A Lyapunov Analysis of the Lion Optimizer

Qiang Liu

UT Austin

1/26

The Quest of better Optimizers

e Optimization: The Cornerstone of large Al model training
inL(6
min (0)

® Stochastic gradient

® Momentum

Adaptive methods: Adam, Adagrad, etc.

AdamW is largely the default for LLM pre-training.

® Better optimizer = Money + Time + Performance + Environmental
sustainability.

2/26

Optimization Background
Gradient descent (SGD):

Xt4+1 = Xt — EVf(Xt).
Momentum:
mg = 5mt,1 — (1 — B)Vf(xt)
Xt41 = X + €My
Adam(W):
my = f1m;_1 — (1 - ﬂl)Vf(Xt)
Ve = Bove1 — (1 - 52)Vf(xt)2
me=me/(1— 1), V= ve/(1-p1)

— 7,\ t _)\
X; Xt + € X .
t+1 t /—\,}t c t

® Memory/computation cost: AdamW > Momentum > SGD

e Can we find better algorithms than Adam\W?
3/26

Symbolic Discovery of Optimization Algorithms

Xiangning Chen!?8* Chen Liang'? Da Huang! Esteban Real!
Kaiyuan Wang! Yao Liu'* Hieu Pham! Xuanyi Dong! Thang Luong!

Cho-Jui Hsieh? Yifeng Lu! Quoc V. Le!
§Equal & Core Contribution

1Google 2UCLA

Abstract

We present a method to formulate algorithm discovery as program search, and apply it to discover opti-
mization algorithms for deep neural network training. We leverage efficient search techniques to explore
an infinite and sparse program space. To bridge the large generalization gap between proxy and target
tasks, we also introduce program selection and simplification strategies. Our method discovers a simple
and effective optimization algorithm, Lion (EvoLved Sign Momentum). It is more memory-efficient than
Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same
magnitude for each parameter calculated through the sign operation. We compare Lion with widely used
optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image
classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training
compute on JFT. On vision-language contrastive learning, we achieve 88.3% zero-shot and 91.1% fine-tuning
accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion
models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up
to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better
performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the
training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update
produced by the sign function. Additionally, we ine the limitations of Lion and identify scenarios
where its 1mprovements are small or not statistically signifi The impl ion of Lion is publicly
available." Lion is also successfully deployed in production systems such as Google’s search ads CTR model.

4/26

Symbolic Discovery of Optimization Algorithms

® An algorithm is characterized by a train function:
Xty My, v = train(xe, me, vi, VF(xt), €)

® Find good train(-) with evolutionary search, in a predefined
program space.

Step size 6\

N LTS |
S eS|

—— X1

5/26

Program 2: An example training loop,
where the optimization algorithm that we
are searching for is encoded within the
train function. The main inputs are the
weight (w), gradient (g) and learning rate
schedule (1r). The main output is the
update to the weight. v1 and v2 are two ad-
ditional variables for collecting historical
information.
w = weight_initialize()
vl = zero_initialize()
v2 = zero_initialize()
for i in range(num_train_steps):
1r = learning_rate_schedule(i)
g = compute_gradient(w, get_batch(i))
update, v1i, v2 = train(w, g, vi, v2, 1r)
w = w - update

Program 3: Initial program
(AdamW). The bias correc-
tion and e are omitted for
simplicity.
def train(w, g, m, v, 1r):
g2 = square(g)
m = interp(g, m, 0.9)
v = interp(g2, v, 0.999)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = w * 0.01
update = update + wd
1r = 1r * 0.001
update = update * lr
return update, m, v

Program 4: Discovered pro-
gram after search, selection
and removing redundancies in
the raw Program 8. Some vari-
ables are renamed for clarity.

def train(w, g, m, v, 1r):
g = clip(g, 1r)
g = arcsin(g)
m = interp(g, v, 0.899)
m2 =m*m
v = interp(g, m, 1.109)
abs_m = sqrt(m2)
update = m / abs_
wd = w * 0.4602
update = update + wd
1r = 1r * 0.0002
m = cosh(update)
update = update * 1lr
return update, m, v

B

6/26

Lion (Evolved Sign Momentum)

Program 8: Raw program of Lion be-
fore removing redundent statements.

def train(w, g, m, v, 1r):
g = clip(g, 1r)
m = clip(m, 1r)
v845 = sqrt(0.6270633339881897)
v968 = sign(v)
v968 = v - v
g = arcsin(g)
m = interp(g, v, 0.8999999761581421)
vi=m*m
v = interp(g, m, 1.109133005142212)
v845 = tanh(v845)
1r = 1r * 0.0002171761734643951
update = m * 1r
vl = sqrt(vi)
update = update / vi
wd = 1r * 0.4601978361606598
vl = square(vl)
wd = wd * w
m = cosh(update)
1r = tan(1.4572199583053589)
update = update + wd
1r = cos(v845)
return update, m, v

Program 4: Discovered pro-
gram after search, selection
and removing redundancies in
the raw Program 8. Some vari-
ables are renamed for clarity.

def train(w, g, m, v, 1r):
g = clip(g, 1r)
g = arcsin(g)
m = interp(g, v, 0.899)
m2 =m * m
v = interp(g, m, 1.109)
abs_m = sqrt(m2)
update = m / abs_m
wd = w * 0.4602
update = update + wd
1r = 1r * 0.0002
m = cosh(update)
update = update * 1lr
return update, m, v

7/26

Lion (Evolved Sign Momentum)

. Zero-shot Fine-tune
Optimizer .
ImageNet V2 A R Sketch ObjectNet | ImageNet
Adafactor 85.7 80.6 856 957 761 82.3 90.9
Lion 88.3 81.2 86.4 96.8 77.2 82.9 91.1
89 6.0 v ; X : .
\ Lion (ours) def traln(w?1ght, gradflent, momentum, 1r):
Y88 \ update = interp(gradient, momentum, J31)
< 5.5 V== AdamW X
087 ~3x speedup update = sign(update)
P-4 250 momentum = interp(gradient, momentum, J32)
9 86 . - HF = A
2 Lion {ours) weight_dec v welgh? * A
Ess ¥~ AdamW 4.5 update = update + weight_decay
~2.3x speedup update = update * lr
1000 2000 3000 4000 000 025 050 075 100 return update, momentum
Training Compute [exaFLOPs] Iteration le6

8/26

Q

Sebastian Raschka & @rasbt - Mar 9, 2023
Just took the new Lion optimizer (arxiv.org/ab
and | am positively surprised.

With a bit of tinkering, | got it to perform simila
DistilBERT (never had any luck with SGD on th:

Code here for ref: github.com/rasbt/try-lion

9 Maxine @cephaloform - Feb 15, 2023

I trained a 124m param GPT2 model with Google'
found through genetic programming and saw a 3°
of steps needed to reach the same loss as Adam

how small this test is)

paper: arxiv.org/pdf/2302.06675

? Vincent Hellendoorn @VHellendoorn - Mar 2, 202:
.\:o Quick update: after some debugging it now works a
beating Adam starting around 10K steps while runn
1ingChen and team! Im
ridao's Flash Attenti

memory. Great work @Xian
super impactful. Same with ¢

Xiangning Chen @XiangningChen - Jun 12,2023

Replying to @XiangningChen

"We also train our MPT models with the Lion optimizer rather than AdamWw,
which provides stable update magnitudes and cuts optimizer state
memory in half!

Xiangning Chen @;Xiangmngchen . Ju‘n 12,2023
I've just been told that MPT-7B is trained by our Lion optimizer
(arxiv.org/ /2302.06675).

Lion has also been successfully deployed in production systems such as
Google search ads CTR model.

Glad to see that our work has real-world production impact!

Chen Liang @crazydonkey200 - Jun 27, 2023

¥ An open-source 30B language model trained with our Lion optimizer{3

(arxiv.org

/2302.06675) Another proof that Lion is a good replacement
for Adam for training large models and "provides stable update magnitudes
and cuts optimizer state memory in half".

)\ = FOUNDATION SERIES *

MPT-30

OPEN-SOURCE LLM.
COMMERCIALLY LICENSED. ar +
MORE POWERFUL.

MPT-30B: Raising the bar for open-source foundation models

9/26

a James Campbell & @jam3scampbell - Mar 8, 2023
The acronym abuse in ML is getting ridiculous: Google Brain’s new
optimizer, Lion, is short for EvoLved Sign Momentum. What.

Q2 n Q 59 ihi 4.6K A

3

ﬁg Kumail Alhamoud @KumailAlhamoud - Apr 2, 2023
Replying to @SDAIA_KAUST_Al @peter richtarik and @sameh_abdulah

| think that tweet with the LION-like optimizer was supposed to be some
April fool’s joke

10/26

Lion Update Rule

mey1 = Pame — (1 — B2)VF(xt)
Xt41 = X¢ + € (sign [51 m — (1 — Bl)v'c(xt)] *)‘Xt)

Key features:
e Use sign[] .
® Use linear combination of gradient V£ (x;) and momentum m;.
® Use weight decay Ax;.

® No need to keep track of v;, save memory

11/26

Lion Update Rule

mey1 = Pame — (1 — B2)VF(xt)
Xt41 = X¢ + € (sign [51 m — (1 — Bl)v'c(xt)] *)‘Xt)

Unrolled update with default 5; = 0.9, 8> = 0.99:
Xe41 = (1 — eA)xe + sign[(10 4 1)g¢ + 0.99g¢—1 + - - - 0.99%g,_y -]

Key features:
e Use sign[] .
® Use linear combination of gradient V£ (x;) and momentum m;.
® Use weight decay Ax;.

® No need to keep track of v;, save memory

11/26

Lion Update Rule

Mmey1 = Bomy — (1 — B2)VF(x)
Xe11 = Xp + € (sign [/31 my — (1 — /31)Vf(xt)] —)\xt)

Key points:
e Use sign[] .
® Generalizes signed SGD and signed Momentum

® Signed SGD is the steepest descent under £, norm
® Adam can be viewed as a smoothed signed SGD:

me = PBime_1 — (1 — B1)VF(xt)
ve = Bave—1 — (1 — B2)VF(xt)?

+ T A
X = X — AXt | -
t+1 t T € \/\7t+€ t

When 81 = 82 = e = XA =0, update = 2= = sign(Vf(x)).

Vi

® Such coordinate-balanced update is crucial for performance in neural

network training.

12 /26

Lion Update Rule

me1 = Bome — (1 — B2)VF(xt)
Xey1 = x¢ + € (sign[Bime — (1 — B1)VF(xe)] —Axe)

Key points:
¢ Use linear combination of gradient Vf(x;) and momentum m;.
® This is in fact the idea of Nesterov momentum:

Xep1 = Xe + €(Bim; — (1 — B1)VF(xt)).

Momentum step

—> Gradient step
—> Actual step
Regular Momentum Update Nesterov's Momentum Update

® Adding gradient “stabilizes” the momentum update.

® So we can use more aggressive momentum coefficients
(recommended: (8, = 0.99, 8; = 0.9).

13/26

Lion Update Rule

me1 = Bome — (1 — B2)VF(xt)
Xer1 = X¢ + € (sign[Bime — (1 — B1)VF(xe)] —Axe)

Key points:
e Use “decoupled” weight decay Ax;.
® Weight decay is applied on update, not on gradient
® A very useful component of AdamW
® |t is NOT L2 regularization

14 /26

Should we trust a randomly discovered algorithm?

15/26

It turns out it solves a constrained optimization

mey1 = Bomy — (1 — B2)VF(x)
Xey1 = x¢ + € (sign[Bime — (1 — B1)VF(xe)] = Axe)

e |t solves, thanks to the weight decay,
minf(x) s.t. x| < <.
X

® The constraint is enforced very rapidly.

Oth Iteration 50th Iteration 100th Iteration 150th Iteration 200th Iteration 250th Iteration

ra

Figure 2: Histograms of the network parameters of ResNet-18 on CIFAR-10 trained by Lion with A = 10. The
constraint of ||z||,, < 1/X (indicated by the red vertical lines) is satisfied within only ~200 steps.

16 /26

It turns out it solves a constrained optimization

Mey1 = Bamy — (1 — B2)VF(xt)
Xer1 = X¢ + € (sign[Bime — (1 — B1)VF(xe)] —Axe)

e |t solves, thanks to the weight decay,

minf(x) s.t. [x|lo < Y

e Why? Intuition:
® Note that x;11 = x; + e(sign(us) — Axz)

® If [Ax¢| > 1 > |sign(u;)|, the decay term would dominate.

17/26

It turns out it solves a constrained optimization

Mey1 = Bamy — (1 — B2)VF(xt)
Xer1 = X¢ + € (sign[Bime — (1 — B1)VF(xe)] —Axe)

e |t solves, thanks to the weight decay,
minf(x) s.t. [x|lo < Y

e Why? Intuition:
® Note that x;11 = x; + e(sign(us) — Axz)
® If [Ax¢] > 1 > |sign(u;)|, the decay term would dominate.

® \We can show, when e\ < 1,
dist(xe11, F) < (1 — eX) dist(xz, F),

where F = {x: ||Ax]|,, < 1}, under any notion of distance dist(-).

17/26

How to show the convergence to optimum?

® Approach: Certify the convergence with a Laypunov function

18/26

How to show the convergence to optimum?

® Approach: Certify the convergence with a Laypunov function
e Consider, for example, the standard momentum method:

M1 = Bime — (1 — B1)VF(xe), Xt4+1 = Xt + €M1,

® Continuous limit: the heavy ball dynamics

rht = —Vf(Xt) — YMg,).(t = My

18/26

How to show the convergence to optimum?
® Approach: Certify the convergence with a Laypunov function

e Consider, for example, the standard momentum method:

mey1 = Bime — (1 — 1) VIE(xe), Xt+1 = Xt + €M1,

® Continuous limit: the heavy ball dynamics

e = =V T(x) = 3, i = m;

® The system monotonically decreases the following Hamiltonian
function: .
2
Hoom)= £+ olmlP .
~—~ &

potential energy I

d) .
aH(Xt, mt) = aXH(Xt, mt)TXt 4+ amH(Xt, mt)Tmt

= vf(Xt)T)?t F VmT(_Vf(Xt) +ym;)
= —||me|* < 0.

18/26

Lion-IC: A Generalization

® Let K be any convex function and VK its subgradient:

mep1 = Bame — (1 — B2) VI (xt)
Xey1 = x¢ + € (VK (Bime — (1 — B1)VF(xe)) —Axe)

When K(x) = ||x||;, we take VI (x) = sign(x).

19/26

® |n the continuous time limit, Lion-XC ODE:

n"lt = —CUVf(Xt) — Yme
x¢ = VK(my — e(aVf(xe) +vme)) — Axt.

® Main result: Lion-XC solves

min F(x) = af (x) + %IC*()\X),

K* is the convex conjugate of K: K*(x) = sup, (xTy - lC(y)) .

e When K*(x) can take infinite values, it is a constrained optimization:

min F(x), s.t. x € domK*,

where dom/C* = {x: K£*(x) < +o0}.

0 | <1

* Example: K(x) = ||x||;, then K*(x) =
xample: K(x) = ||x][;, then £*(x) {—l—oo if f|x]l > 1.

20/26

Lion-C includes a broad family of old and new algorithms

Polyak Momentum [31]

K(z) = |lzll3 /2,7A=0,e =0

Nesterov Momentum [28]

K(@) = |zl /2.7A =0

Signed Momentum [5]

K(@) = [lall}, e = 0, A= 0

Hamiltonian Descent [23] e=0,A=0
Hamiltonian Descent for Composite Objectives [23] e=0,A>0
Dual Space Preconditioning [24], Mirror Descent [27] ey=1A=0

Signed Gradient Descent [5]

K@) = llzll, ey=1,A=0

Accelerated Mirror Descent [17]

¥y=0,e=0,A>0

Frank-Wolfe [11]

ey=1LXx>0

Table 1: Lion-X includes a large family algorithms as special cases. See Section 3.1

Line ID K(z) VK(z) min, f(z) + K*(z)
0] llzlly sign(z) min f(z) st. [[¢], <1
@ llel, el min f(z) st e, <1
(©) > max(|zi| —e,0) sign(z)I(|z| > e) min f(z) +e|lzfl, st |z], <1
@ Sicieut |20 sign(@)I(|z| > |zeury|) | minf(2) st |Jzll, <, |zl <1
® >, huber,(z;) clip(z, —e,e)/e min f(z) + § Ha:“i st |zl <1

Table 2: Examples of K and VX, and the optimization
We assume ¢ = [z1, ..., 74] € R? and |z(3)| > |z(2)

roblems they solved (we sety = A = 1 for simplicity).
TZ - - is a monotonic sorting of the elements of z, and

i°* is an integer in {1,.. ., d}. The Huber loss is huberc(z;) = I(|z:| > e)(Jz:| — §) + I(|z:| < e)izf,

21/26

Lyapunov Function of Lion-K

Lion-XC ODE (assume ey < 1):

fht = —OéVf(Xt) — Ym;
x¢t = VI(my — e(aVf(xe) +vme)) — Axe.

¢ [Phase 1] If £*(x) = 400 (constraint unsatisfied), we have

dist(x¢, domK*) < exp(—A(t — s))dist(xs,domK*), V0O <s <t

22/26

Lyapunov Function of Lion-/C
Lion-K ODE (assume ey < 1):

my = —aVf(xt) —ymy, x¢ = VI(m: — e(aVi(xt) + yme)) — Axe.
Solves:

min F(x) == af(x) + %’C*(X), s.t. x € domK*,

¢ [Phase 2] It monotonically decreases the following Lyapunov

function (& H(x¢, m¢) < 0):
1—
H(x, m) = af(x) + }/C*(A) L ‘:(/c*(Ax) +K(m) — Amx)
“potential” function “kinetic" energy

® Fenchel-Young inequality: (K*(Ax) + K(m) — Am'x) > 0, equality
achieved when VIC(m) = Ax.

® Minimizing H(x, m) and F(x) are equivalent: min,, H(x, m) = F(x).
23/26

® |ion-KC: Discrete time

Mey1 = Bomy — (1 — B2)VF(xe)
Xei1 = X¢ + € (VIC([ﬁmt —(1- [31)Vf(xt))—>\xt+1)

¢ [Phase 1] Constrained Enforcing:

1
dist(x¢+1, domK™) <] dist(x;, domk*)

+ €A

¢ [Phase 2] Constrained Optimization:

Si!

* ~Ax ' m).
@B+ @))+ Km) = xm)

H(x,m) = FG0+5 K ()

Then ,
H(xty1, me) — H(xe, me) < —eA¢ + 562.

Hence, H(x, m) decreases when € is small.
24 /26

Proof: Consider any ODE:
me = Ur(xe, my)

).(t = Vt(Xt, mt).

d
aH(Xt, mt) = 8mH(Xt7 mt)T Ut(Xta mt) + 8XH(XT.‘7 mt)T Vt(Xta mt)-

25 /26

Proof: Consider any ODE:
my = Ut(x¢, mt)
).(t = Vt(Xt, mt).

d
aH(Xt, m;) = OmH(xt, mt)T Ue(xe, me) + OxH(Xe, mt)T Vi (X, my).

If we can verify that H and V satisfying the following relation:
OmH(x, m) = —bUy(x, m) + cVi(x, m),
OH(x,m) = —aV,(x, m) — cU¢(x, m),
where a, b > 0, V/ are monotonic transforms of V:
Vi(x, m)T Vi(x,m) >0, Ue(x, m)T Ug(x, m) > 0.
Then

d N N
aH(Xt, mt) = (—bUt + Cvt)TUt + (—a\/t — CUt)T Vt

=—aV,"V, — b0, TU, <O.

Key: The cross term UtT V; is canceled.

25 /26

Thoughts

e |nitially, we did not believe it was a right algorithm, and tried hard to
find “more theoretically principled" variants.

® Surprising that a machine-discovered algorithms yields such an
intriguing mathematical structure.

® Potential directions:
® Better search programs:
® A good investment because new efficient algorithms and save computation
in the future.
® |mproving and Extending Lion:
® Example: in ongoing works, we are developing distributed Lion, leveraging
the sign(-) to develop distributed optimization that only requires to
communicate random bits.

Thank Youl

26 /26

