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Data-Model Discrepancy

D( 4l , M)

data {x;}7_; model p

o Learning: Given {x;}, find an optimal p:
mpin D({xi}, p).

e Sampling (or numerical quadrature): Given p, find optimal {x;}:
minD({x;}, p).
minD({xi}, p)

]

@ Model checking (e.g., goodness of fit test): Given both p and {x;},
tell if they are consistent:

D({x}, p)=0.
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Unnormalized Distributions

@ In practice, many distributions are unnormalized densities:

p) = 7800, Z= [ pbx)ae

Z: often critically difficult to calculate.

o Widely appears in Bayesian inference, (deep) probabilistic graphical
models, energy-based models, etc.
o Highly difficult to learn and sample and evaluate.

o Traditional methods: KL divergence + MCMC / variational inference, etc.
Many drawbacks.
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-
Stein’s Method [Stein, 1972]

@ A set of theoretical technique for proving approximation and limit
theorems in probability theory.
o central limit theorem, Berry-Esseen bounds, concentration inequalities, etc.

o Often remarkably powerful. A large body of theoretical work.

nsttute of Mathermutic d Statistics
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Approximate Computation
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Charles M. Stein was an American mathematlcal statistician and
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professor of statistics at Stanford Ui . He ived his Ph.D in - e
1947 at Columbia University with advisor Abraham Wald. Wikipedia NORMAL
VALLLWIN CALCULUS.
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Awards: Guggenheim Fellowship for Natural Sciences, US & Canada More

Academic advisor: Abraham Wald
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Stein’s Method

@ The key idea (that we will exploit): Characterizing a distribution p with
a Stein operator 7,, such that

p=q <= Exg[Tpd(x)] =0.
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N
Stein’s Method

@ The key idea (that we will exploit): Characterizing a distribution p with
a Stein operator 7,, such that

p=q <= Exg[Tpd(x)] =0.

o For continuous distributions with differentiable density p(x),

Tod(x) & (Vilogp(x), d(x)) + Vi - $(x).}

lv>< = Zi 8Xi¢
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N
Stein’s Method

@ The key idea (that we will exploit): Characterizing a distribution p with
a Stein operator 7, such that

p=q <= Exg[Tpd(x)] =0.

o For continuous distributions with differentiable density p(x),

Tod(x) € (Vilogp(x), ¢(x)) + V- ¢(x).!
N————

score function

@ Score function s,(x) = Vi log p(x) = v;(i(;)’ independent of normalization
constant Z!
o General methods for constructing Stein operators: the generator method, density
method, etc.
1V>< . ¢ = Zi 8Xi¢
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Stein’s Method
p=gq, Stein's ldentity : Ex,[(Vxlog p(x), &(x))+ Vx-@(x)] =0:

@ Use integration by parts, assuming zero boundary conditions.

/ P(X)Vxb(x) + B(x) Vxp(x)dx = p(x)p(x)| 7 = 0.
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N
Stein’s Method

p=gq, Stein's ldentity : Ex,[(Vxlog p(x), &(x))+ Vx-@(x)] =0:

Stein's identity: an infinite number of identities (moment equations),

indexed by testing function ¢. Lots of applications:

@ Learning probabilistic models from data

@ Score matching [Hyvarinen, 2005, Lyu, 2009, Sriperumbudur et al., 2013]
o Spectrum methods [Sedghi and Anandkumar, 2014]

@ Variance reduction [Oates et al., 2014, 2016, 2017]
o Feature learning [Janzamin et al., 2014]
@ Optimization [Erdogdu, 2015]

@ and many more ...

Liu et al. (Dartmouth) December 24, 2016 7 /43



Stein’s Method
p#q = dsome ¢, E,q[Tpp(x)] # 0:
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Stein’s Method
p#q = J some ¢, Eyq[Tpp(x)] # O:

Why (method 1)?
@ We can show (denote s,(x) = V log p(x)):

Exng[To@(x)] = Exng[To@(x)] — Exnq[Tqd(x)]
= Ex~q[(sp(x) = 5q(x), ¢(x))]

o Stein operator: essentially the inner product with the
difference of score functions s, — s,.

o Unless V, log p(x) = Vy log q(x), we can always find a ¢(x)
to get non-zero.
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Stein’s Method
p#q = dsome ¢, E,q[Tpp(x)] # 0:

Why (method I1)?
olLet x ~ g and g the density of X’ = x + e(x), then

0
&KL(CI[@] I )| —o = —Ex~qlTpp(x)]-

Equals zero only at the stationary points of KL divergence (i.e., p = q).
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Stein Discrepancy

p#q = 3d¢, suchthat E, [T,¢(x)] #0

@ Define Stein discrepancy between p and g:
D = Ex~
(g, p) gg‘}( xq[Tp®(X)]

F: a rich enough set of functions.
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Stein Discrepancy

p#q = 3¢, suchthat E, ,[Tpp(x)] #0

@ Define Stein discrepancy between p and g:
D = Ey~
(g, p) weaJ)-'( xeq| Tp@(X)]

F: a rich enough set of functions.

o It gives a functional optimization. Traditional Stein’'s method takes F to
be sets of functions with bounded Lipschitz norm; computationally
difficult for practical use.

@ Gorham and Mackey [2015]: Derived a computable Stein discrepancy by
enforcing Lipschitz constraints on a finite number of points, solved by
linear programming.

Liu et al. (Dartmouth) December 24, 2016 10 / 43



Kernelized Stein discrepancy [Liu, Lee, Jordan. 2016]

o Let k(x,x’) be a positive definite kernel, and H, its related reproducing
kernel Hilbert space (RKHS). H = Ho x - -+ x Ho.

o Kernelized Stein discrepancy (KSD): take F to be the unit ball of RKHS.

D(q, p) = Qg;qu[Tpfb(X)], F={becH:|ldlln<1}

Liu et al. (Dartmouth) December 24, 2016 11 / 43



Kernelized Stein discrepancy [Liu, Lee, Jordan. 2016]

o Let k(x,x’) be a positive definite kernel, and H, its related reproducing
kernel Hilbert space (RKHS). H = Hg x -+ x Hp.

o Kernelized Stein discrepancy (KSD): take F to be the unit ball of RKHS.
D(q, p) = maxBxng[Top(x)], 7 ={¢ € H: [|lln <1}

then it has a closed form solution

D(q’ P)2 = IE:X,X"\JCI[K“P(X?X,)]

where  k,(x,x") = 7;,X(7;,X/ ® k(x,x"))

= 5p(x) " k(x, x)sp(x") + $p(x) | V1 k(x, X' )4V ck(x, x') T sp(x") + Ak(x, x")

where 7 is Stein operator w.r.t. x.
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Kernelized Stein discrepancy [Liu, Lee, Jordan. 2016]

o Let k(x,x’) be a positive definite kernel, and H, its related reproducing
kernel Hilbert space (RKHS). H = Hg x -+ x Hp.

o Kernelized Stein discrepancy (KSD): take F to be the unit ball of RKHS.
D(q, p) = maxBxng[Top(x)], 7 ={¢ € H: [|lln <1}

then it has a closed form solution

D(q’ P)2 = IE:X,X"\JCI[KP(X?X,)]

where  k,(x,x") = 7;,X(7;,X/ ® k(x,x"))

= 5p(x) " k(x, x)sp(x") + $p(x) | V1 k(x, X' )4V ck(x, x') T sp(x") + Ak(x, x")

where 7 is Stein operator w.r.t. x. Key: Stein operator is linear.
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Kernelized Stein discrepancy [Liu, Lee, Jordan. 2016]

o Let k(x, x") be a positive definite kernel, and Hy its related reproducing
kernel Hilbert space (RKHS). H = Hg x --- x Ho.
@ Kernelized Stein discrepancy (KSD): take F to be the unit ball of RKHS.

D(q, p) = gea;]EXNq[Tpaﬁ(X)], F={pecH:||p|ly <1}
then it has a closed form solution

D(q, p)* = Exrmglrip(x, X)) = Z“P Xi, Xj)
I#J

empirical estimation (U-statistic)

/ ! /
where  rp(x,x') = TS (75" ® k(x,x'))
= sp(x)Tk(x,x/)sp(x/) + sP(X)TVX/ k(x, X/)+ka(X,XI)TSP(X/) + Ak(x, x/)

where 7 is Stein operator w.r.t. x.
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Empirical Kernelized Stein Discrepancy

@ Given {x;} drawn from (unknown) g(x), the U-statistic provides
unbiased estimator of D(q, p)?:

({X/} ,D) ZK/D(XHXJ

1761

o Asymptotic distribution is well understood:

olf p# g, D*({x:}, p) =D?*(q, p) + Op(1/y/n)  (asymptotic normal)
olf p=gq, D*({x;}, p) = 0,(1/n).  (infinite sum of x? distributions)

@ Goodness-of-fit test: test if {x;} is drawn from p.
o Reject the null if D?({x;}, p) > 7.

o Threshold y decided using a generalized bootstrap procedure by Arcones and
Gine [1992], Huskova and Janssen [1993].
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Goodness-of-fit Test

1D Gaussian mixture model (GMM)

@ Simulate samples either from the true, or the perturbed model with equal probabilities. Use

GOF tests to tell if the sample is drawn from the true model.

©0ur Method =z
-5 MMD-MC(1000) <
#Chi Square Z05
-+ Kolmogorov-Smirnov g
<-Cramer-Von Mises S
<)>rOracle (Likelihood Ratio) = ok
0

0.5 1
500 False Positive Rate
Sample Size n

(significance o = 0.05) (Fixed n = 100 )
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Goodness-of-fit Test

Gaussian-Bernoulli Restricted Boltzmann Machine

@ Gaussian visible nodes + binary hidden nodes; effectively a Gaussian mixture with exponential

number of mixture components.

05 BB ©-Our Method
204X =MMD-MCMC(1000)
o3 <>-Oracle (Likelihood Ratio)
uL] 0.2

0.01 01
Difference between p and g
(50 visible nodes; 10 hidden nodes)

Hidden units

Visible units
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Connection with Other Discrepancy Measures

@ Maximum mean discrepancy (MMD):

M(q, p) = max{E,f —E,f s.t. ||f|[n, <1}
feEHo
Ho is the RKHS related to k(x, x').

@ KSD can be treated as a MMD using the “Steinalized” kernel
kp(x,x") = ’7;,’((7;(/ ® k(x, x")), which depends on p (KSD is
asymmetric):

D(q, p) = max{Ef —Eof st |[Fllx, < 1}
feH,
o H,, is the RKHS of ky(x, x).
o H,, is the image of Stein operator T,¢p: H, = {f = Top: ¢ € H}.

o H, is the “tangent space” of p: E,[f] =0, Vf € H, (will discuss more).
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Connection with Other Discrepancy Measures

Fisher divergence

o Fisher divergence: F(q, p) = Exg[l|sp(x) — s4(x)|[3].
o Used as a learning objective in score matching.

@ KSD is a smoothed version of Fisher divergence; we can show

D(q; p) = Exngl(sp(x) = sq(x)) "k(x,x)(sp(x") = 54(x))]-
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Connection with Other Discrepancy Measures

Fisher divergence

o Fisher divergence: F(q, p) = Exg[l|sp(x) — s4(x)|[3].
o Used as a learning objective in score matching.

@ KSD is a smoothed version of Fisher divergence; we can show

D(q; p) = Exngl(sp(x) = sq(x)) "k(x,x)(sp(x") = 54(x))]-

KL Divergence

| A

o Fisher divergence = derivative of KL when variables are perturbed by
i.i.d. Gaussian (debruijn identity).

@ KSD = derivative of KL when variables are perturbed by smooth
functions in RKHS.
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Related Work on Stein + RKHS

o Chwialkowski et al. [2016]: Independent work on quite the same idea.

o Oates et al. [2014, 2016, 2017]: Combined Stein's identity with RKHS;
used for deriving a super-efficient variance reduction method.
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@ Numerical Quadrature: Given p, find points {x;} to “fool” the

goodness-of-fit test:
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@ Numerical Quadrature: Given p, find points {x;} to “fool” the

goodness-of-fit test:
rgl:n Z kp(Xi, Xj)-

@ Unfortunately, does not work well in practice: Difficult non-convex
optimization.
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Consider a simpler problem:
o Given {x;} generated arbitrarily (e.g., by MCMC or bootstrap).

o Find weights {w;} so that {w;, x;} approximates p in that
22 wih(xi) &~ Exp[h(x)].
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Consider a simpler problem:
o Given {x;} generated arbitrarily (e.g., by MCMC or bootstrap).

o Find weights {w;} so that {w;, x;} approximates p in that
22 wih(x;) & Ex~p[h(x)].
@ Minimizing the empirical kernelized Stein discrepancy:

Enir; {]D)({W,-,x,-}; p) = Z wiwjkp(Xi,xj)  S.t. Z wi =1, w; > O}.

@ This is easy to solve: convex quadratic programming.
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Consider a simpler problem:
o Given {x;} generated arbitrarily (e.g., by MCMC or bootstrap).
o Find weights {w;} so that {w;, x;} approximates p in that
> wih(s) ~ Exep[h(x)]
@ Minimizing the empirical kernelized Stein discrepancy:

Enir]! {D({wi,x}; p) = Z wiwjkp(Xi, xj)  S.t. Z wi =1, w; >0}.

@ Better convergence rate than the typ- 0
ical O(n~1/2) Monte Carlo rate:

log10 MSE

> wih(x))-Eph = 0(n™*?), 1<a <2

50 100 250 500
Sample Size (n)

if {x;} is i.i.d. drawn from some un- A-Typical IS Weights
known g and h € H,.
Related: control variates and Bayesian MC [e.g., Briol et al., 2015, Bach, 2015].

-2 Our Stein Weights
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But how to find a set of good point {x;} to approximate p?
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Stein Variational Gradient Descent

o Directly minimize KL({x;} || p).
o Idea: lteratively move {x;}”_; towards the target p by updates of form
X! x; + ep(x;),

where ¢ is a perturbation direction chosen
to maximumly decrease the KL divergence
with p, that is,

0
b= arger?:ax{ — &KL(q[EQS] H p)|e—0}’

where g[ 4] is the density of x" = x4 €¢(x)
when the density of x is g.
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Stein Variational Gradient Descent

Closely relates to Stein operator:

0
~ T KL (e || P = Bxmal To ()]

where g[¢] is the density of x’ = x + e¢(x) when the density of x is g.
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Stein Variational Gradient Descent

Closely relates to Stein operator:

0
~ T KL (e || P = Bxmal To ()]

where g[¢] is the density of x’ = x + e¢(x) when the density of x is g.

Gives another interpretation of Stein discrepancy:

8
D(q, p) = max{ — 5 KL(gpeq) 1| P)] o}
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Stein Variational Gradient Descent

Closely relates to Stein operator:

9
~ 5 KLGeqy |1 P)|_g = Exnal Tpd(x)]-

where g[¢] is the density of x’ = x + e¢(x) when the density of x is g.

Gives another interpretation of Stein discrepancy:

)
D(q; p) = max { — - KL(qp | P)| o}

The optimal direction has a closed form when F is the unit ball of RKHS
H:

¢ () = ExnglTok(x;, )]
= Eyxq[Vxlogp(x)k(x, ) + Vik(x, )]

4
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Stein Variational Gradient Descent

Approximating E,q[-] with empirical averaging over the current points
gives:

xi 4 Xi + B pyr [ Vilogp(x) k(x, %) + Vik(x,x) ], Vi=1,...,n.

@ Deterministically transport probability mass from initialize g to target p.
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Stein Variational Gradient Descent

Approximating E,q[-] with empirical averaging over the current points
gives:

xi = Xi + B pyr [ Vilogp(x) k(x, %) + Vik(x,x) ], Vi=1,...,n.
T N—— —

gradient repulsive force

Two terms:

o V,logp(x): moves the particles {x;}
towards high probability regions of
p(x).

o V. k(x,x'): enforce diversity in {x;}
(otherwise all x; collapse to modes of

p(x)).
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Stein Variational Gradient Descent

Approximating E,q[-] with empirical averaging over the current points
gives:

xi = Xi + B pyn [ Vilogp(x) k(x, %) + Vik(x,x)], Vi=1,...,n.
T N —— N——
gradient repulsive force
Two terms: 4th lteration

o V,logp(x): moves the particles {x;}
towards high probability regions of
p(x).

o V. k(x,x"): enforce diversity in {x;}
(otherwise all x; collapse to modes of

p(x))-

Movie viewable in Adobe Acrobat Reader
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Stein Variational Gradient Descent

Approximating E,q[-] with empirical averaging over the current points
gives:

gradient

xi = Xi + B piyr [ Vilogp(x) k(x, ) + Vik(x,x)], Vi=1,...,n
il

——
repulsive force
Two terms:

Oth Iteration
@ V,logp(x): moves the particles {x;} 0.3
towards high probability regions of ' -
p(x). 02 i
/ . . . 01 :": :-
@ Vi k(x,x"): enforce diversity in {x;} i
(otherwise all x; collapse to modes of oo 10
p(x))-

Movie viewable in Adobe Acrobat Reader
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Stein Variational Gradient Descent

Approximating E.~ 4 with empirical averaging over the current points
gives:

Xi < xi + e]}AEXN{X,.},n_l[VXIogp(x) k(x,xi)+ Vxk(x,x;))], Vi=1,...,n.
T N—— —

gradient repulsive force

@ When using a single particle (n = 1), it reduces to standard gradient
ascent for max, log p(x) (i.e., maximum a posteriori (MAP)):

x < x + €V log p(x).

o Typical Monte Carlo / MCMC: perform worse when n = 1.
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Stein variational gradient descent is a - - -
@ nonparametric variational inference.
@ deterministic sampling.

@ gradient-based quadrature method.
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As n — oo and € — 0, the evolution of the density of the particles is
governed by a gradient flow

9 3
aqt(X) = —VKL(q: || p),

which decreases KL divergence monotonically

P
5:KL(ae [ p) = =D(qe, p)*.
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Bayesian Logistic Regression

075
. Fzans! T
g st

pe
8 07ty et T
< .t
o L
£ i
30.65
= .

(a) Particle size n =100

0.1

Number of Epoches

Liu et al. (Dartmouth)

e
3
a

Testing Accuracy
o
~

0.65

10 50
Particle Size (n)

250

—e—Stein Variational Gradient Descent (Our Method)
—+Stochastic Langevin (Parallel SGLD)
—v—Particle Mirror Descent (PMD)
-# Doubly Stochastic (DSVI)

-% Stochastic Langevin

SGLD)

(b) Results at 3000 iteration (~ 0.32 epoches)
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Bayesian Neural Network

o Test Bayesian neural nets on UCI dataset (with 20 particles).

@ Compare with probabilistic back propagation (PBP) [Hernandez-Lobato
and Adams, 2015].

Avg. Test RMSE Avg. Test LL Avg. Time (Secs)
Dataset PBP Our Method PBP Our Method PBP Ours
Boston 2.977+0.093 2.957+0.099 | —2.579+0.052 —2.504 + 0.029 18 16
Concrete 5.506 +0.103 5.324+0.104 | —3.137+0.021 —3.082+0.018 33 24
Energy 1.734+0.051 1.374+0.045 | —1.981 +£0.028 —1.767 +0.024 25 21
Kin8nm 0.098 +0.001  0.090 + 0.001 0.901 4+ 0.010 0.984 +0.008 | 118 41
Naval 0.006 +0.000  0.004 + 0.000 3.735 + 0.004 4.089+0.012 | 173 49
Combined | 4.052+0.031 4.033+0.033 | —2.8194+0.008 —2.815+0.008 | 136 51
Protein 4.623+0.009 4.606+0.013 | —2.950+0.002 —2.947 £0.003 | 682 68
Wine 0.614 +£0.008 0.609+0.010 | —0.931+0.014 —0.925+0.014 | 26 22
Yacht 0.778 +£0.042 0.864 +0.052 | —1.211+0.044 —1.225+0.042 25 25
Year 8.733 £+ NA 8.684 + NA —3.586 + NA —3.580 £+ NA T 684

Liu et al. (Dartmouth)
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Learning model from data: Given observed data {xops i}/ ; drawn from

px | ) = Zoxp(—(x ), 7= / exp(—(x; 8))dx.

We want to estimate parameter 6.

@ Deep energy model: ¢(x; 0) is some deep convolutional neural network.
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Learning model from data: Given observed data {xops i}/ ; drawn from

px | ) = Zoxp(—(x ), 7= / exp(—(x; 8))dx.

We want to estimate parameter 6.
@ Deep energy model: ¢(x; 0) is some deep convolutional neural network.

@ Maximum likelihood estimator:
max { L(9) = > log s | 0

Gradient: Vol (0) = — Eons[009:(x; 0)] + Egl0st(x; 0)].

~
Data averaging Model averaging

e Difficulty: requires to sample from p(x|0) to estimate the model
averaging at every gradient iteration.
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Amortized Inference

@ Here, we have to solve many similar inference problems (e.g., sample
from p(x|f) at each iteration).

@ We should not solve each problem from scratch.

@ "Amortized inference”: train a neural network to “learn to draw
samples” from p(x|0) and adaptively adjust network parameters as ¢
updates.

Observed data Energy model Neural sampler
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“Learning to Sample”

o Given p(x) and a neural network f(n, &) with parameter 1 and random

input &.
e Find 1 to match the density of random output x = f(n, §) with p(x).

Target distribution p(x)

Random seed &
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“Learning to Sample”

@ Given p(x) and a neural network f(n, &) with parameter 7 and random
input &.

e Find 1 to match the density of random output x = f(n, §) with p(x).

o Idea: lteratively adjust 77 to make the output move along the Stein
variational gradient direction.

Target distribution p(x)

— o— 00— ~—0 900
— : Stein gradient ﬁ

Random seed ¢
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“Learning to Sample”

@ Given p(x) and a neural network f(n, &) with parameter 7 and random
input &.

e Find 1 to match the density of random output x = f(n, §) with p(x).

o Idea: lteratively adjust 77 to make the output move along the Stein
variational gradient direction.

Target distribution p(x)

— o~ 06— ~—0 900
— : Stein gradient ﬁ

Adjusting network parameter:
141+ €0 f(1,6)Astein

Random seed &
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MLE Learning as an Adversarial Game

@ Can be treated as an adversarial process between the energy model and the neural
sampler.

@ Similar to generative adversarial networks (GAN) [Goodfellow et al., 2014].

Ll @J‘/\ml
i

Observed data

Neural sampler
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Real images Generated by neural sampler
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oIt learns to “linearize” the semantics of the data distribution.

@ Changing the random input & smoothly.
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Real images Generated by Neural Sampler
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airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

DCGAN [Radford et al., 2015]

Inception Score

Real Training Set | 500 Duplicate | DCGAN | Stein
Model Trained on ImageNet 11.237 11.100 6.581 | 6.351
Model Trained on CIFAR-10 0.848 9.807 7.368 | 7.428

Liu et al. (Dartmouth)
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airplane
automobile
bird

cat

deer
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Testing Accuracy

Real Training Set

500 Duplicate

DCGAN

Stein

92.58 %

44.96 %

44.78 %
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Conclusion

o Stein discrepancy Combined with RKHS, variational inference, Monte
Carlo etc.

@ Provides new tools for many perspectives of probabilistic inference &
learning.

@ More ideas from Stein’s method can be potentially useful for practical
machine learning.

@ More applications and theories!
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Thank You

@ Liu, Lee, Jordan. A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
Evaluation https://arxiv.org/abs/1602.03253

@ Liu, Lee. Black-box Importance Sampling https://arxiv.org/abs/1610.05247

@ Liu, Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference
Algorithm https://arxiv.org/abs/1608.04471

@ Wang, Liu. Learning to Draw Samples: With Application to Amortized MLE for Generative
Adversarial Learning https://arxiv.org/abs/1611.01722
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e Is KSD a valid discrepancy: p = g <= D(q, p) =07

@ We can show
5(q: p) = Exingl(5p(x) = 54(x)) Th(x, X)(5p(x') = 54(x"))]
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e Is KSD a valid discrepancy: p = g <= D(q, p) =07

@ We can show
5(q: p) = Exingl(5p(x) = 54(x)) Th(x, X)(5p(x') = 54(x"))]

(Recall that Eq[7,¢(x)] = Eq[(sp(x) — s4(x))é(x) '])

@ We just need k(x,x’) to be integrally strictly positive definite:

/g(x)k(x,x’)g(x')dx >0 Vgelx\{0}
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More face images generated by our neural sampler on CelebA.
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g
DCGAN

Images generated by DCGAN [Radford et al., 2015] and our neural sampler.
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