
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

A. Proofs of the Theorems

Asymptotic Consistency of ADMM

Theorem 3.1.If we set θ̄ to be asymptotically consis-
tent and λiβi = 0 for all i in the initial step of ADMM,

then θ̄ remains asymptotically consistent at every iter-
ation.

Proof. To avoid overloading the notation, we consider
the following consensus problem with dropped index
βi,

min
θi,θ̄

f i(θi) s.t. θi = θ̄, (1)

where each f it (θ)
def
= −Pn`i(θ) defines an asymptot-

ically consistent M-estimator of parameter θ, whose
true value is θ∗; Pn denotes the empirical average on
n samples. The corresponding ADMM algorithm is

θit+1 = arg min
θi
{f i(θi) + λit

T
(θi − θ̄t) +

1

2
ρi||θi − θ̄t||2},

θ̄t+1 =
∑
i

ρiθit/
∑
i

ρi,

λit+1 = λit + ρi(θit − θ̄t),

where t represents the iteration. We prove the result

by induction on iteration t. Assume that λit
p→ 0 and

θit
p→ θ∗ at the t-th iteration; we want to prove λit+1

p→
0 and θit+1

p→ θ∗ at the (t+ 1)-th iteration.

First, note that λit+1 = λit + ρi(θit − θ̄t), and by the

induction assumption, λit
p→ 0, θit − θ̄t

p→ 0. There-

fore λit+1
p→ 0 follows immediately by the continuous

mapping theorem.

To show θit+1
p→ θ∗, note that θit+1 minimizes

f it (θ
i) = f i(θi) + λit

T
(θi − θ̄t) +

1

2
ρi||θi − θ̄t||2.

Treating f it (·) as an M-estimator, we have (van der
Vaart, 1998)

(θiβi − θ
∗
βi) = −(Hi + ρi1)−1(∇f it (θ∗)) + op(

1√
n

),

where Hi = E(∇2f it (θ
∗)) and ∇f it (θ∗) = ∇f i(θi) +

λit + ρi(θ∗ − θ̄it); 1 denotes the identity matrix.

Note that ∇f i(θ∗) = −Pn∇`i(θ∗)
p→ −E∇`i(θ∗) = 0,

and λit
p→ 0, θ∗ − θ̄it

p→ 0 (by the induction assump-

tion), we have ∇f it (θ∗)
p→ 0. By Slutsky’s theorem,

we establish that θiβi
p→ θ∗βi .

The proof is completed by induction.

Asymptotic Results of Linear Consensus

Theorem 4.1. Assume Ŵ i p→ W i and
∑
iW

i is an

invertible matrix. Let θ̂linear = (
∑
i Ŵ

i)−1
∑
i Ŵ

iθ̂i,

then θ̂linear is asymptotically consistent and asymp-
totically normal, with an asymptotic variance of
var
[
(
∑
iW

i)−1
∑
iW

isi
]
.

Proof. For notation, letW =
∑
iW

i and Ŵ =
∑
i Ŵ

i,

hence Ŵ
p→W . Since W is invertible, we have Ŵ−1 p→

W−1 and Ŵ−1 is invertible as n→ +∞.

First, recall that we require that the weights Ŵ i has
non-zero elements only on its βi × βi sub-matrix; one
can show that this implies θ∗ = (Ŵ )−1

∑
i Ŵ

iθ∗.

Since θ̂i
p→ θ∗, by the continuous mapping theorem,

we have θ̂linear p→ θ∗.

To establish the asymptotic normality, note that by
standard asymptotic results, we have

√
n(θ̂i − θ∗) = Ŝi + op(1). (2)

where Ŝi =
√
nPnsi, and Pn denotes the empirical

average on n samples. Since θ̂linear = W−1
∑
i Ŵ

iθ̂i

and θ∗ = (Ŵ )−1
∑
i Ŵ

iθ∗, taking a linear combination
of estimators in (2) yields

√
n(θ̂linear − θ∗) = Ŝ0 + op(1), (3)

where Ŝ0 = Ŵ−1
∑
i Ŵ

iŜi. Since Ŵ i p→ W i and∑
iW

i is invertible, by Slutsky’s theorem, we have

Ŝ0  W−1
∑
iW

iŜi =
√
nPn(W−1

∑
iW

isi). De-
note s0 = W−1

∑
iW

isi; then we have E(s0) = 0 and

var(s0) = var[W−1
∑
iW

isi]
def
= V . Therefore, by the

central limit theorem, we have Ŝ0  N (0, V ). Finally,

we have
√
n(θ̂linear − θ∗)  N (0, V ) by applying the

Slutsky’s theorem on (3).

Asymptotic Results of Max Consensus

Theorem 4.3. The max consensus estimator θ̂max as
defined in (5) is asymptotically consistent. Further,

for any α ∈ I, if ŵiα
p→ wiα and wi0α > maxi∈α,i6=i0 w

i
α,

then the α-th element of θ̂max is asymptotically nor-
mal, with the asymptotic variance equal to the α-th
diagonal element of V i0 .

Proof. We start by proving asymptotic consistency.
Note that for any α ∈ I and any ε > 0,

Pr(||θ̂max
α − θ∗α|| > ε)

≤ Pr(∪i|θ̂iα − θ∗α| > ε)

≤
∑
i

Pr(|θ̂iα − θ∗α| > ε)→ 0,
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where the last step follows by the asymptotic consis-

tency of θ̂i. Therefore, we have θ̂max
α

p→ θ∗α.

To establish the asymptotic normality of θ̂max
α , we just

need to prove that θ̂max
α

p→ θ̂iα. To see this, note that
for any ε > 0

Pr(|θ̂max
α − θi0α | > ε)

≤ Pr(∪j 6=i0{ŵi0α ≤ ŵjα})

≤
∑
j 6=i0

Pr(ŵi0α ≤ ŵjα).

Recall that ŵiα
p→ wiα and that wi0α is strictly larger

than the others. We have (ŵi0α −ŵjα)
p→ (wi0α−wjα) >

0, and hence Pr(ŵi0α ≤ ŵjα)→ 0. This implies

Pr(|θ̂max
α − θi0α | > ε)→ 0,

that is, θ̂max
α

p→ θi0α . Since θi0α  N (0, V iα,α), we estab-

lish that θ̂max
α  N (0, V iα,α) by the chain rule (van der

Vaart, 1998, Theorem 2.7 in page 10).

Weights for Max Consensus

Proposition 4.4. For the max consensus estima-
tor θ̂max as defined in (5), the weight wiα = 1/V iα,α
achieves minimum least square error asymptotically.

Proof. The result is straightforward, by noting that
the optimization is de-coupled in terms of the param-
eter components. For each parameter component θα,
the smallest possible asymptotic variance of θ̂max

α is
mini∈α{V iα,α}, which is achieved by max consensus if

the weights are set to be wiα = 1/V iα,α.

Interestingly, if the weights are constrained to be a
single scalar for each local estimator, i.e., wi = wiα
for all α ∈ βi, finding optimal weights becomes signifi-
cantly more difficult, and can be framed as a quadratic
assignment problem.

Matrix Weights for Linear Consensus

By Theorem 4.1, the optimal weight problem for ma-
trix linear consensus is formulated as

min
W i

tr[var(
∑
i

W isi
)
] s.t.

∑
i

W i = 1, (4)

where 1 denotes the identity matrix of the same size as
W i. If each local estimator θ̂i is only non-degenerate
on θβi (as is the case in our paper), the optimization
should be subject to the additional constraint that W i

has non-zero elements only on βi × βi sub-matrix.

Proposition 4.5. Suppose θ̂i are information unbi-
ased. If cov(si, sj) = 0 for all i 6= j, then W i =
(
∑
iH

i)−1Hi is the solution of (4).

Proof. When the cov(si, sj) = 0, (4) reduces to

min
W i

∑
i

tr(W iV iW iT ) s.t.
∑
i

W i = 1, (5)

where V i = var(si). Solving this quadratic program
(with the additional constraint that W i is non-zero
only on the βi × βi sub-matrix), we get a closed form
solution, W i = (

∑
i Λi)−1Λi, where Λi is defined by

Λiβi,βi = (V iβi,βi)
−1 and zero on the other elements.

Since for information unbiased estimators, we have
Hi = Λi, the result follows.

Vector Weights for Linear Consensus

Proposition 4.6. For the linear consensus estimator
θ̂linear as defined in (4), the weights wα = V −1

α e, where
e is a column vector of all ones, achieves the minimum
asymptotic least square error.

Proof. First, note that the optimization is decoupled
w.r.t. to the parameter components. Consider the
component θα; the relevant optimization problem is

min
wα
{var(

∑
i∈α

wiαs
i
α)} s.t.

∑
i∈α

wiα = 1.

which is equivalent to

min
wα

wTαVαwα s.t.
∑
i∈α

wiα = 1. (6)

The conclusion follows by solving this simple quadratic
optimization.

Proposition 4.7. If cov(si, sj) = 0, ∀i 6= j, then

the linear consensus estimator θ̂linear as defined in
(4), achieves the lowest asymptotic MSE when taking
weights wiα = 1/V iα,α .

Proof. When cov(si, sj) = 0, Vα is a diagonal matrix.
The optimization in (6) reduces to

min
∑
i∈α

V iα,α(wiα)2 s.t.
∑
i∈α

wiα = 1.

Solving this quadratic yields the conclusion.

Proposition 4.8. If si (i = 1, . . . , p) are determinis-
tically positively correlated, i.e., there exists a random
vector s0, and constants viα ≥ 0, such that siα = viαs

0
α,

then the optimal vector weights {wiα} for linear con-
sensus, under the constraint wiα ≥ 0, are wiα = 1 if
viα ≤ vjα for any j ∈ α and wiα = 0 if otherwise.
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Proof. By the assumption of deterministic correlation,
we have V ijα = viαv

j
αvar(s0

α). The optimization in (6)
reduces to

min(
∑
i∈α

wiαv
i
α)2, s.t.

∑
i∈α

wiα = 1, wiα ≥ 0.

The conclusion follows by solving the quadratic form.

Scalar Weights for Linear Consensus

Here, we consider a more restricted choice of weights,
in which the performance of the i-th sensor for esti-
mating all its related parameters θβi is quantified by
a single scalar wi, that is, wi = wiα for all α ∈ βi. It
turns out that it is more difficult to find the optimal
weights in this case, because the equality constraints
induce global constraints on the overall problem.

In the case of linear consensus, we show in the follow-
ing that the optimum scalar weights have a closed form
solution, which involves a global matrix inversion. Let
VI be a p × p matrix with V ijI =

∑
α∈βi cov(siα, s

j
α),

that is, VI is the sum of covariance between estimator
i and j over all the parameters that they share. We
have

Proposition A.1. Among the scalar weights wi for
linear consensus estimators θ̂linear, the weight setting
wi = (VI)−1e, where e is a column vector of all ones,
achieves the lowest asymptotic mean square error.

Proof. With the set of scalar weights wi, the problem
of minimizing the trace of the asymptotic variance re-
duces to

min
w
wTVIw s.t.

p∑
i=1

wi = 1.

Solving it leads to w = V −1
I e (up to a constant). Note

that w is the sum of columns of V −1
I .

Analogous to Proposition 4.7, we have

Proposition A.2. If cov(si, sj) = 0, ∀i 6= j, then
among the scalar weights wi for linear consensus es-
timators θ̂linear, the weight setting wi = 1/tr(V i)
achieves the lowest asymptotic mean square error.

Proof. Similar to the proof of Proposition 4.7.


