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Abstract

Estimating statistical models within sensor
networks requires distributed algorithms, in
which both data and computation are dis-
tributed across the nodes of the network. We
propose a general approach for distributed
learning based on combining local estimators
defined by pseudo-likelihood components, en-
compassing a number of combination meth-
ods, and provide both theoretical and ex-
perimental analysis. We show that simple
linear combination or max-voting methods,
when combined with second-order informa-
tion, are statistically competitive with more
advanced and costly joint optimization. Our
algorithms have many attractive properties
including low communication and computa-
tional cost and “any-time” behavior.

1. Introduction

Wireless sensor networks are becoming ubiquitous,
with applications including ecological monitoring,
health care, and smart homes. Traditional centralized
approaches to machine learning are not well-suited
to sensor networks, due to the sensors’ restrictive re-
source constraints. Sensors have limited local com-
puting, memory, and power, and their wireless com-
munication is expensive in terms of power consump-
tion. These constraints make centralized data collec-
tion and processing difficult. Fault-tolerance and ro-
bustness are also critical features.

Graphical models are a natural framework for dis-
tributed inference in sensor networks (e.g., Cetin et al.,
2007). However, most learning algorithms are not
distributed, requiring centralized data processing and
storage. In this work, we provide a general framework
for distributed parameter estimation, based on com-
bining local and inexpensive estimators.
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This paper is organized as follows. Section 2 sets up
background on graphical models for sensor networks
and learning algorithms. In Section 3, we propose
a framework for distributed learning based on intel-
ligently combining results from disjoint local estima-
tors. We give theoretic analysis in Section 4 and ex-
periments in Section 5. We discuss related work in
Section 6 and finally conclude the paper in Section 7.

2. Background

2.1. Graphical models for sensor networks

Consider a graphical model of a random vector x =
[1,...,2p] in exponential family form,

p(]0) = exp(6”u(x) —log Z(9)), (1)

where 0 = {0, }aer and u(z) = {uq(2a)tacz are vec-
tors of the same size, and #7 u(z) is their inner product.
7 is a set of variable indexes and u, () are local suf-
ficient statistics. Z(#) is the partition function, which
normalizes the distribution. The distribution is asso-
ciated with a Markov graph G = (V, E), with node
i € V denoting a variable x; and edge (ij) € E rep-
resenting that x; and z; co-appear in some «, that is,
{i,j} C a. Let B; = {a € Z|i € a} be the set of @ that
includes ¢. In pairwise graphical models, Z = EU V.

To model a sensor network, we represent the i-th sen-
sor’s measurement by x;, and assume that the com-
munication links between sensors are identical to the
Markov graph G, that is, sensor ¢ and j have com-
munication link if and only if (ij) € E. Assume that
n independent samples X = [2!,... 2"] are drawn
from a true distribution p(z|0*). Due to memory and
communication constraints on sensors, the data are
stored locally within the network: each sensor stores
only data measured by itself and its neighbors, that
is, X 40) = [mh(iy @l ), where A(i) = {i} UN (i)
and N (i) is the neighborhood of node i. The goal is to
design a distributed algorithm for estimating the true
0*, with minimum communication and low, balanced
local computational costs at the sensor nodes.

Notation. Unless specified otherwise, we take E(-),
var(-), and cov(-) to mean the expectation, variance,



Distributed Parameter Estimation via Pseudo-likelihood

and covariance matrix under the true distribution
p(z|0*). For a likelihood function £4(0;z), V£(6) and
V24(6) denote the gradient and Hessian matrix w.r.t.
6, where we suppress the dependence of £(0, z) on x for
compactness. We use “hat” accents to denote empiri-
cal average estimates, e.g., /(6, X) = IS (0, 2%).

2.2. M-estimators

M-estimators are a broad class of parameter estima-
tors; an M-estimator with criterion function £(0; ) is

0 = argmax /(6; X).
0

In this paper we assume that £(6,x) is continuous dif-
ferentiable and has a unique maximum. If E[V{(6*)] =
0, then under mild conditions standard asymptotic
statistics (van der Vaart, 1998) show that 6 is asymp-
totically consistent and normal, that is, \/n(0 — 6*) ~
N(0,V), with asymptotic variance (Godambe, 1960)

V=HTJH,

where J = var(V/{(6*)) is the Fisher information ma-
trix and H = —E(V2(0*)) is the expected Hessian
matrix. £ is said to be information-unbiased (Lindsay,
1988) if J = H. In this case, we have V = H~ 1 = J~ 1
i.e., the asymptotic variance equals the inverse Fisher
information matrix or Hessian matrix. Let s be a ran-
dom vector with s = H~1V/{(0*,z). An important
intuition for asymptotic analysis is that 0~ 0% + ﬁs
at the large sample limit, so that the asymptotic vari-
ance can be rewritten as V = var(s).

Empirically, one can assess the quality of an M-
estimator by estimating its asymptotic covariance; this
can be done by approximating the E(-) and var(-) with
their empirical counterparts, and 6* with é, e.g., the
asymptotic variance is estimated by V=H''JH,
where J = 1370 (V(0; 2%))(VE(0;2%))T and H =
LN V20(0;z%). If ¢ is information-unbiased,
only the Fisher information J need be calculated,
avoiding calculating the second derivatives. In prac-
tice, these variance estimators perform well only when
the parameter dimension is much smaller than the
sample size; they are usually not directly applicable to
practically sized problems. In this work, we show that
by splitting the global estimator into low-dimensional
local estimators, we can use covariance estimation on
the local estimators to provide important information
for combining them.

2.3. MLE and MPLE

The maximum likelihood estimator (MLE) is the most
well-known M-estimator; it maximizes the likelihood,

Cmie(0; ) = log p(z]0).

The MLE is asymptotically consistent and normal, and
achieves the Cramér-Rao lower bound (is asymptoti-
cally at least as efficient as any unbiased estimator).
Unfortunately, the MLE is often difficult to compute,
because the likelihood involves the partition function
Z(6), which is hard to evaluate for general graphical
models (Wainwright & Jordan, 2008).

The maximum pseudo-likelihood estimator (MPLE)
(Besag, 1975) provides a computationally efficient al-
ternative to MLE. The pseudo-likelihood is defined as

p
Emplcw;x) = ZIOgP(mi|$N(i)§9ﬁi)a (2)
i=1

where due to the Markov property, each conditional
likelihood component only depends on g, , the param-
eters incident to ¢, and on X 4(;), the data available
to sensor ¢. MPLE remains asymptotically consistent
and normal, but is usually statistically less efficient
than MLE — a sacrifice for computational efficiency.
However, cases exist in which the MPLE is also statis-
tically more favorable than MLE, e.g., when the model
is misspecified (e.g., Liang & Jordan, 2008).

There is a weaker version of MPLE, well known in
sparse learning (e.g., Ravikumar et al., 2010), that
disjointly maximizes the single conditional likelihood
(CL) components in MPLE, and then combines the
overlapping components using some simple method
such as averaging. Very recently, the disjoint MPLE
has started to attract attention in distributed estima-
tion (Wiesel & Hero, 2012), by observing that the con-
ditional likelihoods define local estimators well suited
to distributed computing.

Our work. We address the problem of distributed pa-
rameter learning within a paradigm motived by MPLE
and disjoint MPLE, in which the sensor nodes locally
calculate their own inexpensive local estimators, whose
results are communicated to nearby sensors and com-
bined. We provide a more general framework for com-
bining the local estimators, including weighted lin-
ear combinations, a max-voting method, and more
advanced joint optimization methods. Powered by
asymptotic analysis, we propose efficient methods to
set optimal weights for the linear and max combina-
tion methods, and provide a comprehensive compari-
son of the proposed algorithms. Surprisingly, we show
that the simple linear and max combination meth-
ods, when leveraged by well-chosen weights, are able
to outperform joint optimization in some cases. In
particular, the max-voting method performs well on
“degree-unbounded” graph structures, such as stars
or scale free networks, that are difficult for many ex-
isting methods. In addition, we show that the joint
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MPLE can be recast into a sequence of disjoint MPLE
combinations via the alternating direction method of
multipliers (ADMM), and we show that, once it is ini-
tialized properly, interrupting the iterative algorithm
at any point provides “correct” estimates; this leads to
an any-time algorithm that can flexibly trade off per-
formance and resources, and is robust to interruptions
such as sensor failure. Finally we provide extensive
simulation to illustrate our theoretical results.

3. A Distributed Paradigm

For each sensor i, let £, . (05,;2.4(:)) be a criterion
function that depends only on local data X 4(;) and the
parameter sub-vector 0g,. This defines a M-estimator
that is efficient to compute locally by sensor 1,

é;jl = argemax éfocal(eﬁq‘, 5 XA(’L)) (3)
Bq

We assume that E(V£1oca1(5)) = 0 and that (3) has a

unique maximum, which guarantee that % is asymp-
totically consistent and normal under standard tech-
nical conditions. Further, assume U;3; = Z, so that
each parameter component is covered by at least one
local estimator and a valid global estimator can be
constructed by combining them.

Although our results apply more generally, in this work
we mainly take £} ., (05,:743:)) = log p(zi|Tari); 08,),
which satisfies the conditions listed above. Moreover,
su(;h Efocal(G/gi)l are information unbiased, i.e., V! .=
(JE ea) "t =(H{,.,;)"". One can estimate the asymp-
totic variance by Vi ., = (Ji_.,) "', where Ji ., in-
volves calculating the covariance of the gradient statis-
tics and is efficient once |§;] is relatively small.

If a parameter 6, is shared by multiple sensors, perfor-
mance can be boosted by combining their information.
We propose two types of consensus methods, general-
izing disjoint MPLE and MPLE respectively.

3.1. One-Step Consensus.

For each parameter 0, let 8, = {0i]i € a} be the
collection of estimates given by the sensors incident to
a. The goal is to construct a combined estimator ‘N
as a function of Qa. Probably the simplest method
is averaging, i.e., 0, = ﬁ > ica 0% Unfortunately, as
we show in the sequel, this simple approach usually
performs poorly, in part because it weights all the es-
timators equally and the worst estimator may greatly
degrade the overall performance. Thus, it would be
helpful to weight the estimators by their quality.

Let @, as a function of X 4(;) and éfocal, be an empir-
ical measure of the quality of the i-th local estimator

for estimating parameter 6, — for example, @' could
be a function of V}}_,,.We introduce two methods to
combine the estimators based on weight w":

linear consensus:

D ICYD S
i€EQ 1€EQ
max consensus:
~ ~.0 . .
00 =0.,  where w? >y, forallica, (5)
where the linear consensus takes a soft combination
of the local estimators, while the max consensus votes
on the best one. It should be noted that the max
consensus can be treated as a special linear consensus
whose weights are taken be to be zero, except on one
local estimator. However, as we show later, the max
consensus has some attractive properties making it an
efficient algorithm for many problems.

We prove that linear and max consensus are asymptot-
ically consistent and normal, and provide their asymp-
totic variance. We also discuss the optimal setting of
the weights, in the sense of minimizing the asymptotic
mean square error. Remarkably, we show that the op-
timum weights, particularly for the max consensus, are
surprisingly easy to estimate, making one-step meth-
ods competitive to more advanced consensus methods.

3.2. Joint Optimization via ADMM

A more principled way to ensure consensus is to solve
a joint optimization problem,

fas X A@iy) s-t. 92. = éﬁi for alli (6)
05,0 = i

n
max Z gfocal (ezﬁl
1

where we maximize the sum of ¢ ., under the con-
straint that all the local estimators should be consis-
tent with a global ; this exactly recovers the joint
MPLE method in (2) when ¢ ., are the conditional
likelihoods. In this section, we derive a distributed
algorithm for (6) that can be treated as an iterative

version of the linear consensus introduced above.

Our algorithm is based on the alternating direction
method of multipliers (ADMM), which is well suited
to distributed convex optimization (Boyd et al., 2011),
particularly distributed consensus (Bertsekas & Tsit-
siklis, 1989).

For notation, let f*(6% ) = _éfocal(%JXA(i))- We in-
troduce an augmented Lagrangian function for (6),

p 7 ) B
SO + X5 0, —05) + Y Lelo — a7},

=1 a€EpB;
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where )\ZB are Lagrange multipliers of the same size as
H%i and pzﬁ are positive penalty constants. Performing
an alternating direction procedure on the augmented
Lagrangian yields the ADMM algorithm:

0, < argmin{f'(05,) + Aj, 0, + > 110, — 0all*}
aEpB;

Oo = Y _pulal Y phr Vo €T

i€a 1TeY
AL = AL+ ph (6] — 0,), Ya € B,
This update has an intuitive statistical interpretation.
First, 0, can be treated as a posterior MAP estima-
tion of the parameter subject to a Gaussian prior with
mean (0g, — A, /pp,)s which biases the estimate to-
wards the average value; 0 is then re-evaluated by tak-
ing a linear consensus of the local estimators. Thus,
the joint optimization can be recast into a sequence
of linear consensus steps. Given this connection, it is
reasonable to set p;, to be the weights of linear con-
sensus, that is, p!, = w?, and initialize 6 to be the cor-
responding one-step estimator. Since linear consensus
estimators are asymptotically consistent, we have

Theorem 3.1. If we set  to be asymptotically con-
sistent and )\}3 = 0 in the initial step of ADMM, then

0 remains asymptotically consistent at every iteration.

Therefore, one can interrupt the algorithm and fetch a
“correct” answer at any iteration, giving a flexible any-
time framework that can not only save on computation
and communication, but is also robust to accidental
failures, such as battery depletion.

4. Asymptotic Analysis

In this section, we give an asymptotic analysis of
our methods, by which we provide methods to opti-
mally set the weights of linear and max consensus.
For notational convenience, we embed the local es-
timator é;& = argmaxéfocal(ﬁgﬁX) into a (possibly
degenerate) estimator of the whole parameter vector
oi = argmaxéi(H,X), by setting éla =0 for a ¢ S;.
Denote by V? the asymptotic variance of the extended
estimator, with V{’ ,, on its §; x §; sub-matrix and

' and s

zero otherwise. Similarly, let H* extend H{ .,

extend siy <! Hiper” Ve (8,)- Our results will
reflect the intuition that #% ~ 6* + ﬁsl at the large
sample limit.

For our results, we generalize to a matrix extension of
the linear consensus (4), defined as

ématrix — (Z VAVz)fl Z Wzéz’ (7)

where W are matrix weights that are non-zero only on
the f8; x B; sub-matrices; we require that (3, Wit
is invertible. Note that the matrix extension is not
directly suitable for distributed implementation, since
it involves a global matrix inverse, but it will provide
performance bounds for linear and max consensus and
has close connection to joint optimization estimators.

Theorem 4.1 (Linear Consensus). Assume W' 5
Wt and Y, W' is an invertible matriz. Then gmatrix
in (7) is asymptotically consistent and normal, with
an asymptotic variance of var[(}, W)=t >, Wis'].

Assume H = )", H' is invertible, then the joint op-
timization consensus 99 = arg max Do 0;(0,2) is a
non-degenerate estimator of the full parameter vector
6. It turns out fioint js asymptotically equivalent to a
matrix linear consensus with weights Wi = H':
Corollary 4.2. ™3t jp (7) with Wi = H' has
asymptotic variance of var[(}, H')™' Y, VI{(6*)],
which is the same as that of 63t

For max consensus estimators, we have

Theorem 4.3. The ™ in (5) is asymptotically con-
sistent. Further, for any o € I, if W' LN w!, and
wi > maX;ea,iio w!,, then églax is asymptotically
normal, with asymptotic variance equal to V,°, .

4.1. Optimal Choice of Weights

In this section, we consider the problem of choos-
ing the optimal weights, in the sense of minimizing
the asymptotic mean square error (MSE). Note that
E(||0 — 6%]]?) — LtrV as n — +oo, where tr(V) is
the trace of the asymptotic covariance matrix, and so
the problem can be reformed to minimize tr(V). In
the following, we discuss the optimal weights for the
linear and max consensus separately.

Weights for Max Consensus. The greedy nature of
max consensus makes optimal weights relatively easy:

Proposition 4.4. For the maz consensus estima-
tor 0™ as defined in (5), the weight w, = 1/V, ,
achieves minimum least square error asymptotically.

In practice, we can estimate the optimal weights sim-
ply by w,, = 1/V, ,, which makes max consensus fea-
sible in practice.

Weights for Linear Consensus. By Theorem 4.1,
the optimal weights for matrix linear consensus solve

min tr|var Wis s.t. Wi=1, 8
(3 3 ®)
where W* are non-zero only on the 3; x 8; submatrix
and 1 denotes the identity matrix of the same size
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as W, Solving (8) is difficult in general, but if s* are
pairwise independent and #° are information-unbiased,
the weights W* = H* asymptotically equivalent to
gioint a5 shown in Corollary 4.2, achieves optimality.
Proposition 4.5. Assume 0t are information-
unbiased. If cov(st,s?) = 0 for all i # j, then gioint
achieves the optimum MSE as defined in (8).

This implies that if the estimators are independent
or weakly correlated, the joint optimization estimator
gioint jg guaranteed to perform no worse than the lin-
ear and max consensus methods (both suboptimal to
the best matrix consensus). However, in the case that
the local estimators are strongly correlated (usually
the case in practice), there is the chance that linear
or max consensus, with properly chosen weights, can
outperform the joint optimization method.

On the other hand, when W* in (8) are constrained
to be diagonal matrices, reducing to a set of vector
weights w!,, the optimization becomes easier. Let

we = {w! }ica and V,, be an |a| x || matrix with
Vil = cov(si,sl), i.e., V, is the covariance matrix

between the local estimators on parameter 6,. Then,

Proposition 4.6. For linear consensus estimator
glinear g5 defined in (4), the weights w, = V. ‘e, where
e is a column vector of all ones, achieves the minimum
asymptotic least square error.

In other words, the optimal vector weights for linear
consensus equal the column sums of V1. In prac-
tice, these weights can be estimated by w, = Va’le,
where Vi = L3 si(2%) - 50 (a%), and sk(2F) =
(H)~'V/¢i(0%; 2%). In the sensor network setting, cal-
culating V¥ requires a secondary communication step
in which the sensors pass {s (z*)}?_, to their neigh-
bors. Note that this communication step may be ex-
pensive if the number of data n is large (although one
can pass a subset of samples to get a rougher estimate).

It is interesting to compare to the optimal weights for
max consensus in Proposition 4.4, where no communi-
cation step is required. This is because max consensus
fundamentally ignores the correlation structure, while
linear consensus must account for it. Some further use-
ful insights arise by considering the cases of extremely
weak or strong correlations.

Proposition 4.7. If cov(s’,s?) = 0, Vi # j, then the
glinear g5 defined in (4) achieves the lowest asymptotic
MSE with weights w?, = 1/V .

This suggests that ), = 1/V/ ., which is optimal for
max consensus selection, might also be a reasonable
choice for linear consensus. However, the indepen-
dence assumption is always violated in practice. To

see what happens when the estimators are strongly
correlated, consider the opposite extreme, in which the
local estimators are deterministically correlated:

Proposition 4.8. Ifs' (i =1,...,p) are determinis-
tically positively correlated, i.e., there exists a random
vector s¥, and constants v, > 0, such that si, = v’ s%,
then the optimal vector weights {w’} for linear con-
sensus, under the constraint wi > 0, is wi, = 1 if

v, <l for any j € a and wt, = 0 if otherwise.

Since linear consensus with 0-1 weights reduces to max
consensus, this result suggests that the optimal max
consensus is not much worse than the optimal linear
consensus when the estimators are strongly positively
correlated. In practice, we find that the local estima-
tors defined by conditional likelihoods are always posi-
tively correlated, justifying max consensus in practice.

4.2. Illustration on One Parameter Case

In this section, we illustrate our asymptotic results
in a toy example, providing intuitive comparison of
our algorithms. Assume 6 is a scale parameter, esti-
mated by two information-unbiased estimators g =
argmax ('(0) (i = 1,2). Let h* = —E(V2£¢(6*)) and
st = (h")71V f4(0*); then the asymptotic variance is
vt = (h¥)71 = var(s!). Let v'? = cov(s!,s?) be the
correlation of the two estimators.

Linear consensus with uniform weights: @1Vt —

1(0' + 6?); the asymptotic variance is:

1 2
1
var(s ;S )= 1(111 +v? 4 20'%).
Linear consensus with Hessian weights w* = h':

élinHessian —

(h' + h2)~1(h'0' + h26%). By Corol-
lary 4.2, the asymptotic variance of ﬂli“HeSSian is the
same as that of 6°" = argmaxy >, ¢*(#), which is:
V2 (0! + 02 + 20'2)

(V] + v2)2

var(hls! 4+ h%s?) =

Linear consensus with optimal weights 9"OPt: By

Proposition 4.6, the optimal weights for linear consen-
1% 2 12 ox 2_,,12

sus are W = ;1o and w® = 75, The

asymptotic variance is

vlv? — 2

1* .1 2% 2y
Var(w S +U} S)—m

Maz consensus with optimal weights gmaxOpt By
Proposition 4.4, for max consensus the weights w® = h*
are optimal. The asymptotic variance is min{v!, v?}.

Claim 4.9. In the toy case, we have @linOpt < éj"im(:
élinHessian) j élinUnif and élinOpt < émaxOpt’ where
0% < 6° means MSE(0%) < MSE(0®) asymptotically.
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Figure 1. (a) Illustrating Claim 4.10: 1 (green): 6™ <
élinUnif < émaxOpt; 1I (red): éjoint =< émaxOpt =< élinUnif; III
(white): §maxOPt < gioint < glinUnif (1) Comparing the
algorithms when estimating 6 (true §* = 1) in a binary
two-node model p(z1,z2) x exp(xi1z2 + Y171 + J22) as
Y1 and J2 (both known) are varied.

Proof. §iont < PUnUnif o shown by the arithmetic-
geometric mean inequality, and the rest since §linHessian
and 9™2¥OPt are special forms of linear consensus. [J

However, linUnif o gioint are not necessarily inferior
or superior to GmaxOPt  Their relative performance de-
pends on the correlation and the quality (variance)
of the two local estimators. Let p'? = v!2/vvlo?
be the correlation coefficient of the estimators, and
y=min{v! /v? v?/v'} the ratio of their variances.

Claim 4.10. In the toy case, i0nt(= @linHessian) <
GaxOPt it and only if p'? < %ﬁ(’y +1). Similarly,
élinUnif < émaxOpt if and only if p12 < ﬁ(S’y _ 1)’.

See Fig. 1 for illustration; this highlights the rela-
tive performance of max vs. linear consensus. While
glinHessian g @inUnif tond to work better when the
local estimators perform similarly (v ~ 1) or when the
local estimators have low or even negative correlations,
gmaxOPt tends to work well when one local estimator is
much better than the others (7 < 1) or when the lo-
cal estimators are strongly positively correlated. This
robustness makes max consensus useful for learning in
difficult graphs, such as scale free graphs, for which
standard methods often perform poorly (Ravikumar
et al., 2010; Liu & Thler, 2011). Fig. 1(b) illustrates
how the values of  and p'? are changed by varying the
local potentials in a binary two-node model. Basically,
gmaxOPt tends to work better when the magnitudes of
the local potentials differ greatly, i.e., when the model
is heteroskedastic.

5. Experiments

In this section, we test our algorithms on both
small models (for which the asymptotic variance
can be exactly calculated) and larger models of
more practical size. We use a pairwise Ising model

p(x) o< exp(Xijer ity + Xiev imi), zi €

{—1,1}, with random true parameters generated by
gij ~ N(Oa Upair) and 0; ~ N(Oa O—Singlcton)‘ We
test the Joint-MPLE, and the linear consensus with
uniform weights (Linear-Uniform), with diagonal
weights 0!, = 1/‘701;7(1 (Linear-Diagonal) and with
the optimum vector weights given in Proposition 4.6
(Linear-0Opt). We also test the max consensus with
diagonal weights (Max-Diagonal (Opt) ), which is opti-
mal for max consensus (Proposition 4.4). We quantify
the algorithms either by exactly calculated asymptotic
efficiency, defined as tr(V')/tr(Vine), or empirically by

the MSE |6 — 6*]|? calculated on simulated datasets.

5.1. Small Models

Two small graphs are considered: star graphs and
grids, which have opposite topological properties. For
these small models, we estimate the pairwise parame-
ters 0;; with known singleton parameters 6;.

Star graphs. A star graph has an unbalanced degree
distribution, peaked at the center node. There has
been theoretical and empirical work showing that such
degree-unbounded graphs are harder to learn than
more regular graphs (e.g., Liu & Thler, 2011). From
our perspective, the difficulty arises because the local
estimators of high-degree nodes tend to deteriorate the
overall performance. As we suggest in Section 4, the
max consensus method is suitable for such graphs, as
it can identify and discard the bad estimators.

The simulation supports this expectation. In Fig. 2(a),
as degree increases, the variance of the local esti-
mator of the center node increases quickly compared
to the leaves (averaged). Fig. 2(b) shows the exact
(solid lines) and empirical (dashed) asymptotic effi-
ciencies of the algorithms on star graphs of differ-
ent sizes. Linear-Uniform performs worst, since it
fails to discount the influence of the worst estimator.
Joint-MPLE and Linear-Diagonal perform better but
still deteriorate as degree increases, since they down-
weight the worse estimators, but only to some extent.
In contrast, Max-Diagonal is robust to the increasing
degree, and can identify and discard the worst esti-
mators. As theoretically predicted, Linear-Opt out-
performs Max-Diagonal, but only slightly in this case.
Note Linear-0Opt is more costly than Max-Diagonal
due to the extra communication step. The exact and
empirical values in Fig. 2(b) match closely, showing
the correctness of our theoretical analysis.

In Fig. 2(c) we show the effect of singleton potentials.
The performance of one-step consensus methods gen-
erally decreases with higher magnitude singleton po-
tentials, while the Joint-MPLE stays the same. In-
tuitively, this is because the local estimators are not
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Figure 2. Results on star graphs. (a) Variance is much higher at the hub than at the leaves. (b) Exact (solid lines) and
empirical (dashed lines) asymptotic efficiency of various algorithms vs. the size of the star graph. (c¢) The exact asymptotic
efficiency for a 10-node star with opair = 0.5 and ingleton € [.5,2]. (d). The mean square error vs. the number of data
on a 10-node star graph; All the results are averaged on 50 random models, each with 50 random datasets.

able to jointly infer the local potentials, causing prob-
lems when those local potentials dominate. Since our
analysis is mainly asymptotic, we evaluate how the al-
gorithms perform for small sample sizes in Fig. 2(d).
As can be seen, the finite sample performance is es-
sentially consistent with the asymptotic analysis.

4x4 Grid. The algorithms’ performance on grids
have the opposite trends; see Fig. 3(a). Joint-MPLE
performs best, while max-Diagonal performs rela-
tively poorly. This is because grids have balanced de-
gree, and all the local estimators perform equally well.
We check the finite sample performance of the algo-
rithms in Fig. 3(b), which again shows similar trends
to our asymptotic results. Finally, we show the con-
vergence of ADMM in Fig. 3(c), illustrating that our
initialization increases the convergence speed greatly.

5.2. Larger Models

We also test our algorithms on larger graphs, includ-
ing a 100-node scale free network generated via the
Barabdsi-Albert model (Barabdsi & Albert, 1999) and
a 100-node Euclidean graph generated by connecting
nearby sensors (distance < .15) uniformly placed on
the [0, 1] x [0, 1] plane; see Fig. 4. On these models, we
estimate both the singleton and pairwise parameters.
In Fig. 4(a)-(b) we see trends similar to their smaller
analogues, the star graph and 4 x 4 grid, verifying that
our analysis remains useful on models of larger sizes.

6. Related Work

A very recent, independently developed work (Wiesel
& Hero, 2012) adopts a similar, but less general ap-
proach for Gaussian covariance estimation. They pro-
pose a similar linear consensus approach (using only
uniform weights) and a similar parallel algorithm for

joint MPLE, but do not discuss max consensus or lin-
ear consensus with general weights, and do not pro-
vide a comprehensive theoretical analysis. Another
recent work (Eidsvik et al., 2010) uses composite like-
lihood for parallel computing on spatial data. Bradley
& Guestrin (2011) gave a sample complexity analysis
for MPLE and disjoint MPLE, which may be extensi-
ble to our algorithms.

Another line of work approximates MLE by estimat-
ing the partition function with variational algorithms
(e.g., Wainwright, 2006; Sutton & McCallum, 2009).
These methods can perform well at prediction tasks
even with a “wrong” model, and can take a message-
passing form potentially suitable to distributed set-
tings. However, in terms of parameter estimation,
these methods introduce a bias due to the approxi-
mate inference that is hard to estimate or control.

7. Conclusion

In this work, we present a general framework for dis-
tributed parameter learning. We show that the smart
one-step consensus methods of the local estimators,
especially those that exploit local second-order infor-
mation, are both computationally efficient and statis-
tically competitive with iterative methods using joint
optimization. Particularly, we show that the max com-
bination method is well suited to scale-free networks, a
well-identified problem for existing methods. Our the-
ory of combining estimators is quite general, and can
be applied to other contexts to boost statistical per-
formance. Future directions include considering model
misspecification, finite sample complexity analysis and
extension to high-dimensional structure learning.
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Figure 3. Results on 4 x 4 grid. (a) Exact asymptotic efficiency of the algorithms when ogingieton € [0,1]. (c) Empirical
MSE vs. data size. Solid horizontal lines show the theoretical asymptotic MSEs. (c) Convergence of ADMM, initialized
at zero with p;, = 1 (black), and initialized to linear consensus estimates with uniform (red) or diagonal (green) weights,

with p’, set to the corresponding weights. All results are averaged on 50 random models with 50 datasets each.
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A. Proofs of the Theorems
Asymptotic Consistency of ADMM

Theorem 3.1.If we set 6 to be asymptotically consis-
tent and /\}j =0 for all i in the initial step of ADMM,
then 0 remains asymptotically consistent at every iter-
ation.

Proof. To avoid overloading the notation, we consider
the following consensus problem with dropped index

Bi,

min f(4%)  s.t.

0° =0, 1
0,0 ( )

where each f£(6) = —P,,0*(0) defines an asymptot-

ically consistent M-estimator of parameter €, whose
true value is 6*; P,, denotes the empirical average on
n samples. The corresponding ADMM algorithm is

i [ rigpi iTigi _ g L i _a
01 = argemln{f (0% + X (0" = 00) + 510" = 0u] 7},
Orir=> 001> 0
Aip1 = Ay + 0 (0, = 0),
where ¢ represents the iteration. We prove the result
by induction on iteration . Assume that A} 2 0 and

0! 2 0* at the ¢-th iteration; we want to prove Ny LS
0 and 6}, 2 9* at the (t + 1)-th iteration.

First, note that A, ,; = X, + p' (6] —?t), and by the
induction assumption, Ai 2 0, 67 — 6, 2 0. There-

fore \i 11 25 0 follows immediately by the continuous
mapping theorem.

To show 6} 4 2 6%, note that 0., minimizes
ipi i(pi iTigi 7o L i 712
Fe(0°) = £100°7) + A (0" = 0e) + 50107 = Od] [

Treating fi(-) as an M-estimator, we have (van der
Vaart, 1998)

) . ) . 1
2 * 7 i1\—1 i (%

(05, —05,) = —(H"+p'1)"(Vf{(07)) +0p(ﬁ>’

where H' = E(V?f{(6*)) and Vf{(6*) = Vf'(0') +
i+ p'(6* — 67); 1 denotes the identity matrix.
Note that Vf(6*) = —P, V£ (9*) B —EVL(6*) = 0,
and A\l 5 0, 0* — 0 B 0 (by the induction assump-
tion), we have Vfi(6*) % 0. By Slutsky’s theorem,
we establish that 9?87 RiS 05,

The proof is completed by induction. O

Asymptotic Results of Linear Consensus

Theorem 4.1. Assume W' % W' and >, Wiis an
(Wi~ Wi,
then @lnear g asymptotically consistent and asymp-
totically mormal, with an asymptotic wvariance of

var[(30, W71 Y, Wis'].

invertible matriz. Let Wnear =

Proof. For notation, let W =3, Wi and W = 3, W,
hence W % W. Since W is invertible, we have w124
W1 and W1 is invertible as n — +o0.

First, recall that we require that the weights W' has
non-zero elements only on its §; X [; sub-matrix; one
can show that this implies * = (W)~1Y, Wig*.
Since 6° 2 6%, by the continuous mapping theorem,
we have glinear £ g

To establish the asymptotic normality, note that by
standard asymptotic results, we have

Vn(l; — 0°) = 5% + 0,(1). (2)
where §' = /nP,s’, and P,, denotes the empirical
average on n samples. Since 9 = W13 Wil

and 0* = (W)~! Do Wig*, taking a linear combination
of estimators in (2) yields

VA = 0%) = 50+ 0,(1), (3)

where S0 = W13, WiS% Since W & Wi and
>, W' is invertible, by Slutsky’s theorem, we have
S0 e WL, WSE = /P, (W'Y, Wis'). De-
note s = W13, W's; then we have E(s”) = 0 and
var(s) = var[W =1 5. Wisi] “y. Therefore, by the
central limit theorem, we have 59 ~ A/(0, V). Finally,
we have /n(6¢ar — %) ~» A(0,V) by applying the
Slutsky’s theorem on (3). O

Asymptotic Results of Max Consensus

Theorem 4.3. The maz consensus estimator 0™ gs
defined in (5) is asymptotically consistent. Further,
for any a € T, if ', B wi, and wio > MaX;eq,izio W,
then the a-th element of gmax g asymptotically nor-
mal, with the asymptotic variance equal to the a-th
diagonal element of V0.

Proof. We start by proving asymptotic consistency.
Note that for any o € 7 and any € > 0,
Pr(|[05 — 051 > )
< Pr(UJ0, - 0] >
< S Pr(fi, — 65 > &) 0,
i



where the last step follows by the asymptotic consis-
tency of §°. Therefore, we have 92 2 g%

To establish the asymptotic normality of é;“ax7 we just
need to prove that §2* % 9 - To see this, note that
for any € > 0

Pr(|6m2x — 90| > ¢)
< Pr(Ujpi {002 < w),})

<> Pr(dl <)),
J#io0

Recall that !, % w? and that w? is strictly larger
than the others. We have (1w —wJ) 5 (w®,—w’,) >

0, and hence Pr(wf < @J) — 0. This implies
Pr(|02 — 00| > €) = 0,

that is, 902 2 gio. Since 070 ~ N'(0,V/ ), we estab-
lish that 68 ~ A/(0, Vi ) by the chain rule (van der
Vaart, 1998, Theorem 2.7 in page 10). O

Weights for Max Consensus

Proposition 4.4. For the max consensus estima-
tor ™™ as defined in (5), the weight w!, = 1/V] ,
achieves minimum least square error asymptotically.

Proof. The result is straightforward, by noting that
the optimization is de-coupled in terms of the param-
eter components. For each parameter component 0a,
the smallest possible asymptotic variance of 63'** is
min;eo{V, ,}, which is achieved by max consensus if
the weights are set to be w}, = 1/V} . O

Interestingly, if the weights are constrained to be a
single scalar for each local estimator, i.e., w® = w?,
for all a € §;, finding optimal weights becomes signifi-
cantly more difficult, and can be framed as a quadratic

assignment problem.

Matrix Weights for Linear Consensus

By Theorem 4.1, the optimal weight problem for ma-
trix linear consensus is formulated as

min tr[var(Z Wish)] st Z Wi=1, (4)

K2

where 1 denotes the identity matrix of the same size as
Wi, If each local estimator 6% is only non-degenerate
on 6, (as is the case in our paper), the optimization
should be subject to the additional constraint that W?
has non-zero elements only on 3; X 3; sub-matrix.

Proposition 4.5. Suppose ' are information unbi-
ased. If cov(s®,s7) = 0 for all i # j, then Wi =
(>, HY)"YH? is the solution of (4).

Proof. When the cov(s?, s7) = 0, (4) reduces to

min tr(WiViWiT) s.t. Z Wi=1, (5
i

Wi &

K3

where Vi = var(s). Solving this quadratic program
(with the additional constraint that W is non-zero
only on the 3; X f3; sub-matrix), we get a closed form
solution, W* = (3, A*)"'A’, where A’ is defined by
Aj, 5 = (V5 )" and zero on the other elements.
Since for information unbiased estimators, we have
H* = A%, the result follows. O

Vector Weights for Linear Consensus

Proposition 4.6. For the linear consensus estimator
f'imear o5 defined in (4), the weights w, = V, ‘e, where
e is a column vector of all ones, achieves the minimum
asymptotic least square error.

Proof. First, note that the optimization is decoupled
w.r.t. to the parameter components. Consider the
component 6,; the relevant optimization problem is

nﬂljian{var(z wisi)} st Z wh = 1.
i€a 1€EQ
which is equivalent to

. T ]
min w, Voawe st Z wy, = 1. (6)
1€
The conclusion follows by solving this simple quadratic
optimization. O

Proposition 4.7. If cov(si,s?) = 0, Vi # j, then
the linear consensus estimator 03T gg defined in
(4), achieves the lowest asymptotic MSE when taking
weights wl, = 1/V} ., .

Proof. When cov(s®,s’) = 0, V,, is a diagonal matrix.
The optimization in (6) reduces to

Ininzvaia(wg)2 s.t. ngzl.

i€EQ i€

Solving this quadratic yields the conclusion. O

Proposition 4.8. If s' (i = 1,...,p) are determinis-
tically positively correlated, i.e., there exists a random
vector s°, and constants vi, > 0, such that s, = v’ sV,
then the optimal vector weights {w’} for linear con-
sensus, under the constraint wi, > 0, are wi = 1 if

v, <l for any j € a and wt, = 0 if otherwise.



Proof. By the assumption of deterministic correlation,
we have V¥ = vfvlvar(s?). The optimization in (6)

reduces to

min(z wivi)?, st ng =1,w!, >0.

1€ 1€

The conclusion follows by solving the quadratic form.
O

Scalar Weights for Linear Consensus

Here, we consider a more restricted choice of weights,
in which the performance of the i-th sensor for esti-
mating all its related parameters 6, is quantified by
a single scalar w?, that is, w® = w, for all a € B;. It
turns out that it is more difficult to find the optimal
weights in this case, because the equality constraints
induce global constraints on the overall problem.

In the case of linear consensus, we show in the follow-
ing that the optimum scalar weights have a closed form
solution, which involves a global matrix inversion. Let
Vz be a p x p matrix with V77 = 37 5 cov(sl,, s4),
that is, V7 is the sum of covariance between estimator
i and j over all the parameters that they share. We

have

Proposition A.1. Among the scalar weights w® for
linear consensus estimators éli“ear, the weight setting
w® = (Vz)~"te, where e is a column vector of all ones,
achieves the lowest asymptotic mean square error.

Proof. With the set of scalar weights w?, the problem
of minimizing the trace of the asymptotic variance re-
duces to

s T i
.t. g =1.
ngnw Viw s ' w

Solving it leads to w = V; e (up to a constant). Note
that w is the sum of columns of VI_l. O

Analogous to Proposition 4.7, we have

Proposition A.2. If cov(s’,s’) = 0, Vi # j, then
among the scalar weights w® for linear consensus es-
timators 6" the weight setting w' = 1/tr(V?)
achieves the lowest asymptotic mean square error.

Proof. Similar to the proof of Proposition 4.7. O



