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Machine Learning and Statistics

data {xi} models p(x)

Liu et al. (Dartmouth) December 24, 2016 2 / 43



Data-Model Discrepancy

D( , )
data {xi}ni=1 model p

Learning: Given {xi}, find an optimal p:

min
p

D({xi}, p).

Sampling (or numerical quadrature): Given p, find optimal {xi}:
min
{xi}

D({xi}, p).

Model checking (e.g., goodness of fit test): Given both p and {xi},
tell if they are consistent:

D({xi}, p)
?
= 0.
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Unnormalized Distributions

In practice, many distributions are unnormalized densities:

p(x) =
1

Z
p̄(x), Z =

∫
p̄(x)dx .

Z: often critically difficult to calculate.

Widely appears in Bayesian inference, (deep) probabilistic graphical
models, energy-based models, etc.

Highly difficult to learn and sample and evaluate.

Traditional methods: KL divergence + MCMC / variational inference, etc.
Many drawbacks.
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Stein’s Method [Stein, 1972]
A set of theoretical technique for proving approximation and limit
theorems in probability theory.

central limit theorem, Berry-Esseen bounds, concentration inequalities, etc.

Often remarkably powerful. A large body of theoretical work.
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Stein’s Method

The key idea (that we will exploit): Characterizing a distribution p with
a Stein operator Tp, such that

p = q ⇐⇒ Ex∼q[Tpφ(x)] = 0.

For continuous distributions with differentiable density p(x),

Tpφ(x)
def
= 〈∇x log p(x), φ(x)〉+∇x · φ(x).1

1∇x · φ =
∑

i ∂xiφ
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Stein’s Method

The key idea (that we will exploit): Characterizing a distribution p with
a Stein operator Tp, such that

p = q ⇐⇒ Ex∼q[Tpφ(x)] = 0.

For continuous distributions with differentiable density p(x),

Tpφ(x)
def
= 〈∇x log p(x)︸ ︷︷ ︸

score function

, φ(x)〉+∇x · φ(x).1

Score function sp(x) = ∇x log p(x) =
∇xp(x)
p(x)

, independent of normalization
constant Z !
General methods for constructing Stein operators: the generator method, density
method, etc.

1∇x · φ =
∑

i ∂xiφ
Liu et al. (Dartmouth) December 24, 2016 6 / 43



Stein’s Method

p = q, Stein’s Identity : Ex∼p[〈∇x log p(x), φ(x)〉+∇x · φ(x)] = 0:

Why?

Use integration by parts, assuming zero boundary conditions.∫
p(x)∇xφ(x) + φ(x)∇xp(x)dx = p(x)φ(x)

∣∣+∞
−∞ = 0.
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Stein’s Method

p = q, Stein’s Identity : Ex∼p[〈∇x log p(x), φ(x)〉+∇x · φ(x)] = 0:

Stein’s identity: an infinite number of identities (moment equations),
indexed by testing function φ. Lots of applications:

Learning probabilistic models from data

Score matching [Hyvärinen, 2005, Lyu, 2009, Sriperumbudur et al., 2013]
Spectrum methods [Sedghi and Anandkumar, 2014]

Variance reduction [Oates et al., 2014, 2016, 2017]

Feature learning [Janzamin et al., 2014]

Optimization [Erdogdu, 2015]

and many more ...
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Stein’s Method

p 6= q ⇒ ∃ some φ, Ex∼q[Tpφ(x)] 6= 0:

Why (method I)?

We can show (denote sp(x) = ∇x log p(x)):

Ex∼q[Tpφ(x)] = Ex∼q[Tpφ(x)]− Ex∼q[Tqφ(x)]

= Ex∼q[〈sp(x)− sq(x), φ(x)〉]

Stein operator: essentially the inner product with the
difference of score functions sp − sq.

Unless ∇x log p(x) ≡ ∇x log q(x), we can always find a φ(x)
to get non-zero.
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Stein’s Method

p 6= q ⇒ ∃ some φ, Ex∼q[Tpφ(x)] 6= 0:

Why (method II)?

Let x ∼ q and q[εφ] the density of x ′ = x + εφ(x), then

∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

= −Ex∼q[Tpφ(x)].

Equals zero only at the stationary points of KL divergence (i.e., p = q).
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Stein Discrepancy

p 6= q =⇒ ∃φ, such that Ex∼q[Tpφ(x)] 6= 0

Define Stein discrepancy between p and q:

D(q, p) = max
φ∈F

Ex∼q[Tpφ(x)]

F : a rich enough set of functions.

It gives a functional optimization. Traditional Stein’s method takes F to
be sets of functions with bounded Lipschitz norm; computationally
difficult for practical use.

Gorham and Mackey [2015]: Derived a computable Stein discrepancy by
enforcing Lipschitz constraints on a finite number of points, solved by
linear programming.
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Kernelized Stein discrepancy [Liu, Lee, Jordan. 2016]

Let k(x , x ′) be a positive definite kernel, and H0 its related reproducing
kernel Hilbert space (RKHS). H = H0 × · · · × H0.

Kernelized Stein discrepancy (KSD): take F to be the unit ball of RKHS.

D(q, p) = max
φ∈F

Ex∼q[Tpφ(x)], F = {φ ∈ H : ||φ||H ≤ 1}
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then it has a closed form solution

D(q, p)2 = Ex ,x ′∼q[κp(x , x ′)] ≈ 1

n(n− 1)

∑
i6=j

κp(xi, xj)︸ ︷︷ ︸
empirical estimation (U-statistic)

where κp(x , x ′) = T x
p (T x ′

p ⊗ k(x , x ′))
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Empirical Kernelized Stein Discrepancy

Given {xi} drawn from (unknown) q(x), the U-statistic provides
unbiased estimator of D(q, p)2:

D2({xi}, p)
def
=

1

n(n − 1)

∑
i 6=j

κp(xi , xj).

Asymptotic distribution is well understood:

If p 6= q, D2({xi}, p) = D2(q, p) + Op(1/
√
n) (asymptotic normal)

If p = q, D2({xi}, p) = Op(1/n). (infinite sum of χ2 distributions)

Goodness-of-fit test: test if {xi} is drawn from p.

Reject the null if D2({xi}, p) > γ.

Threshold γ decided using a generalized bootstrap procedure by Arcones and
Gine [1992], Huskova and Janssen [1993].
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Goodness-of-fit Test

1D Gaussian mixture model (GMM)

Simulate samples either from the true, or the perturbed model with equal probabilities. Use

GOF tests to tell if the sample is drawn from the true model.

Our Method
MMD-MC(1000)
Chi Square
Kolmogorov-Smirnov
Cramer-Von Mises
Oracle (Likelihood Ratio)
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Goodness-of-fit Test

Gaussian-Bernoulli Restricted Boltzmann Machine

Gaussian visible nodes + binary hidden nodes; effectively a Gaussian mixture with exponential

number of mixture components.

Deviation From The True Model
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Our Method
MMD-MCMC(1000)
Oracle (Likelihood Ratio)

Difference between p and q
(50 visible nodes; 10 hidden nodes)
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Connection with Other Discrepancy Measures

Maximum mean discrepancy (MMD):

M(q, p) = max
f ∈H0

{Epf − Eqf s.t. ||f ||H0 ≤ 1}.

H0 is the RKHS related to k(x , x ′).

KSD can be treated as a MMD using the “Steinalized” kernel
κp(x , x ′) = T x

p (T x ′
p ⊗ k(x , x ′)), which depends on p (KSD is

asymmetric):

D(q, p) = max
f ∈Hp

{Epf − Eqf s.t. ||f ||Hp ≤ 1}

Hp is the RKHS of kp(x , x ′).
Hp is the image of Stein operator Tpφ: Hp = {f = Tpφ : φ ∈ H}.
Hp is the “tangent space” of p: Ep[f ] = 0, ∀f ∈ Hp (will discuss more).
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Connection with Other Discrepancy Measures

Fisher divergence

Fisher divergence: F(q, p) = Ex∼q[||sp(x)− sq(x)||22].

Used as a learning objective in score matching.

KSD is a smoothed version of Fisher divergence; we can show

D(q, p) = Ex∼q[(sp(x)− sq(x))>k(x , x ′)(sp(x ′)− sq(x ′))].
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Fisher divergence: F(q, p) = Ex∼q[||sp(x)− sq(x)||22].

Used as a learning objective in score matching.

KSD is a smoothed version of Fisher divergence; we can show

D(q, p) = Ex∼q[(sp(x)− sq(x))>k(x , x ′)(sp(x ′)− sq(x ′))].

KL Divergence

Fisher divergence = derivative of KL when variables are perturbed by
i.i.d. Gaussian (debruijn identity).

KSD = derivative of KL when variables are perturbed by smooth
functions in RKHS.
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Related Work on Stein + RKHS

Chwialkowski et al. [2016]: Independent work on quite the same idea.

Oates et al. [2014, 2016, 2017]: Combined Stein’s identity with RKHS;
used for deriving a super-efficient variance reduction method.
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Numerical Quadrature: Given p, find points {xi} to “fool” the
goodness-of-fit test:

min
{xi}

∑
ij

κp(xi , xj).
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Numerical Quadrature: Given p, find points {xi} to “fool” the
goodness-of-fit test:

min
{xi}

∑
ij

κp(xi , xj).

Unfortunately, does not work well in practice: Difficult non-convex
optimization.
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Consider a simpler problem:

Given {xi} generated arbitrarily (e.g., by MCMC or bootstrap).

Find weights {wi} so that {wi , xi} approximates p in that∑
i wih(xi ) ≈ Ex∼p[h(x)].
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Find weights {wi} so that {wi , xi} approximates p in that∑
i wih(xi ) ≈ Ex∼p[h(x)].

Minimizing the empirical kernelized Stein discrepancy:

min
{wi}

{
D({wi , xi}; p) ≡

∑
ij

wiwjκp(xi , xj) s.t.
∑
i

wi = 1, wi ≥ 0
}
.

This is easy to solve: convex quadratic programming.
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Given {xi} generated arbitrarily (e.g., by MCMC or bootstrap).
Find weights {wi} so that {wi , xi} approximates p in that∑

i wih(xi ) ≈ Ex∼p[h(x)].
Minimizing the empirical kernelized Stein discrepancy:

min
{wi}

{
D({wi , xi}; p) ≡

∑
ij

wiwjκp(xi , xj) s.t.
∑
i

wi = 1, wi ≥ 0
}
.

Better convergence rate than the typ-
ical O(n−1/2) Monte Carlo rate:∑
i

wih(xi )−Eph = O(n−α/2), 1 < α ≤ 2.

if {xi} is i.i.d. drawn from some un-
known q and h ∈ Hp.

Sample Size (n)
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Our Stein Weights

Related: control variates and Bayesian MC [e.g., Briol et al., 2015, Bach, 2015].
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But how to find a set of good point {xi} to approximate p?
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Stein Variational Gradient Descent

Directly minimize KL({xi} || p).

Idea: Iteratively move {xi}ni=1 towards the target p by updates of form

x ′i ← xi + εφ(xi ),

where φ is a perturbation direction chosen
to maximumly decrease the KL divergence
with p, that is,

φ = arg max
φ∈F

{
− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

}
,

where q[εφ] is the density of x ′ = x +εφ(x)
when the density of x is q.
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Stein Variational Gradient Descent

Closely relates to Stein operator:

− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)].

where q[εφ] is the density of x ′ = x + εφ(x) when the density of x is q.

Gives another interpretation of Stein discrepancy:

D(q, p) = max
φ∈F

{
− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

}
The optimal direction has a closed form when F is the unit ball of RKHS
H:

φ∗(·) = Ex∼q[Tpk(x , ·)]

= Ex∼q[∇x logp(x)k(x , ·) +∇xk(x , ·)].
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Stein Variational Gradient Descent

Approximating Ex∼q[·] with empirical averaging over the current points
gives:

xi ← xi + εÊx∼{xi}ni=1
[∇x logp(x)

︸ ︷︷ ︸
gradient

k(x , xi ) + ∇xk(x , xi )

︸ ︷︷ ︸
repulsive force

], ∀i = 1, . . . , n.

Deterministically transport probability mass from initialize q0 to target p.

Two terms:

∇x logp(x): moves the particles {xi}
towards high probability regions of
p(x).

∇xk(x , x ′): enforce diversity in {xi}
(otherwise all xi collapse to modes of
p(x)).
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Two terms:

∇x logp(x): moves the particles {xi}
towards high probability regions of
p(x).

∇xk(x , x ′): enforce diversity in {xi}
(otherwise all xi collapse to modes of
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Movie viewable in Adobe Acrobat Reader

Liu et al. (Dartmouth) December 24, 2016 23 / 43



Stein Variational Gradient Descent

Approximating Ex∼q[·] with empirical averaging over the current points
gives:

xi ← xi + εÊx∼{xi}ni=1
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Stein Variational Gradient Descent

Approximating Ex∼q with empirical averaging over the current points
gives:

xi ← xi + εÊx∼{xi}ni=1
[∇x logp(x)︸ ︷︷ ︸

gradient

k(x , xi ) + ∇xk(x , xi )︸ ︷︷ ︸
repulsive force

], ∀i = 1, . . . , n.

When using a single particle (n = 1), it reduces to standard gradient
ascent for maxx log p(x) (i.e., maximum a posteriori (MAP)):

x ← x + ε∇x log p(x).

Typical Monte Carlo / MCMC: perform worse when n = 1.
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Stein variational gradient descent is a · · ·

nonparametric variational inference.

deterministic sampling.

gradient-based quadrature method.
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As n→∞ and ε→ 0, the evolution of the density of the particles is
governed by a gradient flow

∂

∂t
qt(x) = −∇̃KL(qt || p),

which decreases KL divergence monotonically

∂

∂t
KL(qt || p) = −D(qt , p)2.
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Bayesian Logistic Regression
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Stein Variational Gradient Descent (Our Method)
Stochastic Langevin (Parallel SGLD)
Particle Mirror Descent (PMD)
Doubly Stochastic (DSVI)
Stochastic Langevin (Sequential SGLD)

(a) Particle size n = 100 (b) Results at 3000 iteration (≈ 0.32 epoches)
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Bayesian Neural Network

Test Bayesian neural nets on UCI dataset (with 20 particles).

Compare with probabilistic back propagation (PBP) [Hernández-Lobato
and Adams, 2015].

Avg. Test RMSE Avg. Test LL Avg. Time (Secs)
Dataset PBP Our Method PBP Our Method PBP Ours
Boston 2.977± 0.093 2.957± 0.0992.957± 0.0992.957± 0.099 −2.579± 0.052 −2.504± 0.029−2.504± 0.029−2.504± 0.029 18 161616
Concrete 5.506± 0.103 5.324± 0.1045.324± 0.1045.324± 0.104 −3.137± 0.021 −3.082± 0.018−3.082± 0.018−3.082± 0.018 33 242424
Energy 1.734± 0.051 1.374± 0.0451.374± 0.0451.374± 0.045 −1.981± 0.028 −1.767± 0.024−1.767± 0.024−1.767± 0.024 25 212121
Kin8nm 0.098± 0.001 0.090± 0.0010.090± 0.0010.090± 0.001 0.901± 0.010 0.984± 0.0080.984± 0.0080.984± 0.008 118 414141
Naval 0.006± 0.000 0.004± 0.0000.004± 0.0000.004± 0.000 3.735± 0.004 4.089± 0.0124.089± 0.0124.089± 0.012 173 494949
Combined 4.052± 0.031 4.033± 0.0334.033± 0.0334.033± 0.033 −2.819± 0.008 −2.815± 0.008−2.815± 0.008−2.815± 0.008 136 515151
Protein 4.623± 0.009 4.606± 0.0134.606± 0.0134.606± 0.013 −2.950± 0.002 −2.947± 0.003−2.947± 0.003−2.947± 0.003 682 686868
Wine 0.614± 0.008 0.609± 0.0100.609± 0.0100.609± 0.010 −0.931± 0.014 −0.925± 0.014−0.925± 0.014−0.925± 0.014 26 222222
Yacht 0.778± 0.0420.778± 0.0420.778± 0.042 0.864± 0.052 −1.211± 0.044−1.211± 0.044−1.211± 0.044 −1.225± 0.042 25 25
Year 8.733±NA 8.684±NA8.684±NA8.684±NA −3.586±NA −3.580±NA−3.580±NA−3.580±NA 7777 684684684
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Learning model from data: Given observed data {xobs,i}ni=1 drawn from

p(x | θ) =
1

Z
exp(−ψ(x ; θ)), Z =

∫
exp(−ψ(x ; θ))dx .

We want to estimate parameter θ.

Deep energy model: ψ(x ; θ) is some deep convolutional neural network.

Difficulty: requires to sample from p(x |θ) to estimate the model
averaging at every gradient iteration.
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θ
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}
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Model averaging
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Amortized Inference

Here, we have to solve many similar inference problems (e.g., sample
from p(x |θ) at each iteration).

We should not solve each problem from scratch.

“Amortized inference”: train a neural network to “learn to draw
samples” from p(x |θ) and adaptively adjust network parameters as θ
updates.
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“Learning to Sample”

Given p(x) and a neural network f (η, ξ) with parameter η and random
input ξ.
Find η to match the density of random output x = f (η, ξ) with p(x).
Idea: Iteratively adjust η to make the output move along the Stein
variational gradient direction.
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MLE Learning as an Adversarial Game

Can be treated as an adversarial process between the energy model and the neural
sampler.

Similar to generative adversarial networks (GAN) [Goodfellow et al., 2014].
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Real images Generated by neural sampler
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It learns to “linearize” the semantics of the data distribution.

Changing the random input ξ smoothly.
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Real images Generated by Neural Sampler
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airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

DCGAN [Radford et al., 2015] Stein

Inception Score

Real Training Set 500 Duplicate DCGAN Stein

Model Trained on ImageNet 11.237 11.100 6.581 6.351

Model Trained on CIFAR-10 9.848 9.807 7.368 7.428
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truck

DCGAN [Radford et al., 2015] Stein

Testing Accuracy

Real Training Set 500 Duplicate DCGAN Stein

92.58 % 44.96 % 44.78 % 63.89 %
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Conclusion

Stein discrepancy Combined with RKHS, variational inference, Monte
Carlo etc.

Provides new tools for many perspectives of probabilistic inference &
learning.

More ideas from Stein’s method can be potentially useful for practical
machine learning.

More applications and theories!
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Thank You
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Kernelized Stein Discrepancy (KSD)

Is KSD a valid discrepancy: p = q ⇐⇒ D(q, p) = 0?

We can show

S(q, p) = Ex ,x ′∼q[(sp(x)− sq(x))>k(x , x ′)(sp(x ′)− sq(x ′))]

(Recall that Eq[Tpφ(x)] = Eq[(sp(x)− sq(x))φ(x)>])

We just need k(x , x ′) to be integrally strictly positive definite:∫
g(x)k(x , x ′)g(x ′)dx > 0 ∀g ∈ L2 \ {0}
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More face images generated by our neural sampler on CelebA.
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DCGAN Stein

MNIST images generated by DCGAN [Radford et al., 2015] and our neural

sampler.
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DCGAN Stein

Images generated by DCGAN [Radford et al., 2015] and our neural sampler.
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