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Abstract

Crowdsourcing has become a popular paradigm for labeling large datasets. How-
ever, it has given rise to the computational task of aggregating the crowdsourced
labels provided by a collection of unreliable annotators. We approach this prob-
lem by transforming it into a standard inference problem in graphical models,
and applying approximate variational methods, including belief propagation (BP)
and mean field (MF). We show that our BP algorithm generalizes both major-
ity voting and a recent algorithm by Karger et al. [1], while our MF method is
closely related to a commonly used EM algorithm. In both cases, we find that the
performance of the algorithms critically depends on the choice of a prior distribu-
tion on the workers’ reliability; by choosing the prior properly, both BP and MF
(and EM) perform surprisingly well on both simulated and real-world datasets,
competitive with state-of-the-art algorithms based on more complicated modeling
assumptions.

1 Introduction

Crowdsourcing has become an efficient and inexpensive way to label large datasets in many ap-
plication domains, including computer vision and natural language processing. Resources such as
Amazon Mechanical Turk provide markets where the requestors can post tasks known as HITs (Hu-
man Intelligence Tasks) and collect large numbers of labels from hundreds of online workers (or
annotators) in a short time and with relatively low cost.

A major problem of crowdsoucing is that the qualities of the labels are often unreliable and diverse,
mainly since it is difficult to monitor the performance of a large collection of workers. In the ex-
treme, there may exist “spammers”, who submit random answers rather than good-faith attempts to
label, or even “adversaries”, who may deliberately give wrong answers, either due to malice or to a
misinterpretation of the task. A common strategy to improve reliability is to add redundancy, such
as assigning each task to multiple workers, and aggregate the workers’ labels. The baseline majority
voting heuristic, which simply assigns the label returned by the majority of the workers, is known to
be error-prone, because it counts all the annotators equally. In general, efficient aggregation methods
should take into account the differences in the workers’ labeling abilities.

A principled way to address this problem is to build generative probabilistic models for the annota-
tion processes, and assign labels using standard inference tools. A line of early work builds simple
models characterizing the annotators using confusion matrices, and infers the labels using the EM
algorithm [e.g., 2, 3, 4]. Recently however, significant efforts have been made to improve perfor-
mance by incorporating more complicated generative models [e.g., 5, 6, 7, 8, 9]. However, EM is
widely criticized for having local optimality issues [e.g., 1]; this raises a potential tradeoff between
more dedicated exploitation of the simpler models, either by introducing new inference tools or fix-
ing local optimality issues in EM, and the exploration of larger model space, usually with increased
computational cost and possibly the risk of over-fitting.

On the other hand, variational approaches, including the popular belief propagation (BP) and mean
field (MF) methods, provide powerful inference tools for probabilistic graphical models [10, 11].



These algorithms are efficient, and often have provably strong local optimality properties or even
globally optimal guarantees [e.g., 12]. To our knowledge, no previous attempts have taken advantage
of variational tools for the crowdsourcing problem. A closely related approach is a message-passing-
style algorithm in Karger et al. [1] (referred to as KOS in the sequel), which the authors asserted
to be motivated by but not equivalent to standard belief propagation. KOS was shown to have
strong theoretical guarantees on (locally tree-like) random assignment graphs, but does not have an
obvious interpretation as a standard inference method on a generative probabilistic model. As one
consequence, the lack of a generative model interpretation makes it difficult to either extend KOS to
more complicated models or adapt it to improve its performance on real-world datasets.

Contribution. In this work, we approach the crowdsourcing problems using tools and concepts from
variational inference methods for graphical models. First, we present a belief-propagation-based
method, which we show includes both KOS and majority voting as special cases, in which partic-
ular prior distributions are assumed on the workers’ abilities. However, unlike KOS our method is
derived using generative principles, and can be easily extended to more complicated models. On
the other side, we propose a mean field method which we show closely connects to, and provides
an important perspective on, EM. For both our BP and MF algorithms (and consequently for EM
as well), we show that performance can be significantly improved by using more carefully chosen
priors. We test our algorithms on both simulated and real-world datasets, and show that both BP
and MF (or EM), with carefully chosen priors, is able to perform competitively with state-of-the-art
algorithms that are based on far more complicated models.

2 Background

Assume there are M workers and N tasks with binary labels {£1}. Denote by z; € {£1},7 € [N]
the true label of task ¢, where [V] represents the set of first IV integers; N is the set of tasks labeled
by worker j, and M the workers labeling task ¢. The task assignment scheme can be represented by
a bipartite graph where an edge (4, j) denotes that the task ¢ is labeled by the worker j. The labeling
results form a matrix L € {0, £1}"*M where L;; € {£1} denotes the answer if worker j labels
task ¢, and L;; = 0 if otherwise. The goal is to find an optimal estimator 2 of the true labels z given
the observation L, minimizing the average bit-wise error rate = >, e[nv] Prob[Z; # zi].

We assume that all the tasks have the same level of difficulty, but that workers may have different
predictive abilities. Following Karger et al. [1], we initially assume that the ability of worker j is
measured by a single parameter g;, which corresponds to their probability of correctness: q; =
prob[L;; = z;]. More generally, the workers’ abilities can be measured by a confusion matrix, to
which our method can be easily extended (see Section 3.1.2).

The values of g; reflect the abilities of the workers: ¢; ~ 1 correspond to experts that provide
reliable answers; g; =~ 1/2 denote spammers that give random labels independent of the questions;
and ¢; < 1/2 denote adversaries that tend to provide opposite answers. Conceptually, the spammers
and adversaries should be treated differently: the spammers provide no useful information and only
degrade the results, while the adversaries actually carry useful information, and can be exploited to
improve the results if the algorithm can identify them and flip their labels. We assume the g; of all
workers are drawn independently from a common prior p(g;|¢), where 6 are the hyper-parameters.
To avoid the cases when adversaries and/or spammers overwhelm the system, it is reasonable to
require that E[g;|0] > 1/2. Typical priors include the Beta prior p(g;|0) o< q‘j’?‘*l(l —¢q;)P~! and
discrete priors, e.g., the spammer-hammer model, where g; ~ 0.5 or g; = 1 with equal probability.

Majority Voting. The majority voting (MV) method aggregates the workers’ labels by
éfwjomy = sign| Z L;j].
JEM;

The limitation of MV is that it weights all the workers equally, and performs poorly when the
qualities of the workers are diverse, especially when adversarial workers exist.

Expectation Maximization. Weighting the workers properly requires estimating their abilities g;,
usually via a maximum a posteriori estimator, § = arg maxlogp(q|L,0) = log ), p(q, z|L,0).
This is commonly solved using an EM algorithm treating the z as hidden variables, [e.g., 2, 3, 4].
Assuming a Beta(a, 8) prior on ¢;, EM is formulated as
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where d;; = I[L;; = 2;]; the 2; is then estimated via Z; = arg max__ u;(2;). Many approaches have
been proposed to improve this simple EM approach, mainly by building more complicated models.

Message Passing. A rather different algorithm in a message-passing style is proposed by Karger,
Oh and Shah [1] (referred to as KOS in the sequel). Let z;_,; and y;_,; be real-valued messages
from tasks to workers and from workers to tasks, respectively. Initializing y? _,; randomly from

Normal(1, 1) or deterministically by 39 ,; = 1, KOS updates the messages at ¢-th iteration via

t+1 _ t+1 __
Liyj = § L’L] y] —is Yjsi = § Lix 15, _Ua )
7 EMI\J 3 6./\/]\1

and the labels are estimated via 3] = sign[2}], where @} = 3"\, Li;yj_,;- Note that the Oth

iteration of KOS reduces to majority voting when initialized with y;) _,; = 1. KOS has surprisingly
nice theoretical properties on locally tree-like assignment graphs: its error rate is shown to scale
in the same manner as an oracle lower bound that assumes the true g; are known. Unfortunately,
KOS is not derived using a generative model approach under either Bayesian or maximum likeli-
hood principles, and hence is difficult to extend to more general cases, such as more sophisticated
worker-error models (Section 3.1.2) or other features and side information (see appendix). Given
that the assumptions made in Karger et al. [1] are restrictive in practice, it is unclear whether the
theoretical performance guarantees of KOS hold in real-world datasets. Additionally, an interest-
ing phase transition phenomenon was observed in Karger et al. [1] — the performance of KOS was
shown to degenerate, sometimes performing even worse than majority voting when the degrees of
the assignment graph (corresponding to the number of annotators per task) are small.

3 Crowdsourcing as Inference in a Graphical Model

We present our main framework in this section, transforming the labeling aggregation problem into
a standard inference problem on a graphical model, and proposing a set of efficient variational
methods, including a belief propagation method that includes KOS and majority voting as special
cases, and a mean field method, which connects closely to the commonly used EM approach.

To start, the joint posterior distribution of workers’ abilities ¢ = {g;: j € [M]} and the true labels
z = {z;: i € [N]} conditional on the observed labels L and hyper-parameter ¢ is

p(zqlL,0) o< ] pla;10) T] p(Lijlzina5) = ] pla;10)g;” (1 — g5,
JEIM] iEN JeM]
where v; = |A;| is the number of predictions made by worker j and ¢; := N; I[L;; = 2] is
the number of j’s predictions that are correct. By standard Bayesian arguments, one can show that
the optimal estimator of z to minimize the bit-wise error rate is given by
% = argmax p(z]| L, 0) where p(zlL,0) = > [ plz,qlL,0)dg.  (3)
= 2 79
Note that the EM algorithm (1), which maximizes rather than marginalizes g;, is not equivalent to
the Bayesian estimator (3), and hence is expected to be suboptimal in terms of error rate. However,
calculating the marginal p(z;| L, #) in (3) requires integrating all ¢ and summing over all the other z;,
a challenging computational task. In this work we use belief propagation and mean field to address
this problem, and highlight their connections to KOS, majority voting and EM.

3.1 Belief Propagation, KOS and Majority Voting

It is difficult to directly apply belief propagation to the joint distribution p(z, q|L, 8), since it is
a mixed distribution of discrete variables z and continuous variables q. We bypass this issue by
directly integrating over ¢;, yielding a marginal posterior distribution over the discrete variables z,

p(z|L,9)=/ (z,¢|L,8)d H / (¢;10)a;” (1 — q;)7 ™% dg, = H Vilzn;), @)

JE[M)]



where 1;(zx7;) is the local factor contributed by worker j due to eliminating ¢;, which couples
all the tasks zy; labeled by j; here we suppress the dependency of ¢; on 6 and L for notational
simplicity. A key perspective is that we can treat p(z|L, §) as a discrete Markov random field, and
re-interpret the bipartite assignment graph as a factor graph [13], with the tasks mapping to variable
nodes and workers to factor nodes. This interpretation motivates us to use a standard sum-product
belief propagation method, approximating p(z;|L, 6) with “beliefs” b;(z;) using messages m;_, ;
and m,;_,; between the variable nodes (tasks) and factor nodes (workers),

From tasks to workers: filj H mj, _il(z), (5)
JeMiy;
From workers to tasks: 2:11 Z Vi(zn;) H mfj__l,] (6)
/i 7 EN,/,
Calculating the beliefs: bt'"1 (21) x H m?t}z (7
JEM;

At the end of T iterations, the labels are estimated via Z; = argmax, b!(z;). One immediate

difference between BP (5)-(7) and the KOS message passing (2) is that the messages and beliefs in
(5)-(7) are probability tables on z;, i.e., mj—; = [m;—;(+1), m;—;(—1)], while the messages in
(2) are real values. For binary labels, we will connect the two by rewriting the updates (5)-(7) in
terms of their (real-valued) log-odds, a standard transformation used in error-correcting codes.

The BP updates above appear computationally challenging, since step (6) requires eliminating a
high-order potential ¥)(zy, ), costing O(277) in general. However, note that 1)(zx;) in (4) depends
on z;; only through c;, so that (with a slight abuse of notation) it can be rewritten as ¥)(c;,y;). This
structure enables us to rewrite the BP updates in a more efficient form (in terms of the log-odds):

Theorem 3.1.

bi(+1) mis (+1) myi(+1)
Let Al‘Zl d s i =1 ke s d ; Z:Lzl I .
e z og be(=1) Zi—; = log iy (=1) an Yjs j log i (—1)
Then, sum-product BP (5)-(7) can be expressed as
w(k +1,75) e
f:lj = Z Lljy] '—1 y;ill IOg O 2 t+1 (8)
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and T At+1 = ZjeMi Lijyfilj, where the terms ey for k = 0,...,N; — 1, are the

elementary symmetric polynomials in variables {exp(Li/jTi—sj)}iren, ,» that is, ex =
2s: jsi=k Lires exp(Lirjzir— ;). In the end, the true labels are decoded as 2t = sign|#].

The terms ey, can be efficiently calculated by divide & conquer and the fast Fourier transform in
O(~;(log~;)?) time (see appendix), making (8) much more efficient than (6) initially appears.

Similar to sum-product, one can also derive a max-product BP to find the joint maximum a posteriori
configuration, £ = arg max, p(z|L, #), which minimizes the block-wise error rate prob[Ji : z; #
%;] instead of the bit-wise error rate. Max-product BP can be organized similarly to (8), with the
slightly lower computational cost of O(~y; log;); see appendix for details and Tarlow et al. [14]
for a general discussion on efficient max-product BP with structured high-order potentials. In this
work, we focus on sum-product since the bit-wise error rate is more commonly used in practice.

3.1.1 The Choice of Algorithmic Priors and connection to KOS and Majority Voting

Before further discussion, we should be careful to distinguish between the prior on ¢; used in our
algorithm (the algorithmic prior) and, assuming the model is correct, the true distribution of the g;
in the data generating process (the data prior); the algorithmic and data priors often do not match.
In this section, we discuss the form of ¢(c;,y;) for different choices of algorithmic priors, and in
particular show that KOS and majority voting can be treated as special cases of our belief propaga-
tion (8) with the most “uninformative” and most “informative” algorithmic priors, respectively. For
more general priors that may not yield a closed form for v(c;,;), one can calculate 1(c;, ;) by
numerical integration and store them in a (y 4 1) x ~ table for later use, where v = max; e[ ;-



Beta Priors. If p(g;]0) qjo-‘*l(l —q;)?~ 1, we have ¥(c;,7;) o< B(a + ¢, B +7; — ¢;), where
B(-,-) is the Beta function. Note that 1(c;, ;) in this case equals (up to a constant) the likelihood
of a Beta-binomial distribution.

Discrete Priors. If p(¢;|6) has non-zero probability mass on only finite points, that is, prob(g; =
dr) = pr. k € [K], where 0 < g, < 1,0 < pp < 1 and ), pr = 1, then we have ¢(¢;,v;) =
> prd@y (1 — i)Y ¢ . One can show that log ¥(c;, ;) in this case is a log-sum-exp function.

Haldane Prior. The Haldane prior [15] is a special discrete prior that equals either 0 or 1 with equal
probability, that is, prob[g; = 0] = prob[g; = 1] = 1/2. One can show that in this case we have
¥(0,7;) = ¥(7;,7;) = 1 and ¢(c;,7;) = 0 otherwise.

Claim 3.2. The BP update in (8) with Haldane prior is equivalent to KOS update in (2).

Proof. Just substitute the ¢(c;, ;) of Haldane prior shown above into the BP update (8). O

The Haldane prior can also be treated as a Beta(e, €) prior with ¢ — 0T, or equivalently an improper
prior p(g;) qj_l(l — ¢;)~", whose normalization constant is infinite. One can show that the
Haldane prior is equivalent to putting a flat prior on the log-odds log[g; /(1 — ¢;)]; also, it has
the largest variance (and hence is “most uninformative) among all the possible distributions of g;.
Therefore, although appearing to be extremely dichotomous, it is well known in Bayesian statistics
as an uninformative prior of binomial distributions. Other choices of objective priors include the
uniform prior Beta(1, 1) and Jeffery’s prior Beta(1/2,1/2) [16], but these do not yield the same
simple linear message passing form as the Haldane prior.

Unfortunately, the use of Haldane prior in our problem suffers an important symmetry breaking is-
sue: if the prior is symmetric, i.e., p(g;]|6) = p(1 — ¢;|6), the true marginal posterior distribution of
z; is also symmetric, i.e., p(z;|L, ) = [1/2;1/2], because jointly flipping the sign of any configu-
ration does not change its likelihood. This makes it impossible to break the ties when decoding z;.
Indeed, it is not hard to observe that z;_,; = y;_; = 0 (corresponding to symmetric probabilities)
is a fixed point of the KOS update (2). The mechanism of KOS for breaking the symmetry seems to
rely solely on initializing to points that bias towards majority voting, and the hope that the symmetric
distribution is an unstable fixed point. In experiments, we find that the use of symmetric priors usu-
ally leads to degraded performance when the degree of the assignment graph is low, corresponding
to the phase transition phenomenon discussed in Karger et al. [1]. This suggests that it is beneficial
to use asymmetric priors with E[g;|6] > 1/2, to incorporate the prior knowledge that the majority of
workers are non-adversarial. Interestingly, it turns out that majority voting uses such an asymmetric
prior, but unfortunately corresponding to another unrealistic extreme.

Deterministic Priors. A deterministic prior is a special discrete distribution that equals a single
point deterministically, i.e., prob[g; = ¢|0] = 1, where 0 < ¢ < 1. One can show that log ¢ in this
case is a linear function, that is, log ¢'(c;, ;) = ¢;logit(§) + const.

Claim 3.3. The BP update (8) with deterministic priors satisfying ¢ > 1/2 terminates at the first
iteration and finds the same solution as majority voting.

Proof. Just note that log¥(c;,v;) = ¢;logit(§) + const, and logit(¢) > 0 in this case. O

The deterministic priors above have the opposite properties to the Haldane prior: they can be also
treated as Beta(c, 3) priors, but with &« — +o00 and « > [3; these priors have the smallest variance
(equal to zero) among all the possible g; priors.

In this work, we propose to use priors that balance between KOS and majority voting. One reason-
able choice is Beta(«, 1) prior with @ > 1 [17]. In experiments, we find that a typical choice of
Beta(2, 1) performs surprisingly well even when it is far from the true prior.

3.1.2 The Two-Coin Models and Further Extensions

We previously assumed that workers’ abilities are parametrized by a single parameter ¢;. This is
likely to be restrictive in practice, since the error rate may depend on the true label value: false
positive and false negative rates are often not equal. Here we consider the more general case, where
the ability of worker j is specified by two parameters, the sensitivitiy s; and specificity t; [2, 4],

s; = prob[L;; = +1|z; = +1], tj = prob[L;; = —1]z; = —1].



A typical prior on s; and t; are two independent Beta distributions. One can show that 1 (zar;) in
this case equals a product of two Beta functions, and depends on z; only through two integers, the
true positive and true negative counts. An efficient BP algorithm similar to (8) can be derived for
the general case, by exploiting the special structure of 1)(zx; ). See the Appendix for details.

One may also try to derive a two-coin version of KOS, by assigning two independent Haldane priors
on s; and t;; it turns out that the extended version is exactly the same as the standard KOS in (2). In
this sense, the Haldane prior is too restrictive for the more general case. Several further extensions
of the BP algorithm that are not obvious for KOS, for example the case when known features of the
tasks or other side information are available, are discussed in the appendix due to space limitations.

3.2 Mean Field Method and Connection of EM

We next present a mean field method for computing the marginal p(z;|L, ) in (3), and show its
close connection to EM. In contrast to the derivation of BP, here we directly work on the mixed joint
posterior p(z, q|L, 0). Let us approximate p(z, q| L, §) with a fully factorized distribution b(z, q) =
[Tievy #i(2i) ITje(ar vi(4;)- The best b(z, g) should minimize the KL divergence,

KL[b(z,q) || p(,4|L,0)] = —Ep[logp(z,q|L,0)] — Y H(u)— > H(v)).
i€[N] jelM]
where E;[-] denotes the expectation w.r.t. b(z,q), and H(-) the entropy functional. Assuming the
algorithmic prior of Beta(c, 3), one crucial property of the KL objective in this case is that the
optimal {r}(g;)} is guaranteed to be a Beta distribution as well. Using a block coordinate descent
method that alternatively optimizes {;(z;)} and {v;(g;)}, the mean field (MF) update is

Updating ;i (z;) o H aj_ij b;_5i'77 )
JEM,;
Updating v;: v;(q;) ~ Beta( Z pi(Lij) + v, Z pi(=Lij) + B), (10)
iENj iE/\/’j

where a; = exp(E,, [In ¢;]) and b; = exp(E,, [In(1—g;)]). The a; and b; can be exactly calculated
by noting that E[In 2] = Digamma(a) — Digamma(a+ ) if z ~ Beta(a, £). One can also instead
calculate the first-order approximation of a; and b;: by Taylor expansion, one have In(1 + z) ~ x;
taking © = (q; — q;)/q;, where ¢; = E,,[q;], and substituting it into the definition of a; and b;,
one get a; ~ @; and b; ~ 1 — §j; it gives an approximate MF (AMF) update,

. 16, . o iew Hi(Lig) +
Updating p1;: pi(zi) o jelj\[/l‘ ;" (1—g;)' "%, Updating v;: q; = \EJ\/';\ —
The update (11) differs from EM (1) only in replacing &« —1 and S —1 with « and 3, corresponding to
replacing the posterior mode of the Beta distribution with its posterior mean. This simple (perhaps
trivial) difference plays a role of Laplacian smoothing, and provides insights for improving the
performance of EM. For example, note that the ¢; in the M-step of EM could be updated to O or 1 if
a = 1or B =1, and once this happens, the g; is locked at its current value, causing EM to trapped
at a local maximum. Update (11) can prevent g; from becoming 0 or 1, avoiding the degenerate
case. One can of course interpret (11) as EM with prior parameters o' = o+ 1, and 8’ = 8 + 1;
under this interpretation, it is advisable to choose priors o’ > 1 and 8’ > 1 (corresponding to a less

common or intuitive “informative” prior).

«
e .1

We should point out that it is widely known that EM can be interpreted as a coordinate descent on
variational objectives [18, 11]; our derivation differs in that we marginalize, instead of maximize,
over g;. Our first-order approximation scheme is also similar to the method by Asuncion [19]. One
can also extend this derivation to two-coin models with independent Beta priors, yielding the EM
update in Dawid and Skene [2]. On the other hand, discrete priors do not seem to lead to interesting
algorithms in this case.

4 Experiments

In this section, we present numerical experiments on both simulated and real-world Amazon Me-
chanical Turk datasets. We implement majority voting (MV), KOS in (2), BP in (8), EM in (1) and
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Figure 1: The performance of the algorithms as the degrees of the assignment graph vary; the left
degree ¢ denotes the number of workers per task, and the right degree -y denotes the number of tasks
per worker. The true data prior is prob[g; = 0.5] = prob[g; = 0.9] = 1/2.
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Figure 2: The performance on data generated with different g; priors on (9,9)-regular random graphs.
(a) Beta prior with fixed o%ﬁ = 0.6. (b) Beta prior with fixed « + 8 = 1. (¢) Spammer-hammer
prior, prob[g; = 0.5] = 1—prob[g; = 0.9] = po, with varying py. (d) Adversary-spammer-hammer
prior, problg; = 0.1] = po, prob[g; = 0.5] = prob[g; = 0.9] = (1 — py)/2 with varying po.

its variant AMF in (11). The exact MF (9)-(10) was implemented, but is not reported because its
performance is mostly similar to AMF (11) in terms of error rates. We initialize BP (including KOS)
with y;_,; = 1 and EM with y;(2;) = >, 0y, I[Lij = 2i]/|M], both of which reduce to major-
ity voting at the O-th iteration; for KOS, we also implemented another version that exactly follows
the setting of Karger et al. [1], which initializes y;_,; by Normal(1,1) and terminates at the 10-th
iteration; the best performance of the two versions was reported. For EM with algorithmic prior
Beta(a, 8), we add a small constant (0.001) on « and 3 to avoid possible numerical NaN values.
We also implemented a max-product version of BP, but found it performed similarly to sum-product
BP in terms of error rates. We terminate all the iterative algorithms at a maximum of 100 iterations
or with 10~ message convergence tolerance. All results are averaged on 100 random trials.

Simulated Data. We generate simulated data by drawing the abilities ¢; from Beta priors or the
adversary-spammer-hammer priors, that equals 0.1, 0.5, or 0.9 with certain probabilities; the as-
signment graphs are randomly drawn from the set of (¢,~y)-regular bipartite graphs with 1000 task
nodes using the configuration method [20]. For the simulated datasets, we also calculated the oracle
lower bound in Karger et al. [1] that assumes the true g; are known, as well as a BP equipped with
an algorithmic prior equal to the true prior used to generate the data, which sets a tighter (perhaps
approximate) “Bayesian oracle” lower bound for all the algorithms that do not know q;. We find that
BP and AMF with a typical asymmetric prior Beta(2, 1) perform mostly as well as the “Bayesian
oracle” bound, eliminating the necessity to search for more accurate algorithmic priors.

In Fig. 1, we show that the error rates of the algorithms generally decay exponentially w.r.t. the
degree ¢ and log(7) of the assignment graph on a spammer-hammer model. Perhaps surprisingly,
we find that the BP, EM and AMF with the asymmetric algorithmic prior beta(2, 1) scale similarly to
KOS, which has been theoretically shown to be order-optimal compared to the oracle lower bound.
On the other hand, BP with symmetric algorithmic priors, such as the Haldane prior Beta(0*,07) of
KOS and the uniform prior Beta(1, 1), often result in degraded performance when the degrees of the
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Figure 3: The results on Amazon Mechanical Turk datasets. Averaged on 100 random subsamples.

assignment graphs are low, supporting our discussion in Section 3.1.1. Indeed, BP with symmetric
algorithmic priors often fails to converge in the low-degree setting.

Fig. 2 shows the performance of the algorithms when varying the true priors of the data. We find in
Fig. 2(b) and (d) that the performance of EM with Beta(2, 1) tends to degrade when the fraction of
adversaries increases, probably because the §; is more likely to be incorrectly updated to and stuck
on 0 or 1 in these cases; see the discussion in Section 3.2. In all cases, we find that BP and AMF (and
MF) perform mostly equally well, perhaps indicating both Bethe and mean-field approximations are
reasonably good on the joint distribution p(z, ¢|L, #) in terms of error rates. Our implementation
of EM (on both simulated data and the real data below) seems to perform better than previously
reported results, probably due to our careful choice on the prior and initialization.

Real Data. We tested our methods on three publicly available Amazon Mechanical Turk datasets.
The symmetric assumption of q; = s; = ¢; is likely to be violated in practice, especially on vision
datasets where a human’s perception decides on whether some object is present. Therefore we also
implemented the two-coin version of BP and AMF(EM) with the algorithmic priors of s; and ¢
taken as two independent Beta(2, 1) (referred to as BP—Beta? (2, 1) and similar).

We first tested on the bluebird dataset of Welinder et al. [6], including 108 tasks and 39 workers
on a fully connected bipartite assignment graph, where the workers are asked whether the presented
images contain Indigo Bunting or Blue GrosBeak. Fig. 3(a) shows the performance when fixed
numbers of annotators are subsampled for each task. On this dataset, all methods, including KOS,
BP and AMF(EM), work poorly under the symmetric assumption, while the two-coin versions of
BP and AMF(EM) are significantly better, achieving equivalent performance to the algorithm by
Welinder et al. [6] based on an advanced high dimensional model. This suggests that the symmetric
assumption is badly violated on this dataset, probably caused by the non-expert workers with high
sensitivities but low specificities, having trouble identifying Indigo Bunting from Blue GrosBeak.

We then tested on two natural language processing datasets in [21], the rte dataset with 800 tasks and
164 workers, and the temp dataset with 462 tasks and 76 workers. As seen in Fig. 3(b)-(c), both the
symmetric and the two-coin versions of BP and AMF(EM) performed equally well, all achieving
almost the same performance as the SpEM algorithm reported in [4]. The KOS algorithm does
surprisingly poorly, probably due to the assignment graphs not having locally tree-like structures.

5 Conclusion

We have presented a spectrum of inference algorithms, in particular a novel and efficient BP algo-
rithm, for crowdsourcing problems and clarified their connections to existing methods. Our explo-
ration provides new insights into the existing KOS, MV and EM algorithms, and more importantly,
for separating the modeling factors and algorithmic factors in crowdsourcing problems, which pro-
vides guidance for both implementations of the current algorithms, and for designing even more
efficient algorithms in the future. Numerical experiments show that BP, EM and AMF, and exact
MF, when implemented carefully, all perform impressively in term of their error rate scaling. Further
directions include applying our methodology to more advanced models, e.g., incorporating variation
in task difficulties, and theoretical analysis of the error rates of BP, EM and MF that matches the
empirical behavior in Fig. 1.
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This document contains derivations and other supplemental information for the NIPS 2012 submis-
sion, “Variational Inference for Crowdsourcing”.

A Derivation of the Belief Propagation Algorithm

A.1 Sum-product Belief Propagation

We derive the belief propagation algorithm (15) in Theorem 3.1.
Theorem 3.1.

bi(+1) m;;(+1) m;—i(+1)
Let &; =log — . X =log /12 and ;= L;:log —=——2
Sh-n T, () AR THNESY
Then, sum-product BP (5)-(7) can be expressed as
w(k +1,75)e
el = " Ly, yity =log 0 ]m : (1)
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and &7 = Y. 0, Liyity, where the terms ey, for k= 0,...,N; — 1, are the

elementary symmetric polynomials in variables {exp(Li/jxi/_)j)}i/eNj\i, that is, e =
s 1sl=k LLvcs exP(Lirjxir—sj). In the end, the true labels are decoded as 2} = signl[z;].

Proof. First, by update (5), we have
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Similar derivation applies to update (7). We just need to consider the update (6) in the following.

For a given z, Wedeﬁne./\/;{i[ 2] ={i' € Nj\i: 2o = Lirj}. Let Ay, := {2, ¢ | J\l[ z]| = k}. By
update (6) we have,
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where C'is a constant, C = (Hz‘/eN-\. mfﬂj (—Ly;)). Similarily, one can show that
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Therefore, we have
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The proof is completed. O

It remains a problem to calculate the elementary symmetric polynomials e;. Here we present a
divide and conquer algorithm with a running time of O(; (log;)?). Note that e, is the k-th coef-
ficient of polynomial H;’;al(z + %), where e” = exp(z;—;). We divide the polynomial into a
product of two polynomials,
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Since the merging step requires a polynomial multiplication, which is solved by fast Fourier trans-
formation with O(v; log 7;), by the master theorem, we get a total cost of O(v;(logy;)?).

A more straightforward algorithm can be derived via dynamic programming, but with a higher cost
of O(73). Let e(k, n) be the k-th symmetric polynomial of the first n numbers of {z }i7c ;. ,; one
can calculate e, through the recursive formula e(k,n) = e(k,n — 1)e® + e(k,n).

A.2 Max-product Belief Propagation

Similarly to the sum-product BP that we focus on in the main text, one can derive an effi-
cient max-product belief propagation to find the joint maximum a posterior configuration, z =
arg max, p(z|L, 8), which minimizes the block-wise error rate prob[3i : z; # 2;] instead of the bit-
wise error rate % > €[] prob[z; # Z;]. The max-product belief propagation update, in its general
form, is

From tasks to workers: filj H m], i(z0), ©)]
7 GM,L/]
From workers to taskers: 771;";)11(2Z o max {1/1] ZN;) H mv,_m )}, (10)
Nisi i EN;
Calculating the beliefs: bt‘H ) H mzill (11)
JEM;

Similarly to Theorem 3.1, max-product BP can be performed efficiently by exploiting the special
structure of the high order potential 1 (zx, ).

Theorem A.1.
N bi(+1) mi%'(‘i‘l) m‘ai(‘i‘l)
Let %; =log . T =log—2——2 and y;_; = L;;log —2———2,
67(71) e mi_m‘(*l) = J mi_m' 71)
Then max-product BP (9)-(11) can be rewritten as
ma; _ k+1, th
et =Y Lyl Yt = log T0=kS 1193 %zﬂ : (12)
j EML\] max0<k<73_1{w] (k ’YJ) }

and 31T = diemM, L”yfilj where vy, = eXp(Zf;:O T[n)) and xpy) is the n-th largest number in
{Litjxisj}Yiren, - In the end, the true labels are decoded as 2] = sign[#}].

The main cost of (12) is for sorting {Li/jxiqj}irej\/j\i, requiring a running time of O(~; log~;);
this is slightly faster than sum-product BP, which requires O(v;(log v;)?). See Tarlow et al. [2010]
for a similar derivation and more general treatment of structured high-order potentials.



B Extensions of Belief Propagation

Compared to KOS, our BP algorithm is derived using a principled Bayesian paradigm, and hence
can be easily extended to more general models and cases beyond the assumptions made in the paper.
In this section, we show in detail how to extend the BP algorithm to work on the two-coin worker-
error model, to estimate the hyperparameters of the algorithmic priors, and to incorporate additional
task features and other side information.

B.1 Extending to the Two-Coin Model

In the paper, we initially assumed that the sensitivities equals the specificities, i.e., ¢; = s; = ;.
Here we extend the BP algorithm to the more general case when s; and ¢; are defined separately.

Assume s; and t; independently follow two beta priors, i.e., p(s;|0) s;?‘s_l(l — s;)%~1 and
p(t;6) t?”l(l — t;)P*~1. The 1;(2x;,) defined in (4) becomes

Vj(an;) = /p(sj‘e)P(th) H p(Lijlsj,tj)ds;jdt; = B(cii+as, ca14+8s) B(caatau, cra+Bt),
iEN;

where C11 = Zie]\fj H[L” = 1,2,’,‘ = 1}, Co1 = Zie]\/j H[Lij = _in = 1], Coo = Zie./\fj H[LU =

—1,z; = =1}, c12 = Zie/\f,- I[L;; = 1,2 = —1]. In addition, let 'y;f = ZyeN] I[L;; = 1] and

’)/j_ = Zie./\fj H[Lij = —1]. Note that co1 = ’}/j_ —C11, C12 = ’yj—-i_ — 99, We have

_ de
Vj(zn;) = Blen + as,v; — caa + Bs) Blcaz + atﬂ’;r —c1 + Bt) =/ Yj(cr, ca2),

where we rewrite 1 (z;) as 1(c11, c22) (with a slight abuse of notation), because ¢;(zx, ) depends
on zy; only through c11 and ca2, the true positive and true negative counts. Similar to Theorem 3.1,
one can show that belief propagation (6) can be reduced to

+ - + -
i Vi Tiri Vi
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where 77, = Sy cne MLy = 1 and 57, = Yy Ty = ~1J; and {¢; ) and {e; } are the
symmetric polynomials of the {exp (L ;xi_;): i € Nj;, Lirj = 1} and {exp(Lirjzij): i €
J\/'j\i, L;; = —1}, respectively. Each step of the above update requires a running time of O(Vj_ ’y;' +

v (logyt)? + 7; (log 77)?). The update for z;_,; and the decoding step remain the same as in
Theroem 3.1.

B.2 Learning the hyper-parameters via EM

The optimal choice of the algorithmic prior p(g;|¢) in BP (15) should match the true data prior.
One can adopt an empirical Bayesian approach to estimate the hyper-parameters 6 from the data.
Here we present an EM algorithm for estimating the hyper-parameters 6, that alternates between
performing the belief propagation (15) (E-step) and adjusting the parameters via maximizing the
expected marginal likelihood (M-step).

The EM algorithm, in its general form, is
E-step: Q(0]0°'Y) = E.[log p(z|L, 0)|6°'%], M-step: A" = arg max Q(0]0°'%).
0

The E-step in our case is performed by running the belief propagation algorithm. First, we approx-
imate the posterior distribution p(zuy, |L, 0°¢) with belief b5'*(zx;,) on the factor nodes, defined
by
b9 (2ny) o dlang) [T me's (20,
1EN;



where m¢'?; are the messages of belief propagation when 6 = §°/¢. The E-step becomes
Q(016") = E-[log p(=|L, 0)[6°] = > | > 07 (2;,) log 5 (2n | L, 6). (13)
J aN;

Similar to Theorem 3.1, one can calculate (13) in terms of the elementary symmetric polynomials
ey ; one can show that

Q(016") ZZyz“ log v; (k,v;|L, 0), (14)
j k=0
where 2! = ;(k,v;|L,0°¢)ed!?, where e¢!d are the elementary symmetric polynomials of
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The M-step in our case can be efficiently solved using standard numerical methods. For example,
when the algorithmic priors of g; is Beta(a, 3) where § = [a, 8], one can show that Q(6]¢°!9)
equals (up to a constant) the log-likelihood of Beta-binomial distribution, and can be efficiently
maximized using standard numerical methods.

The E-step above takes a soft combination of the posterior evidence. An alternative is to use hard-
EM, which replaces the E-step with

E-step (hard-EM): Q(6]6°'%) = log p(2°'|L, 0),
where 2°!¢ are the estimated labels via belief propagation on § = 0°/Y. The hard-EM form is very

intuitive; it iteratively estimates the labels with belief propagation, and fits the hyper-parameters
imputed with the labels found by the last estimation.

ld

Note that this form of EM (in the outer loop) for estimating the hyper-parameters is different from
EM (in the inner loop) of Dawid and Skene [1979], Smyth et al. [1995], Raykar et al. [2010], which
maximizes g; with fixed hyper-parameter 0; it is closer to the SpEM of Raykar and Yu [2012],
which also estimates a hyper-parameter with ¢; marginalized, but uses a different EM and Laplacian
approximation in the inner loop.

B.3 Incorporating Task Features

In some cases the tasks are associated with known features that provide additional information about
the true labels, and the problem is formulated as a supervised learning task with crowdsourced
(redundant but noisy) labels [Raykar et al., 2010]. Our method can be easily extended to these cases
by representing the task features as singleton potentials on the variables nodes in the factor graph,
that is, the posterior distribution (4) is modified to

p(z|F,L79,w) = Hp(zllflvw) H'I/J(Z_/\/J),

where F' = {f;: j € [N]} are the features of the tasks, and w are the regression coefficients. Our
belief propagation works here with only minor modification. The regression coefficient w, together
with the hyper-parameter 6, can be estimated using the EM algorithm we discussed above.

B.4 Incorporating Partially Known Ground Truth

In case the ground truth labels of some tasks are known, these labels can help the prediction of the
other tasks via a “wave effect”, propagating information about the reliabilities of their associated
workers. Our algorithm can also be easily extended to this case.

Specifically, assume the ground truth labels of a subset of tasks G € [N] are known, e.g., zg = 2.
Let &; be the number of tasks in G' that worker j labels correctly. To predict the remaining labels,
one can simply modify the BP algorithm (15) into

2ok + Gy + 1,

= Vi )€k

‘Z”_f}]: E Lijyij, Yyj i = log kwojﬂj( T i) 7 (15)
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where the messages are passed only between the workers and the tasks with unknown labels. In-
tuitively, the known ground truth provides scores (in term of ¢&;) of the workers who have labeled
them, which are used as “prior” information for predicting the remaining labels.
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