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Machine learning and statistics are essentially about understanding data using models (typically probabilistic mod-
els). Discrepancy measures that can tell the consistency between data and models are extremely useful, and provide
foundations for algorithms for all kinds of tasks, including model evaluation (telling how well a model fits the data),
frequentist parameter learning (finding the model that minimizes the discrepancy with data), as well as sampling for
Bayesian inference (finding a set of points ("data") to approximate the posterior distribution). See Figure 1.

Computable discrepancy between data and model:

S( , )
data {xi}ni=1 model p(x)

Model checking:
- Given both {xi} and p(x)

Bayesian Inference:
- Given p(x), optimize {xi}

Frequentist Learning:
- Given {xi}, optimize p(x)

Figure 1: Computable data-model discrepancies, such as
kernelized Stein discrepancy (KSD), provide foundations
for developing efficient algorithms for model checking,
Bayesian inference, and frequentist parameter learning.

For practical machine learning, we also need the
discrepancy measure to be tractably computable, espe-
cially for the very complex models such as graphical
models and deep learning models that are widely used
in machine learning these days. The familiar KL di-
vergence KL(q, p) = Eq log(q/p), for example, is not
ideal for our purpose, because it needs to calculate the
log-likelihood log p(x), which is often very difficult to
do in practice. This is because many models we en-
counter are defined up to a normalization constant, e.g.,
p(x) = exp(−E(x))/Z where Z is a normalization con-
stant (known as the partition function), which is notori-
ously difficult to calculate. Another difficulty related to
KL divergence is that it is not straightforward how to talk
about the KL divergence KL({xi}, p) between a set of
data {xi} (e.g., drawn from an unknown q) and model
p due to need for estimating the entropy term Eq log q
(since q is known only through data {xi}). We can drop
the entropy term and get the logarithmic scoring rule
Eq log p (or log-likelihood) when the goal is to learn or
compare different models p for a given dataset. But for
the purpose of goodness-of-fit evaluation or picking the
"best data points" for Bayesian inference (Figure 1), we
need to have the entropy term.

Kernelized Stein discrepancy (KSD) provides a convenient way to directly assess the compatibility of data-model
pairs, even for models with intractable normalization constant. This allows us to derive a host of new (sometimes
surprising) algorithms for various learning and inference tasks [1, 2, 3, 4]. The basic idea of KSD comes from Stein’s
method [5, 6] in probability theory, with some twists (the kernelization part) that makes it practically usable in machine
learning. This note gives a brief, informal introduction on KSD. The readers are referred to [1, 3, 4] for more details.

Stein’s Identity Our idea starts with the so called Stein’s identity, which says that for distributions with smooth
density p(x) and function f(x) (say supported on R) that satisfies lim||x||→∞ p(x)f(x) = 0, we have

Ex∼p[f(x)∇x log p(x) +∇xf(x)] = 0, ∀f. (1)

This can be easily seen using integration by parts, since the left side of the identity equals
∫
f(x)∇xp(x)+p(x)∇xf(x)dx =

p(x)f(x)|+∞−∞ = 0. This defines an infinite number of identities indexed by function f , and special cases of it with
particular choices of f have been used as the moment equation in various learning algorithms (e.g., score matching
[7] uses the case when f(x) = ∇x∇θ log p(x|θ); [8] uses linear function f(x) = b>x; [9] corresponds to using
the exponential function f(x) = exp(b>x)). In fact, you can frame any identity of form Ex∼p[g(x; p)] = 0 into a
Stein’s identity by finding the f that solves equation f(x)∇x log p(x)+∇xf(x) = g(x; p). This is known as the Stein
equation, whose solution is f(x) = 1

p(x)

∫ x
a
g(ξ; p)p(ξ)dξ in one dimension.

For notation, we denote by
Apf(x) = f(x)∇x log p(x) +∇xf(x),
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where Ap is considered as a functional operator and is called Stein operator. Note that Ap is something that we can
actually calculate in practice, even for models with intractable normalization constants. This is becauseAp depend on
p only through ∇x log p(x) (called the score function) which equals −∂xE(x) when p(x) = exp(−E(x))/Z.

Another critical property is that Ap is a linear operator, that is,

Ap(f + g) = Apf +Apg.

This property makes it easy to search for the “most discriminant f”, in the sense that we discuss soon.
Stein Discrepancy It turns out the "reverse" of Stein’s identity is also true. By this, I mean that if we take the

expectation under a distribution q different from p in (1), say consider

Ex∼q[Apf(x)]

where the expectation is now taken under q while the Stein operator Ap is still related to p, then there must exist a
function f so that the above quantity does not equal zero. This can be easily seen, by noting that

Ex∼q[Apf(x)] = Ex∼q[Apf(x)]− Ex∼q[Aqf(x)] //assuming Stein’s identity holds for q. (2)
= Ex∼q[f(x)(∇x log p(x)−∇x log q(x))], (3)

that is, the Stein operator is effectively the inner product with the difference of the score function ∇x log p(x) −
∇x log q(x) between q and p. Therefore, (3) can be made non-zero unless ∇x log p(x) = ∇x log q(x), implying
q = p. In this way, Stein’s identity provides a mechanism to compare two different distributions. When q is observed
through a set of data {xi}, we can consider the empirical averaging

∑
iApf(xi)/n, which will concentrate on zero

if p = q. This allows us to measure the compatibility between data {xi} and model p, without calculating the
normalization constant of p.

Since the above argument depends on the function f , it is more convenient to consider the most discriminant f
that maximizes the violation of Stein’s identity. This gives leads to the notion of Stein discrepancy for measuring the
difference between two distributions p and q:√

S(q, p) = max
f∈F

Ex∼q[Apf(x)], (4)

where F is a proper set of functions that we optimize over. Obviously, the choice of function set F is critical.
First, it needs to be broad enough to include these functions that can actually discriminant p and q (from (3), these
functions should have positive correlation with ∇x log p − ∇x log q). On the other hand, F should be chosen so
that the functional optimization in (4) can be easily solvable. Traditionally, in Stein’s method developed for theoretical
purpose, F is often chosen to be sets of functions with some bounded Lipschitz norms, which allows Stein discrepancy
strong enough to upper bound other probability metrics or divergences of interest (such as total variation metric) (since
F is large), but such F are not practically computable unless further approximation is applied [10]. We need to search
for better sets that are both broad and solvable.
Solving the Optimization A key observation is that the Stein operatorAp is linear, and hence the objective in (4) is
a linear function whenever f can be represented as a linear combination f(x) =

∑
i wifi(x) of a set of known basis

functions fi(x) with unknown coefficient wi. In this case, we have

Eq[Apf ] = Eq[Ap
∑
i

wifi(x)] =
∑
i

wiβi,

where
βi = Ex∼q[Apfi(x)].

Therefore, our optimization objective is in fact a linear objective on wi; the optimal coefficient wi can be founded
easily by:

max
w

∑
i

wiβi, s.t. ||w|| ≤ 1,
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Figure 2: Theoretical properties of KSD in connection with other fundamental discrepancy measures. See [1] and [2].

where || · || is certain norm (such as L2) of w to prevent infinite solution. This allows us to solve wi easily, even in
closed form! For example, taking ||w|| to be L2 norm, we have wi = βi/||βi||.

This is great. But to makeF to be broad enough, we may need to use an infinite number of basis functions, and this
leads us to kernelized Stein dispreancy (KSD) which takes F to be the unit ball of a reproducing kernel Hilbert space
(RKHS). Briefly speaking, let k(x, x′) be a positive definite kernel, the RKHSH related to k(x, x′) includes functions
of form f(x) =

∑
i wik(x, xi), equipped with inner product 〈f, g〉H =

∑
ij wivjk(xi, xj) for g =

∑
j vjk(x, xj)

and RKHS norm ||f ||2H =
∑
ij wiwjk(xixj). Kernelized Stein discrepancy is defined as√

S(q, p) = max
f∈H

{
Ex∼q[Apf(x)], s.t. ||f ||H ≤ 1

}
.

A critical property of such RKHS space is the reproducing property: f(x) = 〈f(·), k(x, ·)〉H (this is analogous to the
linear combination form f =

∑
i wifi(x) earlier). In addition, we also have∇xf(x) = 〈f(·), ∇xk(x, ·)〉H where the

derivative operator is “shifted” to the kernel. Therefore, we have

Ex∼q[Apf(x)] = 〈f(·), Ex∼q[Apk(·, x)]〉H,

where we shift both the expectation and Stein operator to the kernel function. Define

βq,p(·) = Ex′∼qApk(·, x). (5)

The optimization of KSD is then framed into

max
f
〈f, βq,p〉H, s.t. ||f ||H ≤ 1.

It is then easy to see that the optimal f should be a normalized version of βq,p, that is, f = βq,p/||βq,p||H, and
S(q, p) = ||βq,p||2H. With some easy work, we can further get

S(q, p) = Ex,x′∼q[κp(x, x
′)], where κp(x, x

′) = AxpAx
′

p k(x, x
′).

where Axp and Ax′

p represents the Stein operator w.r.t. variable x and x′, respectively, and κp(x, x′) is a new “Steinal-
ized” kernel obtained by applying Stein operator on k(x, x′) twice, and can be easily calculated given∇x log p(x). In
practice, q is observed through data {xi} and we can replace the expectation with empirical averaging This allows us
to tell if {xi} is drawn from p (q = p) by accessing if S({xi}, p) is significantly different from zero using hypothesis
test [1, 3].

KSD is also closely connected with several other important discrepancy measures, including maximum mean
discrepancy, KL divergence, and Fisher divergence (See Figure 2 and [1]). You can find more information about Stein
discrepancy and its applications in the following papers:

[1, 3]: both works (developed independently and simultaneously by two groups of people!) introduced KSD and
applied it for goodness-of-fit test.

[11] first developed the combination of Stein’s identity with RKHS, and used it as a control variate for variance
reduction.

[10]: Another form of computable Stein discrepancy that does not use kernels.
[2]: It turns out the most discriminative function β∗q,p in (5) is also the steepest descent direction of KL divergence

in a special sense, which allows us to derive an surprising variational inference algorithm.
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