A. Proofs of the Theorems
Asymptotic Consistency of ADMM

Theorem 3.1.If we set 6 to be asymptotically consis-
tent and /\}j =0 for all i in the initial step of ADMM,
then 0 remains asymptotically consistent at every iter-
ation.

Proof. To avoid overloading the notation, we consider
the following consensus problem with dropped index

Bi,

min f(4%)  s.t.

0° =0, 1
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where each f£(6) = —P,,0*(0) defines an asymptot-

ically consistent M-estimator of parameter €, whose
true value is 6*; P,, denotes the empirical average on
n samples. The corresponding ADMM algorithm is
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01 = argemln{f (0% + X (0" = 00) + 510" = 0u] 7},
Orir=> 001> 0
Aip1 = Ay + 0 (0, = 0),
where ¢ represents the iteration. We prove the result
by induction on iteration . Assume that A} 2 0 and

0! 2 0* at the ¢-th iteration; we want to prove Ny LS
0 and 6}, 2 9* at the (t + 1)-th iteration.

First, note that A, ,; = X, + p' (6] —?t), and by the
induction assumption, Ai 2 0, 67 — 6, 2 0. There-

fore \i 11 25 0 follows immediately by the continuous
mapping theorem.

To show 6} 4 2 6%, note that 0., minimizes
ipi i(pi iTigi 7o L i 712
Fe(0°) = £100°7) + A (0" = 0e) + 50107 = Od] [

Treating fi(-) as an M-estimator, we have (van der
Vaart, 1998)
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(05, —05,) = —(H"+p'1)"(Vf{(07)) +0p(ﬁ>’

where H' = E(V?f{(6*)) and Vf{(6*) = Vf'(0') +
i+ p'(6* — 67); 1 denotes the identity matrix.
Note that Vf(6*) = —P, V£ (9*) B —EVL(6*) = 0,
and A\l 5 0, 0* — 0 B 0 (by the induction assump-
tion), we have Vfi(6*) % 0. By Slutsky’s theorem,
we establish that 9?87 RiS 05,

The proof is completed by induction. O

Asymptotic Results of Linear Consensus

Theorem 4.1. Assume W' % W' and >, Wiis an
(Wi~ Wi,
then @lnear g asymptotically consistent and asymp-
totically mormal, with an asymptotic wvariance of

var[(30, W71 Y, Wis'].

invertible matriz. Let Wnear =

Proof. For notation, let W =3, Wi and W = 3, W,
hence W % W. Since W is invertible, we have w124
W1 and W1 is invertible as n — +o0.

First, recall that we require that the weights W' has
non-zero elements only on its §; X [; sub-matrix; one
can show that this implies * = (W)~1Y, Wig*.
Since 6° 2 6%, by the continuous mapping theorem,
we have glinear £ g

To establish the asymptotic normality, note that by
standard asymptotic results, we have

Vn(l; — 0°) = 5% + 0,(1). (2)
where §' = /nP,s’, and P,, denotes the empirical
average on n samples. Since 9 = W13 Wil

and 0* = (W)~! Do Wig*, taking a linear combination
of estimators in (2) yields

VA = 0%) = 50+ 0,(1), (3)

where S0 = W13, WiS% Since W & Wi and
>, W' is invertible, by Slutsky’s theorem, we have
S0 e WL, WSE = /P, (W'Y, Wis'). De-
note s = W13, W's; then we have E(s”) = 0 and
var(s) = var[W =1 5. Wisi] “y. Therefore, by the
central limit theorem, we have 59 ~ A/(0, V). Finally,
we have /n(6¢ar — %) ~» A(0,V) by applying the
Slutsky’s theorem on (3). O

Asymptotic Results of Max Consensus

Theorem 4.3. The maz consensus estimator 0™ gs
defined in (5) is asymptotically consistent. Further,
for any a € T, if ', B wi, and wio > MaX;eq,izio W,
then the a-th element of gmax g asymptotically nor-
mal, with the asymptotic variance equal to the a-th
diagonal element of V0.

Proof. We start by proving asymptotic consistency.
Note that for any o € 7 and any € > 0,
Pr(|[05 — 051 > )
< Pr(UJ0, - 0] >
< S Pr(fi, — 65 > &) 0,
i



where the last step follows by the asymptotic consis-
tency of §°. Therefore, we have 92 2 g%

To establish the asymptotic normality of é;“ax7 we just
need to prove that §2* % 9 - To see this, note that
for any € > 0

Pr(|6m2x — 90| > ¢)
< Pr(Ujpi {002 < w),})

<> Pr(dl <)),
J#io0

Recall that !, % w? and that w? is strictly larger
than the others. We have (1w —wJ) 5 (w®,—w’,) >

0, and hence Pr(wf < @J) — 0. This implies
Pr(|02 — 00| > €) = 0,

that is, 902 2 gio. Since 070 ~ N'(0,V/ ), we estab-
lish that 68 ~ A/(0, Vi ) by the chain rule (van der
Vaart, 1998, Theorem 2.7 in page 10). O

Weights for Max Consensus

Proposition 4.4. For the max consensus estima-
tor ™™ as defined in (5), the weight w!, = 1/V] ,
achieves minimum least square error asymptotically.

Proof. The result is straightforward, by noting that
the optimization is de-coupled in terms of the param-
eter components. For each parameter component 0a,
the smallest possible asymptotic variance of 63'** is
min;eo{V, ,}, which is achieved by max consensus if
the weights are set to be w}, = 1/V} . O

Interestingly, if the weights are constrained to be a
single scalar for each local estimator, i.e., w® = w?,
for all a € §;, finding optimal weights becomes signifi-
cantly more difficult, and can be framed as a quadratic

assignment problem.

Matrix Weights for Linear Consensus

By Theorem 4.1, the optimal weight problem for ma-
trix linear consensus is formulated as

min tr[var(Z Wish)] st Z Wi=1, (4)

K2

where 1 denotes the identity matrix of the same size as
Wi, If each local estimator 6% is only non-degenerate
on 6, (as is the case in our paper), the optimization
should be subject to the additional constraint that W?
has non-zero elements only on 3; X 3; sub-matrix.

Proposition 4.5. Suppose ' are information unbi-
ased. If cov(s®,s7) = 0 for all i # j, then Wi =
(>, HY)"YH? is the solution of (4).

Proof. When the cov(s?, s7) = 0, (4) reduces to

min tr(WiViWiT) s.t. Z Wi=1, (5
i
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where Vi = var(s). Solving this quadratic program
(with the additional constraint that W is non-zero
only on the 3; X f3; sub-matrix), we get a closed form
solution, W* = (3, A*)"'A’, where A’ is defined by
Aj, 5 = (V5 )" and zero on the other elements.
Since for information unbiased estimators, we have
H* = A%, the result follows. O

Vector Weights for Linear Consensus

Proposition 4.6. For the linear consensus estimator
f'imear o5 defined in (4), the weights w, = V, ‘e, where
e is a column vector of all ones, achieves the minimum
asymptotic least square error.

Proof. First, note that the optimization is decoupled
w.r.t. to the parameter components. Consider the
component 6,; the relevant optimization problem is

nﬂljian{var(z wisi)} st Z wh = 1.
i€a 1€EQ
which is equivalent to

. T ]
min w, Voawe st Z wy, = 1. (6)
1€
The conclusion follows by solving this simple quadratic
optimization. O

Proposition 4.7. If cov(si,s?) = 0, Vi # j, then
the linear consensus estimator 03T gg defined in
(4), achieves the lowest asymptotic MSE when taking
weights wl, = 1/V} ., .

Proof. When cov(s®,s’) = 0, V,, is a diagonal matrix.
The optimization in (6) reduces to

Ininzvaia(wg)2 s.t. ngzl.

i€EQ i€

Solving this quadratic yields the conclusion. O

Proposition 4.8. If s' (i = 1,...,p) are determinis-
tically positively correlated, i.e., there exists a random
vector s°, and constants vi, > 0, such that s, = v’ sV,
then the optimal vector weights {w’} for linear con-
sensus, under the constraint wi, > 0, are wi = 1 if

v, <l for any j € a and wt, = 0 if otherwise.



Proof. By the assumption of deterministic correlation,
we have V¥ = vfvlvar(s?). The optimization in (6)

reduces to

min(z wivi)?, st ng =1,w!, >0.

1€ 1€

The conclusion follows by solving the quadratic form.
O

Scalar Weights for Linear Consensus

Here, we consider a more restricted choice of weights,
in which the performance of the i-th sensor for esti-
mating all its related parameters 6, is quantified by
a single scalar w?, that is, w® = w, for all a € B;. It
turns out that it is more difficult to find the optimal
weights in this case, because the equality constraints
induce global constraints on the overall problem.

In the case of linear consensus, we show in the follow-
ing that the optimum scalar weights have a closed form
solution, which involves a global matrix inversion. Let
Vz be a p x p matrix with V77 = 37 5 cov(sl,, s4),
that is, V7 is the sum of covariance between estimator
i and j over all the parameters that they share. We

have

Proposition A.1. Among the scalar weights w® for
linear consensus estimators éli“ear, the weight setting
w® = (Vz)~"te, where e is a column vector of all ones,
achieves the lowest asymptotic mean square error.

Proof. With the set of scalar weights w?, the problem
of minimizing the trace of the asymptotic variance re-
duces to

s T i
.t. g =1.
ngnw Viw s ' w

Solving it leads to w = V; e (up to a constant). Note
that w is the sum of columns of VI_l. O

Analogous to Proposition 4.7, we have

Proposition A.2. If cov(s’,s’) = 0, Vi # j, then
among the scalar weights w® for linear consensus es-
timators 6" the weight setting w' = 1/tr(V?)
achieves the lowest asymptotic mean square error.

Proof. Similar to the proof of Proposition 4.7. O



