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Crowdsourcing

• Outsourcing	  tasks	  to	  crowds	  of	  
of	  people
– very	  powerful
• human	  v.s.	  artificial	  intelligence
• wisdom	  of	  crowds
• cheap,	  fast,	  convenient



• Harvesting	  Human	  Intelligence	  /	  Judgments

Crowdsourcing

Search	  Relevance	  Evaluation
Translation

Predication	  Market



• Collecting	  Information	  Distributed	  in	  Crowds

Crowdsourcing

Knowledge	  graph

Indoor	  maps

Research	  datasets



• Outsourcing	  tasks	  to	  crowds	  of	  
of	  people
– but	  be	  careful!
• humans	  are	  unreliable	  and	  diverse
• Need	  to	  ask	  different	  people	  and	  
aggregate	  their	  opinions

Crowdsourcing

• This	  talk:	  
– Aggregation	  algorithms



Crowdsourcing for Labeling
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Figure 6: Estimated image and annotator parameters on the Waterbirds dataset. The annotators were asked
to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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Figure 6: Estimated image and annotator parameters on the Waterbirds dataset. The annotators were asked
to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.
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in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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ẑi = sign[
X

j2@i

Lijyj!i]
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to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
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underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
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ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.
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grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.
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We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
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grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.
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We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
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grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
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Figure 6: Estimated image and annotator parameters on the Waterbirds dataset. The annotators were asked
to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.
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of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
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was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.
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Figure 6: Estimated image and annotator parameters on the Waterbirds dataset. The annotators were asked
to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
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tor competence and bias. Furthermore, the model represents both the images and the annotators
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competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
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ters estimated by our model could be taken into account for weighing different training examples,
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the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.
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only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
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competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
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the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
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as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
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Frequentist Guarantees

• Density	  Evolution	  (e.g.,	  Mezard &	  Montanari 09;	  Karger,	  Oh,	  
Shah	  11)



Frequentist Guarantees

1. Random regular bipartite graphs

2. True reliability prior: 
3. Our algorithm: 
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r log (0) < 0, r log (dj) > 0
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• Density	  Evolution	  (e.g.,	  Mezard &	  Montanari 09;	  Karger,	  Oh,	  
Shah	  11)



Mean	  Field	  and	  EM

• Joint	  posterior	  distribution:	   p(z, q|L)

• Mean	  field	  approximation:	  

• Coordinate	  descent	  (when	  prior	  is	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ):

min
p̃

KL[p̃(z, q)||p(z, q|L)] where p̃(z, q) =
Q

i µi(zi)
Q

j ⌫j(qj)

A typical prior on s
j

and t
j

are two independent Beta distributions. One can show that  (zNj ) in
this case equals a product of two Beta functions, and depends on zNj only through two integers, the
true positive and true negative counts. An efficient BP algorithm similar to (8) can be derived for
the general case, by exploiting the special structure of  (zNj ). See the Appendix for details.

One may also try to derive a two-coin version of KOS, by assigning two independent Haldane priors
on s

j

and t
j

; it turns out that the extended version is exactly the same as the standard KOS in (2). In
this sense, the Haldane prior is too restrictive for the more general case. Several further extensions
of the BP algorithm that are not obvious for KOS, for example the case when known features of the
tasks or other side information are available, are discussed in the appendix due to space limitations.

3.2 Mean Field Method and Connection of EM

We next present a mean field method for computing the marginal p(z
i

|L, ✓) in (3), and show its
close connection to EM. In contrast to the derivation of BP, here we directly work on the mixed joint
posterior p(z, q|L, ✓). Let us approximate p(z, q|L, ✓) with a fully factorized distribution b(z, q) =Q

i2[N ] µi

(z
i

)

Q
j2[M ] ⌫j(qj). The best b(z, q) should minimize the KL divergence,

KL[b(z, q) || p(z, q|L, ✓)] = �E
b

[log p(z, q|L, ✓)]�
X

i2[N ]

H(µ
i

)�
X

j2[M ]

H(⌫
j

).

where E
b

[·] denotes the expectation w.r.t. b(z, q), and H(·) the entropy functional. Assuming the
algorithmic prior of Beta(↵,�), one crucial property of the KL objective in this case is that the
optimal {⌫⇤

j

(q
j

)} is guaranteed to be a Beta distribution as well. Using a block coordinate descent
method that alternatively optimizes {µ

i

(z
i

)} and {⌫
j

(q
j

)}, the mean field (MF) update is

Updating µ
i

: µ
i

(z
i

) /
Y

j2Mi

a
�ij

j

b
1��ij

j

, (9)

Updating ⌫
j

: ⌫
j

(q
j

) ⇠ Beta(

X

i2Nj

µ
i

(L
ij

) + ↵,
X

i2Nj

µ
i

(�L
ij

) + �), (10)

where a
j

= exp(E
⌫j [ln qj ]) and b

j

= exp(E
⌫j [ln(1�q

j

)]). The a
j

and b
j

can be exactly calculated
by noting that E[lnx] = Digamma(↵)�Digamma(↵+�) if x ⇠ Beta(↵,�). One can also instead
calculate the first-order approximation of a

j

and b
j

: by Taylor expansion, one have ln(1 + x) ⇡ x;
taking x = (q

j

� q̄
j

)/q̄
j

, where q̄
j

= E
⌫j [qj ], and substituting it into the definition of a

j

and b
j

,
one get a

j

⇡ q̄
j

and b
j

⇡ 1� q̄
j

; it gives an approximate MF (AMF) update,

Updating µ
i

: µ
i

(z
i

) /
Y

j2Mi

q̄
�ij

j

(1� q̄
j

)

1��ij , Updating ⌫
j

: q̄
j

=

P
i2Nj

µ
i

(L
ij

) + ↵

|N
j

|+ ↵+ �
. (11)

The update (11) differs from EM (1) only in replacing ↵�1 and ��1 with ↵ and �, corresponding to
replacing the posterior mode of the Beta distribution with its posterior mean. This simple (perhaps
trivial) difference plays a role of Laplacian smoothing, and provides insights for improving the
performance of EM. For example, note that the q̂

j

in the M-step of EM could be updated to 0 or 1 if
↵ = 1 or � = 1, and once this happens, the q̂

j

is locked at its current value, causing EM to trapped
at a local maximum. Update (11) can prevent q̄

j

from becoming 0 or 1, avoiding the degenerate
case. One can of course interpret (11) as EM with prior parameters ↵0

= ↵ + 1, and �0
= � + 1;

under this interpretation, it is advisable to choose priors ↵0 > 1 and �0 > 1 (corresponding to a less
common or intuitive “informative” prior).

We should point out that it is widely known that EM can be interpreted as a coordinate descent on
variational objectives [18, 11]; our derivation differs in that we marginalize, instead of maximize,
over q

j

. Our first-order approximation scheme is also similar to the method by Asuncion [19]. One
can also extend this derivation to two-coin models with independent Beta priors, yielding the EM
update in Dawid and Skene [2]. On the other hand, discrete priors do not seem to lead to interesting
algorithms in this case.

4 Experiments

In this section, we present numerical experiments on both simulated and real-world Amazon Me-
chanical Turk datasets. We implement majority voting (MV), KOS in (2), BP in (8), EM in (1) and

6

where aj = exp(E⌫j [ln qj ]) and bj = exp(E⌫j [ln(1� qj)])

• Taylor	  expansion:	  

where �ij = 1[zi = Lij ]

where q̄j = E⌫j [qj ]aj ⇡ q̄j and bj ⇡ 1� q̄j

Beta(↵,�)



Mean	  Field	  and	  EM

• Joint	  posterior	  distribution:	   p(z, q|L)

• Mean	  field	  approximation:	  

min
p̃

KL[p̃(z, q)||p(z, q|L)] where p̃(z, q) =
Q

i µi(zi)
Q

j ⌫j(qj)

• Mean	  field	  (with	  first	  order	  approximation):	  

µi(zi) /
Y

j

q̄
1[Lij=zi]
j (1� q̄j)

1[Lij 6=zi] q̄j =

P
i µi(Lij) + ↵

dj + ↵+ �

• EM:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
q̄j =

P
i µi(Lij) + ↵� 1

dj + ↵+ � � 2µi(zi) /
Y

j

q̄
1[Lij=zi]
j (1� q̄j)

1[Lij 6=zi]

• Different	  from	  EM	  only	  on	  replacing	  α-1	  and	  β-‐1	  with	  α and β.	  
• Add-‐one	  smoothing.



Mean	  Field	  and	  EM

• Approximation	  mean	  field	  (AMF):	  

• EM:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

• Different	  from	  EM	  only	  on	  replacing	  α-1	  and	  β-‐1	  with	  α and β.	  
• Add-‐one	  smoothing.

(E-‐step) (M-‐step)

µi(zi) /
Y

j

q̄
1[Lij=zi]
j (1� q̄j)

1[Lij 6=zi] q̄j =

P
i µi(Lij) + ↵

dj + ↵+ �

q̄j =

P
i µi(Lij) + ↵� 1

dj + ↵+ � � 2
µi(zi) /

Y

j

q̄
1[Lij=zi]
j (1� q̄j)

1[Lij 6=zi]



Extensions
• Sensitivity	  &	  Specificity	  models	  of	  workers:	  

qj = prob[Lij = zi]

= 1� prob[Lij = �zi]

One-‐coin	  Model:	  

Beta Priors. If p(q
j

|✓) / q↵�1
j

(1 � q
j

)

��1, we have  (c
j

, �
j

) / B(↵ + c
j

,� + �
j

� c
j

), where
B(·, ·) is the Beta function. Note that  (c

j

, �
j

) in this case equals (up to a constant) the likelihood
of a Beta-binomial distribution.

Discrete Priors. If p(q
j

|✓) has non-zero probability mass on only finite points, that is, prob(q
j

=

q̃
k

) = p
k

, k 2 [K], where 0  q̃
k

 1, 0  p
k

 1 and
P

k

p
k

= 1, then we have  (c
j

, �
j

) =P
k

p
k

q̃
cj

k

(1� q̃
k

)

�j�cj . One can show that log (c
j

, �
j

) in this case is a log-sum-exp function.

Haldane Prior. The Haldane prior [15] is a special discrete prior that equals either 0 or 1 with equal
probability, that is, prob[q

j

= 0] = prob[q
j

= 1] = 1/2. One can show that in this case we have
 (0, �

j

) =  (�
j

, �
j

) = 1 and  (c
j

, �
j

) = 0 otherwise.
Claim 3.2. The BP update in (8) with Haldane prior is equivalent to KOS update in (2).

Proof. Just substitute the  (c
j

, �
j

) of Haldane prior shown above into the BP update (8).

The Haldane prior can also be treated as a Beta(✏, ✏) prior with ✏! 0

+, or equivalently an improper
prior p(q

j

) / q�1
j

(1 � q
j

)

�1, whose normalization constant is infinite. One can show that the
Haldane prior is equivalent to putting a flat prior on the log-odds log[q

j

/(1 � q
j

)]; also, it has
the largest variance (and hence is “most uninformative”) among all the possible distributions of q

j

.
Therefore, although appearing to be extremely dichotomous, it is well known in Bayesian statistics
as an uninformative prior of binomial distributions. Other choices of objective priors include the
uniform prior Beta(1, 1) and Jeffery’s prior Beta(1/2, 1/2) [16], but these do not yield the same
simple linear message passing form as the Haldane prior.

Unfortunately, the use of Haldane prior in our problem suffers an important symmetry breaking is-
sue: if the prior is symmetric, i.e., p(q

j

|✓) = p(1� q
j

|✓), the true marginal posterior distribution of
z
j

is also symmetric, i.e., p(z
j

|L, ✓) = [1/2; 1/2], because jointly flipping the sign of any configu-
ration does not change its likelihood. This makes it impossible to break the ties when decoding z

j

.
Indeed, it is not hard to observe that x

i!j

= y
j!i

= 0 (corresponding to symmetric probabilities)
is a fixed point of the KOS update (2). The mechanism of KOS for breaking the symmetry seems to
rely solely on initializing to points that bias towards majority voting, and the hope that the symmetric
distribution is an unstable fixed point. In experiments, we find that the use of symmetric priors usu-
ally leads to degraded performance when the degree of the assignment graph is low, corresponding
to the phase transition phenomenon discussed in Karger et al. [1]. This suggests that it is beneficial
to use asymmetric priors with E[q

j

|✓] > 1/2, to incorporate the prior knowledge that the majority of
workers are non-adversarial. Interestingly, it turns out that majority voting uses such an asymmetric
prior, but unfortunately corresponding to another unrealistic extreme.

Deterministic Priors. A deterministic prior is a special discrete distribution that equals a single
point deterministically, i.e., prob[q

j

= q̃|✓] = 1, where 0  q̃  1. One can show that log in this
case is a linear function, that is, log (c

j

, �
j

) = c
j

logit(q̃) + const.
Claim 3.3. The BP update (8) with deterministic priors satisfying q̃ > 1/2 terminates at the first
iteration and finds the same solution as majority voting.

Proof. Just note that log (c
j

, �
j

) = c
j

logit(q̃) + const, and logit(q̃) > 0 in this case.

The deterministic priors above have the opposite properties to the Haldane prior: they can be also
treated as Beta(↵,�) priors, but with ↵ ! +1 and ↵ > �; these priors have the smallest variance
(equal to zero) among all the possible q

j

priors.

In this work, we propose to use priors that balance between KOS and majority voting. One reason-
able choice is Beta(↵, 1) prior with ↵ > 1 [17]. In experiments, we find that a typical choice of
Beta(2, 1) performs surprisingly well even when it is far from the true prior.

3.1.2 The Two-Coin Models and Further Extensions

We previously assumed that workers’ abilities are parametrized by a single parameter q
j

. This is
likely to be restrictive in practice, since the error rate may depend on the true label value: false
positive and false negative rates are often not equal. Here we consider the more general case, where
the ability of worker j is specified by two parameters, the sensitivitiy s

j

and specificity t
j

[2, 4],

s
j

= prob[L
ij

= +1|z
i

= +1], t
j

= prob[L
ij

= �1|z
i

= �1].
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)]; also, it has
the largest variance (and hence is “most uninformative”) among all the possible distributions of q

j

.
Therefore, although appearing to be extremely dichotomous, it is well known in Bayesian statistics
as an uninformative prior of binomial distributions. Other choices of objective priors include the
uniform prior Beta(1, 1) and Jeffery’s prior Beta(1/2, 1/2) [16], but these do not yield the same
simple linear message passing form as the Haldane prior.

Unfortunately, the use of Haldane prior in our problem suffers an important symmetry breaking is-
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|✓), the true marginal posterior distribution of
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ration does not change its likelihood. This makes it impossible to break the ties when decoding z
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.
Indeed, it is not hard to observe that x
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= y
j!i

= 0 (corresponding to symmetric probabilities)
is a fixed point of the KOS update (2). The mechanism of KOS for breaking the symmetry seems to
rely solely on initializing to points that bias towards majority voting, and the hope that the symmetric
distribution is an unstable fixed point. In experiments, we find that the use of symmetric priors usu-
ally leads to degraded performance when the degree of the assignment graph is low, corresponding
to the phase transition phenomenon discussed in Karger et al. [1]. This suggests that it is beneficial
to use asymmetric priors with E[q
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|✓] > 1/2, to incorporate the prior knowledge that the majority of
workers are non-adversarial. Interestingly, it turns out that majority voting uses such an asymmetric
prior, but unfortunately corresponding to another unrealistic extreme.

Deterministic Priors. A deterministic prior is a special discrete distribution that equals a single
point deterministically, i.e., prob[q
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= q̃|✓] = 1, where 0  q̃  1. One can show that log in this
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treated as Beta(↵,�) priors, but with ↵ ! +1 and ↵ > �; these priors have the smallest variance
(equal to zero) among all the possible q
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In this work, we propose to use priors that balance between KOS and majority voting. One reason-
able choice is Beta(↵, 1) prior with ↵ > 1 [17]. In experiments, we find that a typical choice of
Beta(2, 1) performs surprisingly well even when it is far from the true prior.

3.1.2 The Two-Coin Models and Further Extensions

We previously assumed that workers’ abilities are parametrized by a single parameter q
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. This is
likely to be restrictive in practice, since the error rate may depend on the true label value: false
positive and false negative rates are often not equal. Here we consider the more general case, where
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(sensitivity)

(specificity)

Two-‐coin	  Model (Dawid &	  Skene 79):	  

• Model	  selection	  by	  marginal	  likelihood:	  

• Incorporating	  item	  features,	  and	  expect	  labels

• …

K =
p(L|M1)

p(L|M2)
=

P
z

R
q p(z, q, L|M1)dqP

z

R
q p(z, q, L|M2)dq
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Figure 6: Estimated image and annotator parameters on the Waterbirds dataset. The annotators were asked
to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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Figure 6: Estimated image and annotator parameters on the Waterbirds dataset. The annotators were asked
to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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Figure 1: (a) Sample MTurk task where annotators were asked to click on images of Indigo Bunting (described
in Section 5.2). (b) The image formation process. The class variable zi models if the object (Indigo Bunting)
will be present (zi = 1) or absent (zi = 0) in the image, while a number of “nuisance factors” influence
the appearance of the image. The image is then transformed into a low-dimensional representation xi which
captures the main attributes that are considered by annotators in labeling the image. (c) Probabilistic graphical
model of the entire annotation process where image formation is summarized by the nodes zi and xi. The
observed variables, indicated by shaded circles, are the index i of the image, index j of the annotators, and
value lij of the label provided by annotator j for image i. The annotation process is repeated for all i and for
multiple j thus obtaining multiple labels per image with each annotator labeling multiple images (see Section 3).

biases, while identifying annotators’ different “areas of strength”. While many of our results are
valid for general labels and tasks, we focus on the binary labeling of images.

2 Related Work
The advantages and drawbacks of using crowdsourcing services for labeling large datasets have
been explored by various authors [2, 7, 8]. In general, it has been found that many labels are of
high quality [8], but a few sloppy annotators do low quality work [7, 12]; thus the need for efficient
algorithms for integrating the labels from many annotators [5, 12]. A related topic is that of using
paired games for obtaining annotations, which can be seen as a form of crowdsourcing [10, 11].

Methods for combining the labels from many different annotators have been studied before. Dawid
and Skene [1] presented a model for multi-valued annotations where the biases and skills of the
annotators were modeled by a confusion matrix. This model was generalized and extended to other
annotation types by Welinder and Perona [12]. Similarly, the model presented by Raykar et al. [4]
considered annotator bias in the context of training binary classifiers with noisy labels. Building
on these works, our model goes a step further in modeling each annotator as a multidimensional
classifier in an abstract feature space. We also draw inspiration from Whitehill et al. [13], who
modeled both annotator competence and image difficulty, but did not consider annotator bias. Our
model generalizes [13] by introducing a high-dimensional concept of image difficulty and combin-
ing it with a broader definition of annotator competence. Other approaches have been proposed
for non-binary annotations [9, 6, 12]. By modeling annotator competence and image difficulty as
multidimensional quantities, our approach achieves better performance on real data than previous
methods and provides a richer output space for separating groups of annotators and images.

3 The Annotation Process
An annotator, indexed by j, looks at image I

i

and assigns it a label l

ij

. Competent annotators
provide accurate and precise labels, while unskilled annotators provide inconsistent labels. There
is also the possibility of adversarial annotators assigning labels that are opposite to those assigned
by competent annotators. Annotators may have different areas of strength, or expertise, and thus
provide more reliable labels on different subsets of images. For example, when asked to label
images containing ducks some annotators may be more aware of the distinction between ducks and
geese while others may be more aware of the distinction between ducks, grebes, and cormorants
(visually similar bird species). Furthermore, different annotators may weigh errors differently; one
annotator may be intolerant of false positives, while another is more optimistic and accepts the cost
of a few false positives in order to get a higher detection rate. Lastly, the difficulty of the image
may also matter. A difficult or ambiguous image may be labeled inconsistently even by competent
annotators, while an easy image is labeled consistently even by sloppy annotators. In modeling the
annotation process, all of these factors should be considered.
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Figure 1: (a) Sample MTurk task where annotators were asked to click on images of Indigo Bunting (described
in Section 5.2). (b) The image formation process. The class variable zi models if the object (Indigo Bunting)
will be present (zi = 1) or absent (zi = 0) in the image, while a number of “nuisance factors” influence
the appearance of the image. The image is then transformed into a low-dimensional representation xi which
captures the main attributes that are considered by annotators in labeling the image. (c) Probabilistic graphical
model of the entire annotation process where image formation is summarized by the nodes zi and xi. The
observed variables, indicated by shaded circles, are the index i of the image, index j of the annotators, and
value lij of the label provided by annotator j for image i. The annotation process is repeated for all i and for
multiple j thus obtaining multiple labels per image with each annotator labeling multiple images (see Section 3).

biases, while identifying annotators’ different “areas of strength”. While many of our results are
valid for general labels and tasks, we focus on the binary labeling of images.

2 Related Work
The advantages and drawbacks of using crowdsourcing services for labeling large datasets have
been explored by various authors [2, 7, 8]. In general, it has been found that many labels are of
high quality [8], but a few sloppy annotators do low quality work [7, 12]; thus the need for efficient
algorithms for integrating the labels from many annotators [5, 12]. A related topic is that of using
paired games for obtaining annotations, which can be seen as a form of crowdsourcing [10, 11].

Methods for combining the labels from many different annotators have been studied before. Dawid
and Skene [1] presented a model for multi-valued annotations where the biases and skills of the
annotators were modeled by a confusion matrix. This model was generalized and extended to other
annotation types by Welinder and Perona [12]. Similarly, the model presented by Raykar et al. [4]
considered annotator bias in the context of training binary classifiers with noisy labels. Building
on these works, our model goes a step further in modeling each annotator as a multidimensional
classifier in an abstract feature space. We also draw inspiration from Whitehill et al. [13], who
modeled both annotator competence and image difficulty, but did not consider annotator bias. Our
model generalizes [13] by introducing a high-dimensional concept of image difficulty and combin-
ing it with a broader definition of annotator competence. Other approaches have been proposed
for non-binary annotations [9, 6, 12]. By modeling annotator competence and image difficulty as
multidimensional quantities, our approach achieves better performance on real data than previous
methods and provides a richer output space for separating groups of annotators and images.

3 The Annotation Process
An annotator, indexed by j, looks at image I
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and assigns it a label l
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. Competent annotators
provide accurate and precise labels, while unskilled annotators provide inconsistent labels. There
is also the possibility of adversarial annotators assigning labels that are opposite to those assigned
by competent annotators. Annotators may have different areas of strength, or expertise, and thus
provide more reliable labels on different subsets of images. For example, when asked to label
images containing ducks some annotators may be more aware of the distinction between ducks and
geese while others may be more aware of the distinction between ducks, grebes, and cormorants
(visually similar bird species). Furthermore, different annotators may weigh errors differently; one
annotator may be intolerant of false positives, while another is more optimistic and accepts the cost
of a few false positives in order to get a higher detection rate. Lastly, the difficulty of the image
may also matter. A difficult or ambiguous image may be labeled inconsistently even by competent
annotators, while an easy image is labeled consistently even by sloppy annotators. In modeling the
annotation process, all of these factors should be considered.
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Figure 6: Estimated image and annotator parameters on the Waterbirds dataset. The annotators were asked
to select images containing at least one “duck”. The estimated xi parameters for each image are marked with
symbols that are specific to the class the image belongs to. The arrows show the xi coordinates of some example
images. The gray lines are the decision planes of the annotators. The darkness of the lines is an indicator of
kwjk: darker gray means the model estimated the annotator to be more competent. Notice how the annotators’
decision planes fall roughly into three clusters, marked by the blue circles and discussed in Section 5.2.

was that some annotators would be able to discriminate ducks from the two other bird species, while
others would confuse ducks with geese and/or grebes.

Results from the experiment, shown in Figure 6, suggest that there are at least three different groups
of annotators, those who separate: (1) ducks from everything else, (2) ducks and grebes from every-
thing else, and (3) ducks, grebes, and geese from everything else; see numbered circles in Figure 6.
Interestingly, the first group of annotators was better at separating out Canada geese than Red-necked
grebes. This may be because Canada geese are quite distinctive with their long, black necks, while
the grebes have shorter necks and look more duck-like in most poses. There were also a few outlier
annotators that did not provide answers consistent with any other annotators. This is a common
phenomenon on MTurk, where a small percentage of the annotators will provide bad quality labels
in the hope of still getting paid [7]. We also compared the labels predicted by the different models
to the ground truth. Majority voting performed at 68.3% correct labels, GLAD at 60.4%, and our
model performed at 75.4%.

6 Conclusions
We have proposed a Bayesian generative probabilistic model for the annotation process. Given
only binary labels of images from many different annotators, it is possible to infer not only the
underlying class (or value) of the image, but also parameters such as image difficulty and annota-
tor competence and bias. Furthermore, the model represents both the images and the annotators
as multidimensional entities, with different high level attributes and strengths respectively. Experi-
ments with images annotated by MTurk workers show that indeed different annotators have variable
competence level and widely different biases, and that the annotators’ classification criterion is best
modeled in multidimensional space. Ultimately, our model can accurately estimate the ground truth
labels by integrating the labels provided by several annotators with different skills, and it does so
better than the current state of the art methods.

Besides estimating ground truth classes from binary labels, our model provides information that is
valuable for defining loss functions and for training classifiers. For example, the image parame-
ters estimated by our model could be taken into account for weighing different training examples,
or, more generally, it could be used for a softer definition of ground truth. Furthermore, our find-
ings suggest that annotators fall into different groups depending on their expertise and on how they
perceive the task. This could be used to select annotators that are experts on certain tasks and to
discover different schools of thought on how to carry out a given task.
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– Choice	  of	  priors	  is	  critical	  

– Inference	  algorithms
– Modeling	  choices

– Belief	  propagation	  (KOS,	  MV),	  mean	  field	  (EM)	  
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its variant AMF in (11). The exact MF (9)-(10) was implemented, but is not reported because its
performance is mostly similar to AMF (11) in terms of error rates. We initialize BP (including KOS)
with y

j!i

= 1 and EM with µ
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i

) =
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j2Mi

I[L
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]/|M
i

|, both of which reduce to major-
ity voting at the 0-th iteration; for KOS, we also implemented another version that exactly follows
the setting of Karger et al. [1], which initializes y

j!i

by Normal(1, 1) and terminates at the 10-th
iteration; the best performance of the two versions was reported. For EM with algorithmic prior
Beta(↵,�), we add a small constant (0.001) on ↵ and � to avoid possible numerical NaN values.
We also implemented a max-product version of BP, but found it performed similarly to sum-product
BP in terms of error rates. We terminate all the iterative algorithms at a maximum of 100 iterations
or with 10

�6 message convergence tolerance. All results are averaged on 100 random trials.

Simulated Data. We generate simulated data by drawing the abilities q
j

from Beta priors or the
adversary-spammer-hammer priors, that equals 0.1, 0.5, or 0.9 with certain probabilities; the as-
signment graphs are randomly drawn from the set of (`, �)-regular bipartite graphs with 1000 task
nodes using the configuration method [20]. For the simulated datasets, we also calculated the oracle
lower bound in Karger et al. [1] that assumes the true q

j

are known, as well as a BP equipped with
an algorithmic prior equal to the true prior used to generate the data, which sets a tighter (perhaps
approximate) “Bayesian oracle” lower bound for all the algorithms that do not know q

j

. We find that
BP and AMF with a typical asymmetric prior Beta(2, 1) perform mostly as well as the “Bayesian
oracle” bound, eliminating the necessity to search for more accurate algorithmic priors.

In Fig. 1, we show that the error rates of the algorithms generally decay exponentially w.r.t. the
degree ` and log(�) of the assignment graph on a spammer-hammer model. Perhaps surprisingly,
we find that the BP, EM and AMF with the asymmetric algorithmic prior beta(2, 1) scale similarly to
KOS, which has been theoretically shown to be order-optimal compared to the oracle lower bound.
On the other hand, BP with symmetric algorithmic priors, such as the Haldane prior Beta(0+, 0+) of
KOS and the uniform prior Beta(1, 1), often result in degraded performance when the degrees of the
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Belief Propagation

Decode solution: zi = argmax

zi
bi(zi),

• Log-‐odds	  form:	  

where  
j

(zNj ) is the local factor contributed by worker j due to eliminating q
j

, which couples
all the tasks zNj labeled by j; here we suppress the dependency of  

j

on ✓ and L for notational
simplicity. A key perspective is that we can treat p(z|L, ✓) as a discrete Markov random field, and
re-interpret the bipartite assignment graph as a factor graph [13], with the tasks mapping to variable
nodes and workers to factor nodes. This interpretation motivates us to use a standard sum-product
belief propagation method, approximating p(z

i

|L, ✓) with “beliefs” b
i

(z
i

) using messages m
i!j

and m
j!i

between the variable nodes (tasks) and factor nodes (workers),
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Calculating the beliefs: bt+1
i

(z
i

) /
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j2Mi
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(z
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). (7)

At the end of T iterations, the labels are estimated via ẑt
i

= argmax

zi
bt
i

(z
i

). One immediate
difference between BP (5)-(7) and the KOS message passing (2) is that the messages and beliefs in
(5)-(7) are probability tables on z

i

, i.e., m
i!j

= [m
i!j

(+1),m
i!j

(�1)], while the messages in
(2) are real values. For binary labels, we will connect the two by rewriting the updates (5)-(7) in
terms of their (real-valued) log-odds, a standard transformation used in error-correcting codes.

The BP updates above appear computationally challenging, since step (6) requires eliminating a
high-order potential  (zNj ), costing O(2

�j
) in general. However, note that  (zNj ) in (4) depends

on zNj only through c
j

, so that (with a slight abuse of notation) it can be rewritten as  (c
j

, �
j

). This
structure enables us to rewrite the BP updates in a more efficient form (in terms of the log-odds):
Theorem 3.1.
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.

Then, sum-product BP (5)-(7) can be expressed as
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, where the terms e
k

for k = 0, . . . , N
j

� 1, are the
elementary symmetric polynomials in variables {exp(L
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). In the end, the true labels are decoded as ẑt
i

= sign[x̂t

i

].

The terms e
k

can be efficiently calculated by divide & conquer and the fast Fourier transform in
O(�

j

(log �
j

)

2
) time (see appendix), making (8) much more efficient than (6) initially appears.

Similar to sum-product, one can also derive a max-product BP to find the joint maximum a posteriori
configuration, ẑ = argmax

z

p(z|L, ✓), which minimizes the block-wise error rate prob[9i : z
i

6=
ẑ
i

] instead of the bit-wise error rate. Max-product BP can be organized similarly to (8), with the
slightly lower computational cost of O(�

j

log �
j

); see appendix for details and Tarlow et al. [14]
for a general discussion on efficient max-product BP with structured high-order potentials. In this
work, we focus on sum-product since the bit-wise error rate is more commonly used in practice.

3.1.1 The Choice of Algorithmic Priors and connection to KOS and Majority Voting

Before further discussion, we should be careful to distinguish between the prior on q
j

used in our
algorithm (the algorithmic prior) and, assuming the model is correct, the true distribution of the q

j

in the data generating process (the data prior); the algorithmic and data priors often do not match.
In this section, we discuss the form of  (c

j

, �
j

) for different choices of algorithmic priors, and in
particular show that KOS and majority voting can be treated as special cases of our belief propaga-
tion (8) with the most “uninformative” and most “informative” algorithmic priors, respectively. For
more general priors that may not yield a closed form for  (c

j

, �
j

), one can calculate  (c
j

, �
j

) by
numerical integration and store them in a (� + 1)⇥ � table for later use, where � = max

j2[M ] �j .

4

yj!i = log

mj!i(+Lij)

mj!i(�Lij)
xi!j = log

mi!j(+1)

mi!j(�1)

,

mi!j(zi) /
Y

j0 6=j

mj0!i(zi)

mj!i(zi) /
X

z@j\{i}

 j

Y

i0 6=i

mi0!j(zi0)

Marginal probabilities: bi(zi) =
Y

j2@i

mj!i(zi)

Variables -> Factors:

Factors -> Variables:
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Text: Many experts think that there is 
likely to be another terrorist attack on 
American soil within the next five years.
Hypothesis: There will be another 
terrorist attack on American soil within 
the next five years.
Answer: NO
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