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Introduction

Goodness-of-fit (GOF) tests: Given a distribution p and observation
{xi} (drawn from unknown q), test

H0 : {xi} is drawn from p (or p = q)

Motivation: checking model assumptions, model evaluation, etc.

We are interested in complex, high dimensional distributions p(x), often
with intractable normalization constants.

p(x) =
1

Z
p̄(x), Normalization constant: Z =

∫
p̄(x)dx .

e.g., graphical models, (restricted) Boltzmann machines, etc

Z: often critically difficult to calculate
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Introduction

Goodness-of-fit (GOF) tests: Given a distribution p and observation
{xi} (drawn from unknown q), test

H0 : p = q vs. p 6= q

Challenges:
1 Classical GOF tests, such as chi-square, Kolmogorov-Smirnov, only works for

simple, low dimensional distributions.
2 We can simulate {yi} ∼ p and perform two-sample tests (e.g., by maximum

mean discrepancy (MMD)): would not work when it is intractable to draw
sample from p (MCMC may be needed).
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Stein’s Method [Stein, 1972]

A general theoretical tool for bounding differences between distributions

Mostly used for theoretical proof: central limit theorem, concentration
inequalities, etc.

Key idea: Characterizing a distribution p with a Stein operator Ap, such
that

p = q ⇐⇒ Ex∼q[Apf (x)] = 0.

For continuous distributions with smooth density p(x),

Apf (x)
def
= ∇x log p(x) · f (x)> +∇x f (x).
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that

p = q ⇐⇒ Ex∼q[Apf (x)] = 0.

For continuous distributions with smooth density p(x),

Apf (x)
def
= ∇x log p(x)︸ ︷︷ ︸

score function

· f (x)> +∇x f (x).

Score function sp(x) = ∇x log p(x) =
∇xp(x)
p(x)

, independent of normalization
constant Z !
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Stein’s Method

p = q, Stein’s Identity : Ex∼p[∇x log p(x) · f (x)> +∇x f (x)] = 0:

Why?

Use integration by parts, assuming zero boundary conditions.∫
p′(x)f (x) + p(x)f ′(x)dx = p(x)f (x)

∣∣+∞
−∞ = 0.
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Stein’s Method

p 6= q ⇒ ∃ some f , Ex∼q[Apf (x)] 6= 0:

Why?

We can show (denote sp(x) = ∇x log p(x)):

Ex∼q[Apf (x)] = Ex∼q[Apf (x)]− Ex∼q[Aqf (x)]

= Ex∼q[(sp(x)− sq(x))f (x)>]

Stein operator: essentially the inner product with the
difference of score functions (sp(x)− sq(x)).

Unless sp(x) ≡ sq(x), we can always find an f (x) to get
non-zero.
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Stein’s Identity

Ex∼p[∇x log p(x) · f (x)> +∇x f (x)] = 0.

Stein’s identity: an infinite number of identities, indexed by function f

has found lots of applications in machine learning:

Learning probabilistic models from data

Score matching [Hyvärinen, 2005, Lyu, 2009, Sriperumbudur et al., 2013]
Spectrum methods [Sedghi and Anandkumar, 2014]

Variance reduction [Oates et al., 2014, 2016, 2017]

Feature learning [Janzamin et al., 2014]

Optimization [Erdogdu, 2015]

and many more ...
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Stein Discrepancy

p 6= q =⇒ ∃f , such that Ex∼q[Apf (x)] 6= 0

Define (Squared) Stein discrepancy between p and q:√
S(q, p) = max

f ∈F
Ex∼q[trace(Apf (x))]

It gives a functional optimization. Computationally difficult for practical
use.
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Kernelized Stein discrepancy (KSD)

Let k(x , x ′) be a positive definite kernel, and H its related reproducing
kernel Hilbert space (RKHS). Hd = H× · · · × H.
Kernelized Stein discrepancy: take F to be the unit ball of RKHS.√

S(q, p) = max
f ∈F

Ex∼q[trace(Apf (x))], f = {f ∈ Hd : ||f ||Hd ≤ 1}
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pAx ′
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where Ax
p is Stein operator w.r.t. x .
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Empirical Estimation and Goodness-of-fit Tests

Given {xi} ∼ q(x), we can get an unbiased estimator of S(q, p) by
U-statistic:

Ŝ(q, p) =
1

n(n − 1)

∑
i 6=j

κp(xi , xj).

Asymptotic distribution is well understood:

If p 6= q, Ŝ(q, p) = S(q, p) + Op(1/
√
n) (asymptotic normal)

If p = q, Ŝ(q, p) = Op(1/n). (infinite sum of χ2 distributions)

Goodness-of-fit test:

Reject p = q if Ŝ(q, p) > γ.

Threshold γ decided using a generalized bootstrap procedure by Arcones and
Gine [1992], Huskova and Janssen [1993].
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Kernelized Stein Discrepancy (KSD)

Is KSD a valid discrepancy: p = q ⇐⇒ S(q, p) = 0?

We can show

S(q, p) = Ex ,x ′∼q[(sp(x)− sq(x))>k(x , x ′)(sp(x ′)− sq(x ′))]

(Recall that Eq[Apf (x)] = Eq[(sp(x)− sq(x))f (x)>])

We just need k(x , x ′) to be integrally strictly positive definite:∫
g(x)k(x , x ′)g(x ′)dx > 0 ∀g ∈ L2 \ {0}
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Empirical Results

1D Gaussian mixture model (GMM)

Simulate samples either from the true, or the perturbed model with equal
probabilities
Use GOF tests to tell if the sample is drawn from the true model
(significance α = 0.05).

Our Method
MMD-MC(1000)
Chi Square
Kolmogorov-Smirnov
Cramer-Von Mises
Oracle (Likelihood Ratio)
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Gaussian-Bernoulli Restricted Boltzmann Machine

Gaussian visible nodes + binary hidden nodes.

Computationally intractable to draw exact sample, or calculate the
normalization constant (and likelihood).

Deviation From The True Model
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Our Method
MMD-MCMC(1000)
Oracle (Likelihood Ratio)

Difference between p and q

(50 visible nodes; 10 hidden nodes)
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Connection with Other Discrepancy Measures

Maximum mean discrepancy (MMD)

Maximum mean discrepancy (MMD):

M(q, p) = max
f ∈H
{Epf − Eqf s.t. ||f ||H ≤ 1}.

H is the RKHS related to k(x , x ′).

KSD can be treated as a MMD using the “Steinalized” kernel
κp(x , x ′) = trace(Ax

pAx ′
p k(x , x ′)), which depends on p (KSD is

asymmetric):

S(q, p) = max
f ∈Hp

{Epf − Eqf s.t. ||f ||Hp ≤ 1}

Hp is the RKHS related to kp(x , x ′).
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Connection with Other Discrepancy Measures

Fisher divergence

Fisher divergence: F(q, p) = Ex∼q[||sp(x)− sq(x)||22].

Used as a learning objective in score matching.

KSD is a smoothed version of Fisher divergence; we can show

S(q, p) = Ex∼q[(sp(x)− sq(x))>k(x , x ′)(sp(x ′)− sq(x ′))].
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Used as a learning objective in score matching.

KSD is a smoothed version of Fisher divergence; we can show

S(q, p) = Ex∼q[(sp(x)− sq(x))>k(x , x ′)(sp(x ′)− sq(x ′))].

KL Divergence

Fisher divergence = derivative of KL when variables are perturbed by
i.i.d. Gaussian.

KSD = derivative of KL when variables are perturbed by smooth
functions in RKHS (see Liu & Wang NIPS 2016, where a variational
inference method based on it).
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Related Work

Chwialkowski et al. [2016]: Independent work on quite the same idea
(this ICML, the talk before us).

Oates et al. [2014, 2016, 2017]: Combined Stein’s identity with RKHS;
used for deriving a super-efficient variance reduction method.

Gorham and Mackey [2015]: Derived a different (non-kernel)
computable Stein discrepancy by enforcing smoothness constraints on a
finite number of points, solved by linear programming.
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Conclusion

Defined and studied kernelized Stein discrepancy (KSD)

Derived a goodness-of-fit test that works for distributions with
intractable normalization constants

Directions:

More understandings and applications
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Conclusion

Defined and studied kernelized Stein discrepancy (KSD)

Derived a goodness-of-fit test that works for distributions with
intractable normalization constants

Directions:

More understandings and applications

Thank You
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