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Approximate Inference (or Sampling)

Problem: Given a distribution p, draw sample {xi}ni=1 ∼ p.

Assumption: p is defined through an un-normalized density function:

p(x) =
p̄(x)

Z
, Z =

∫
p̄(x)dx .

Widely appears in: Bayesian inference, learning latent variable models,
graphical models, etc.
Intractable to draw examples exactly.
Approximation methods: Markov chain Monte Carlo, variational inference,
etc.
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This talk: We need to sample lots of similar distributions.

Applications: Reasoning with lots of datasets, users, objects:
meta-learning, personalized prediction, streaming inference, etc.

Inference as inner loops of learning: variational auto-encoders, learning
un-normalized energy models, graphical models, etc.

Other: reinforcement learning, probabilistic programing, etc.
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Amortized Inference

Replace the expert-designed, hand-crafted inference methods (e.g.,
MCMC), with adaptively trained simulators (e.g., neural networks).
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Problem Definition

Given: A set of distributions P = {p(z)}.
A class of simulators Gη(ξ; p). η: parameter to be decided;

ξ: random seed from a fixed,
but perhaps unknown
distribution.

Goal: Find optimal parameter η, such that the distribution of the output
z = Gη(ξ; p) is close to p(z).

“Neural random number generator”
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but perhaps unknown
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Goal: Find optimal parameter η, such that the distribution of the output
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This talk: matching a distribution GAN: matching an observed dataset
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Variational Autoencoder
Given observed {xobs,i}, learn latent variable
model:

pθ(x) =

∫
pθ(x , z)dz .

x : observed variable;

z : missing variable;

θ: model parameter.

Maximum likelihood estimate of θ by EM.

Difficulty: Need to sample from the posterior distribution pθ(z |xobs,i ) at
each iteration, for each xobs,i .

Amortized inference: Construct an “encoder”: z = Gη(ξ, x), such
that z ∼ pθ(z |x) [Kingma, Welling 13].
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Learning Un-normalized Distributions and GAN

Given observed {xobs,i}ni=1, want to learn energy-based model:

pθ(x) =
1

Z
exp(ψθ(x)),

ψθ(x): a neural net.

Zθ: normalization constant.

Classical method: estimating θ by maximum likelihood.

Difficulty: logZθ is intractable; requires to sample from pθ at every
iteration to approximate the gradient.

Amortized inference: Amortizing the generation of the negative
samples yields GAN-style algorithms [Kim & Bengio16, Liu+ 16, Zhai+ 16].
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Meta-Learning for Speeding up Bayesian Inference

Bayesian inference: given data D, and unknown random parameter z ,
sample posterior p(z |D).

Traditional MCMC: can be viewed as hand-crafted simulators Gη, with
hyper-parameter η.

Amortized inference: can be used to optimize the hyper-parameters of
MCMC, adaptively improving the performance when processing lots of
similar datasets.
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Reinforcement Learning with Deep Energy-base Poli-
cies [Haarnoja+ 17]

Maximum entropy policy: pθ(a|s) ∝ exp( 1
αQ(s, a)).

Implementing the policy requires drawing samples from pθ(a|s)
repeatedly, at each iteration.

SVGD as a Search Heuristic

Particles collaborate to explore large space.

Can be used to solve challenging non-convex optimization problems.

Application: Policy optimization in deep reinforcement learning.
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Amortized Inference: construct generator Gη(ξ) (an implementable
policy) to sample from pθ(a|s).
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The Variational Inference Approach

Let qη be the distribution of the output z = G η(ξ).

min
η

{
KL(qη || p)

}

≡ Ez∼qη [log qη(z)]

entropy, difficult!

− Ez∼qη [log p(z)]

expectation, easy

}
.

Existing approaches:

Design expressive, yet tractable qη: normalizing flow [Rezende, Mohamed 15; Kingma+.

16]; Gaussian process [Tran+ 15], etc.

Use Entropy or Density ratio estimation: [Mescheder+17; Huszar 17; Shakir+ 17; Train+ 17;

Li+ 17 etc].

Use alternative discrepancy objective functions (Stein discrepancy). [Ranganath+

16; Liu+ 16].
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This talk: Lifting the optimization to Infinite Dimensions

min
η

KL(qη || p) min
q

KL(q || p), s.t. q ∈ G.

where G = {qη : ∀η}.

Projected Fixed Point:

qηt+1 = ProjG(Tqηt ),

Amortized MCMC [Li+ 17]:

T : a (nonparametric) update that descends KL:

[use any MCMC transition]

KL(Tq || p) ≤ KL(Tq || p).

ProjG : a projection operator:

[use any GAN approach]

ProjG(q) = arg min
q′

∆(q′ || q).
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Optimal Transform?
Given q: tractable to sample from

p: intractable to sample from.

Apply transform T (x) on x ∼ q.

Find an optimal, yet computationally tractable transform T , such that
the distribution Tq of T (x) is as close to p as possible?
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Stein Variational Gradient [Liu Wang, 2016]

Consider deterministic maps T of form

T (x)← x + εφ(x),

ε: step-size. φ: perturbation direction.
Tq: the distribution of T (x) when x ∼ q.

What is the best φ to make Tq as close to p as possible?

Idea: maximize the decrease of KL divergence:

φ = arg max
φ∈F

{
KL(q || p)−KL(Tq || p)

}
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ε: step-size. φ: perturbation direction.
Tq: the distribution of T (x) when x ∼ q.

What is the best φ to make Tq as close to p as possible?

Idea: maximize the decrease of KL divergence:

φ = arg max
φ∈F

{
KL(q || p)−KL(Tq || p)

}
≈ arg max

φ∈F

{
− ∂

∂ε
KL(Tq || p)

∣∣
ε=0

}
, //when step size ε is small
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Stein Variational Gradient [Liu Wang, 2016]

Key: the objective is a simple, linear functional of φ:

− ∂

∂ε
KL(Tq || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)].

where Tp is a linear operator called Stein operator related to p:

Tpφ(x)
def
= ∇x log p(x)>φ(x) +∇>x φ(x).
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Stein Variational Gradient [Liu Wang, 2016]

Key: the objective is a simple, linear functional of φ:

− ∂

∂ε
KL(Tq || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)].

where Tp is a linear operator called Stein operator related to p:

Tpφ(x)
def
= ∇x log p(x)>

score function

φ(x) +∇>x φ(x).

Score function ∇x log p(x) = ∇xp(x)
p(x) , independent of the normalization

constant Z !
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Stein Variational Gradient [Liu Wang, 2016]

Key: the objective is a simple, linear functional of φ:

− ∂

∂ε
KL(Tq || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)].

where Tp is a linear operator called Stein operator related to p:

Tpφ(x)
def
= ∇x log p(x)>φ(x) +∇>x φ(x).

Stein’s method: theoretical techniques
for proving probabilistic approximation
bounds and limit theorems.

A large body of theoretical work. Known
to be “remarkably powerful”.

Recently extended to practical machine
learning [Liu+; Oates+; Mackey+; Chwialkowski+; Ranganath+].
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Stein Discrepancy

The optimization is equivalent to

D(q || p)
def
= max

φ∈F

{
− ∂

∂ε
KL(q || p)

∣∣
ε=0

}
= max

φ∈F

{
Eq[Tpφ]

}
where D(q || p) is called Stein discrepancy: D(q || p) = 0 iff q = p if F is
“large” enough.
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Geometric Interpretation

Stein gradient can be formally viewed as a functional gradient of KL(q||p)
under a type of “Stein-induced” manifold M of distributions.

T (x) = x + εφ∗(x)
Tq = q − ε ∇qKL(q || p).

D(q || p) =
∣∣∣∣∇qKL(q || p)

∣∣∣∣
M.

The minimum cost of trans-
porting the mass of q to p.

A new geometry structure on
the space of distributions.
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Kernel Stein Discrepancy [Liu et al. 16; Chwialkowski et al. 16]

Take F to be the unit ball of any reproducing kernel Hilbert space
(RKHS) H, with positive kernel k(x , x ′):

D(q || p)
def
= max

φ∈H

{
Eq[Tpφ] s.t. ||φ||H ≤ 1

}

Closed-form solution:

φ∗(·) ∝ Ex∼q[Tpk(x , ·)]

= Ex∼q[∇x log p(x)k(x , ·) +∇k(x , ·)]

Kernel Stein Discrepancy:

D(q, p)2 = Ex ,x ′∼q[T x
p T x ′

p k(x , x ′)]

T x
p , T x′

p : Stein operator w.r.t. variable x , x ′.
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Two Basic Tools Derived From Stein

Both φ∗ and D(q, p)2 can be estimated unbiasedly given {xi} ∼ q:

Stein gradient: Improve the generator q towards p:

φ∗(·) ≈ 1

n

n∑
j=1

[Tpk(xj , ·)]

* Applications: Stein variational gradient descent [Liu+ 16, 17].

Stein discrepancy: Evaluate the generator q w.r.t. p:

D(q, p)2 ≈ 1

n(n − 1)

∑
i 6=j

T x
p T x ′

p k(xi , xj).

* Applications: Goodness of test fit [Liu+ 16, Chwialkowski+ 16].
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Stein Variational Gradient Descent

Given sample {xi} (drawn from unknown q), the optimal variable
transform:

xi ← xi + ε
1

n

n∑
j=1

[∇xj logp(xj)k(xj , xi )︸ ︷︷ ︸
gradient

+ ∇xjk(xj , xi )︸ ︷︷ ︸
repulsive force

], ∀i = 1, . . . , n.

Two terms:

∇x logp(x): moves the particles {xi}
towards high probability regions of
p(x).

∇xk(x , x ′): enforces diversity in {xi}
(otherwise all xi collapse to modes of
p(x)).
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Amortized Stein Variational Gradient Descent

Repeat:

Simulate xi = Gηold (ξi ) from the current generator.

Improve {xi} using Stein gradient: x ′i = xi + εφ̂(xi ).

Projection: update η to chase {x ′i }:

ηnew = arg min
η

n∑
i=1

||x ′i − Gη(ξi )||22
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Similar Ideas Used in Deep Reinforcement Learning

Amortized SVGD:

ηnew = arg min
η

n∑
i=1

||T̂ (xi )

target

− Gη(ξi )

prediction

||22

Deep Q-Learning:

Bellman operator Q∗ = TQ∗.

ηt+1 = arg min
η

E(T̂Qηt (s, a)

target

− Qη(s, a)

prediction

)2.

Convergence can not theoretically guaranteed (except linear cases).

Empirically works well.
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Amortized Stein Variational Gradient Descent

Repeat:

Simulate xi = Gηold (ξi ) from the current generator.

Improve {xi} using Stein gradient: x ′i = xi + εφ̂(xi ).

Projection: update η to chase {x ′i }:

ηnew = arg min
η

n∑
i=1

||x ′i − Gη(ξi )||22

≈ ηt + ε
∑
i

∇ηGηold (ξi ) φ̂(xi )

backpragating Stein gradient to η

//run a single gradient step
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A general back-propagation rule:

ηnew ≈ η + ε
∑
i

∇ηGη(ξi ) φ̂(xi ).

Different methods back-propagate different signals.

Amortized Stein variational gradient descent:

φ(x) = Êy∼q[∇ log p(y)k(y , x) +∇yk(y , x)]

Typical variational inference with re-parameterization trick:

φ(x) = ∇ log p(x)−∇ log qη(x).

Problem: requires to calculate the intractable log density log qη(x).

“Learning to optimize” for making x = Gη(ξ) the maximum of log p
(maxη Eξ[log p(Gη(ξ))])

φ(x) = ∇ log p(x).

Problem: does not take entropy into account.
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Amortized SVGD for Variational Auto-encoder

Typical Gaussian encoder function:

Gη(ξ, x) = µ(x ; η) + σ(x ; η)ξ, ξ: standard Gaussian.

We use a dropout encoder function:

Gη(ξ, x) = NN(x ; ξ � η), ξ: 0/1 Bernoulli.

Negative log-likelihood on MNIST

Model NLL/nats ESS
VAE-f 90.32 84.11
SteinVAE-f 88.85 83.49

VAE-CNN 84.68 85.50
SteinVAE-CNN 84.31 86.57

Dropout Encoder + Amortized SVGD

Gaussian Encoder

See also Pu+ 17 Stein Variational Autoencoder.
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Hyper-parameter Optimization for MCMC

Typical MCMC: can be viewed as simulators Gη:

Architecture hand-crafted by researchers, theoretically motivated.
(Hyper)-parameters (e.g., step sizes) η: often set heuristically, but can be
adaptive trained by amortized inference.

Example: Langevin dynamics:

z`+1 ← z` + η` �∇z log p(z`) +
√

2η` � ξ`.

Can be viewed as a “deep resnet”
Parameter η: the step sizes.
Random inputs ξ: the Gaussian noise + the random initialization.
The architecture of Gη depends on p through ∇z log p(z).

Liu et al. (Dartmouth) August 12, 2017 26 / 30



Optimizing Step Size for Langevin Dynamics

Goal: Use Langevin dynamics for Bayesian neural network. Optimize the
step size using amortized SVGD.

Setting:

Take 9 similar datasets (a1a to a9a) from UCI repository.
Train the step size using amortized SVGD using one of the dataset (a9a).
Test the performance of trained step size on the remaining 8 datasets.
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Goal: Use Langevin dynamics for Bayesian neural network. Optimize the
step size using amortized SVGD.

Setting:
Take 9 similar datasets (a1a to a9a) from UCI repository.
Train the step size using amortized SVGD using one of the dataset (a9a).
Test the performance of trained step size on the remaining 8 datasets.

T
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3
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4
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-0.4

-0.35 Amortized SVGD (10 steps)

Best Power Decay (104 steps)
Best Power Decay (103 steps)

Best Power Decay (102 steps)

Best Power Decay (10 steps)

Steps of Langevin updates Steps of Langevin updates

(a) Bayesian logistic regression (b) Bayesian neural networks
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Toy Example: Gaussian-Bernoulli RBM

Train Langevin dynamics to sample randomly generated Gaussian
Bernoulli RBM. 100 dimensions, 10 hidden variables.

Evaluate the MSE of estimating Ep[h(x)], for different test functions h.

L
o

g
1

0
M

S
E

50  100 250 500 1000

-2.8

-2.4

-2

-1.6

50  100 250 500 1000

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

50  100 250 500 1000

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

Sample Size (n) Sample Size(n) Sample Size (n)

(a) E(x) (b) E(x2) (c) E(cos(wx + b))
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Conclusion

Amortization is a beautiful idea!

Need efficient methods for amortized inference with implicit models.

More theories and applications.
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Conclusion

Amortization is a beautiful idea!

Need efficient methods for amortized inference with implicit models.

More theories and applications.

Thank You

Powered by SVGD
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