coordi-
nates the future McRPC communications, as well as man-
aging the cryptographic keys needed to authenticate the
McRPC server’s responses. The local client executes in
lock-step with the remotely forked shadow client. In the
absence of security attacks—and assuming deterministic
execution—the request generated by the local client and
the shadow client will be identical.

In Figure 3, the arrow from the client to the McRPC
server indicates an authenticated acknowledgement mes-
sage that the shadow-generated RPC parameters were cor-
rect. When the McRPC server receives this acknowledge-
ment, it is free to discard log records that would enable it
to roll back to its state prior to the just-acknowledged re-
quest. (Such an acknowledgement is not strictly necessary

McRPC service (trusted)

Client

Agent Server

McRPC Server

...

t

t

t

Client computation (trusted)

Agent computation (not trusted)

Log Duration

Figure 3: S2PRE execution time
With McRPC, we migrate a copy of the client program to
an agent server near the RPC server as before. The differ-
ence is that the migrated version is untrusted and merely
makes predictive requests on the behalf of the client code,
which continues to run on the client machine. Here the
RPC request at the original client program need not be
transmitted; instead, the matching RPC response “magi-
cally” arrives. (Assuming client and agent server comput-
ers have the same CPU speeds.)

when the request does not change the server’s state.)
If, on the other hand, the client received a server re-

sponse that does not correspond to its expected request,
this message would contain a negative acknowledgement
which requests the McRPC server to rollback. Addition-
ally, alarms may be raised to announce that the remote
execution server should no longer be trusted.

The S2PRE/McRPC approach does not completely
mask latency-induced delays. One situation where re-
mote execution is desirable is when multiple clients ac-
cess shared resources maintained by the McRPC server.
In such a situation, proper locking is required for concur-
rency control on operatons on shared objects. Figure 4
shows the duration that object locks must be held for both
the RPC and McRPC case.

3 Performance

The pictures look good, but when, if ever, will McRPCs
actually improve performance?

Suppose we have a (hypothetical, sustained) 100 Mbps
long-haul network, with a 100 MB program image. The
800 Mb image transferred at 100 Mbps requires 8 S of
transfer time, with one round-trip delay (RTD). If the
application needs to perform k RPCs, the McRPC code
would cost 8 S

�
RTD, and the standard RPC version

would cost k � RTD. For RPCs from the western United
States to western Europe, RTD is approximately 150 mS,
so McRPC is appropriate when

8 S
�

150 mS � k � 150 mS

2

req
a

respa

Client computation (trusted)

....

Server Computer

RPC service (trusted)

t

t

req
b

respb

lock duration

Client Computer

(a) RPC locking

reqa

respareqa

McRPC service (trusted)

Agent computation (not trusted)

Client computation (trusted)

Client

Agent Server

McRPC Server

...

t

t

t
reqb

reqb respb

lock duration

breq

(b) S2PRE locking

Figure 4: McRPC Locking vs RPC Locking
Comparing improved locking with McRPC and RPC, we
see that the S2PRE-induced locking overhead can be
small.

or k � 54 � 3.

4 Conclusion / Future Work

While most distributed computation do not currently oper-
ate in a latency-dominated environment, McRPCs appear
to be attractive when many communication roundtrips are
needed, allowing system designers to trade remote un-
trusted CPU cycles for improved time-to-completion. An
important consideration, of course, is whether the secu-
rity model makes sense: will it always be the case that
trusted CPU cycles are available at or near the remote
RPC server?

The McRPC model appears to benefit from technology
trends. As CPU cycles and bandwidth become cheaper,
trading off remote cycles for faster jobs will make more
sense. However, as systems become faster, the size of
problems that we wish to solve will concomitantly grow.
With larger problems, the CPU demands and memory
footprint will increase, and the portion of execution time

due to communications latency may yet remain small.
The communications delays at macroscopic distances also
cause problems for internal signal paths within the CPU,
and there is the additional possibility that increased CPU
size and complexity—and decreased feature sizes—may
pose a limit to the technology trends that have fueled sys-
tem performance improvements for the last three decades.
If such limitations arise sooner than expected, the McRPC
model may never accrue enough benefit from technology
trends to be truly compelling.

Experimental validation of the McRPC model and
measurement of actual overheads involved would give a
clearer picture of when McRPCs would actually improve
performance for distributed systems.

References

[1] Christian Cachin, Jan Camenisch, Joe Kilian, and
Joy Müller. One-round secure computation and se-
cure autonomous mobile agents. In Ugo Montanari,
Jos P. Rolim, and Emo Welzl, editors, Proceedings of
the 27th International Colloquium on Automata, Lan-
guages and Programming, volume 1853 of Lecture
Notes in Computer Science, pages 512–523. Springer-
Verlag, 2000.

[2] Fay W. Chang and Garth A. Gibson. Automatic I/O
hint generation through speculative execution. In Pro-
ceedings of the 3rd Symposium on Operating Systems
Design and Implementation, pages 1–15, New Or-
leans, Feb 1999. USENIX.

[3] Chi-Keung Luk. Tolerating memory latency through
software-controlled pre-execution in simultaneous
multithreading processors. In Proceedings of the 28th
Annual International Symposium on Computer Archi-
tecture, pages 40–51, Goteborg, Sweden, June 2001.
ACM.

3

