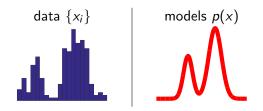
A Stein Variational Framework for Deep Probabilistic Modeling

Qiang Liu Dartmouth College

Machine Learning and Statistics



Data-Model Discrepancy

$$\mathbb{D}(\underbrace{\mathbf{M}}_{\mathsf{data}} \{x_i\}_{i=1}^n}, \underbrace{\mathsf{M}}_{\mathsf{model} p})$$

• Learning (model estimation): Given $\{x_i\}$, find an optimal p: $\min_p \mathbb{D}(\{x_i\}, p).$

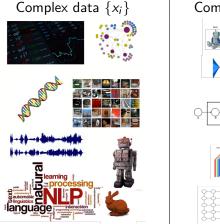
• Inference (or sampling): Given p, find optimal $\{x_i\}$: $\min_{\{x_i\}} \mathbb{D}(\{x_i\}, p).$

• Model checking (e.g., goodness of fit test): Given both p and {x_i}, tell if they are consistent:

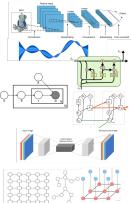
$$\mathbb{D}(\{x_i\}, p) \stackrel{?}{=} 0.$$

In Reality ...

• Modern machine learning = Complex data + Complex models



Complex models p(x)



Unnormalized Distributions

• In practice, many distributions have unnormalized densities:

$$p(x) = \frac{1}{Z}\overline{p}(x), \qquad Z = \int \overline{p}(x)dx.$$

Z: normalization constant, critically difficult to calculate!

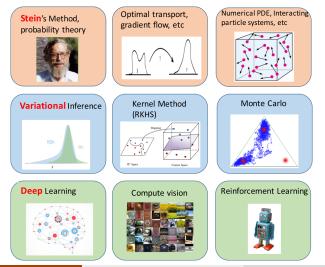
Widely appear in

- Bayesian inference,
- Probabilistic graphical models,
- Deep energy-based models,
- Log-linear models,
- and many more ...

• Highly difficult to learn, sample and evaluate.

• Scalable computational algorithms are the key.

• Can benefit from integrating tools in different areas ...



This Talk

This talk focuses on the inference (sampling) problem:
 Given p, find {x_i} to approximation p.

• Two applications:

- Policy optimization in reinforcement learning.
- Training neural networks to generate natural images.

Classical Methods for Inference (Sampling)

• Sampling: Given p, find $\{x_i\}$ to approximation p.

Monte Carlo / Markov chain Monte Carlo (MCMC):

- Simulate random points.
- Asymptotically "correct", but slow.

Variational inference:

• Approximate p with a simpler q_{θ} (e.g., Gaussian): $\min_{\theta \in \Theta} \text{KL}(q_{\theta} || p)$.

• Need parametric assumption: fast, but "wrong".

• Optimization (maximum a posteriori (MAP)):

• Find a single point approximation: $x^* = \arg \max p(x)$.

• Faster, local optima, no uncertainty assessment.

• Directly minimize the Kullback-Leibler (KL) divergence between {x_i} and p:

 $\min_{\{\boldsymbol{x}_i\}} \mathrm{KL}(\{\boldsymbol{x}_i\}, \boldsymbol{p})$

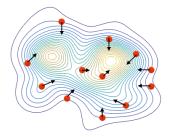
• An ill-posed problem? $KL(\{x_i\}, p) = \infty$.

• Turns out to be doable, with some new insights.

Idea: Iteratively move $\{x_i\}_{i=1}^n$ towards the target p by updates of form

 $x'_i \leftarrow x_i + \epsilon \phi(x_i),$

 ϵ : step-size. ϕ : a perturbation direction chosen to maximally decrease the KL divergence with p:



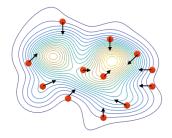
$$\phi = \arg\max_{\phi \in \mathcal{F}} \big\{ \underbrace{\mathrm{KL}(q \mid\mid p)}_{\text{old particles}} - \underbrace{\mathrm{KL}(q_{[\epsilon\phi]} \mid\mid p)}_{\text{updated particles}} \big\}$$

where $q_{[\epsilon\phi]}$ is the density of $x' = x + \epsilon\phi(x)$ when the density of x is q.

Idea: Iteratively move $\{x_i\}_{i=1}^n$ towards the target p by updates of form

 $x'_i \leftarrow x_i + \epsilon \phi(x_i),$

 ϵ : step-size. ϕ : a perturbation direction chosen to maximally decrease the KL divergence with p:



$$\begin{split} \phi &= \operatorname*{arg\,max}_{\phi \in \mathcal{F}} \left\{ \mathrm{KL}(\boldsymbol{q} \mid\mid \boldsymbol{p}) - \mathrm{KL}(\boldsymbol{q}_{[\epsilon \phi]} \mid\mid \boldsymbol{p}) \right\} \\ &\approx \operatorname*{arg\,max}_{\phi \in \mathcal{F}} \left\{ -\frac{\partial}{\partial \epsilon} \mathrm{KL}(\boldsymbol{q}_{[\epsilon \phi]} \mid\mid \boldsymbol{p}) \right|_{\epsilon=0} \right\}, \qquad //\mathrm{when \ step \ size \ } \epsilon \ \text{is \ small} \end{split}$$

where $q_{[\epsilon\phi]}$ is the density of $x' = x + \epsilon\phi(x)$ when the density of x is q.

Key: the objective is a *simple, linear functional* of ϕ :

$$-\frac{\partial}{\partial \epsilon} \mathrm{KL}(\boldsymbol{q}_{[\epsilon \boldsymbol{\phi}]} \mid| \boldsymbol{p})\big|_{\epsilon=0} = \mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}} \boldsymbol{\phi}(\boldsymbol{x})].$$

where \mathcal{T}_p is a linear operator called **Stein operator** related to *p*:

$$\mathcal{T}_{p}\phi(x) \stackrel{def}{=} \langle
abla_{x} \log p(x), \phi(x)
angle +
abla_{x} \cdot \phi(x).^{1}$$

 $^{1}\nabla_{\mathbf{x}} \cdot \boldsymbol{\phi} = \sum_{i} \partial_{\mathbf{x}_{i}} \boldsymbol{\phi}$

Key: the objective is a *simple, linear functional* of ϕ :

$$-\frac{\partial}{\partial \epsilon} \mathrm{KL}(\boldsymbol{q}_{[\epsilon \boldsymbol{\phi}]} \mid| \boldsymbol{p})\big|_{\epsilon=0} = \mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}} \boldsymbol{\phi}(\boldsymbol{x})].$$

where \mathcal{T}_p is a linear operator called **Stein operator** related to *p*:

$$\mathcal{T}_{p}\phi(x) \stackrel{def}{=} \langle \underbrace{\nabla_{x} \log p(x)}_{\text{score function}}, \phi(x) \rangle + \nabla_{x} \cdot \phi(x).$$

Score function $\nabla_x \log p(x) = \frac{\nabla_x p(x)}{p(x)}$, independent of the normalization constant Z!

$${}^{1}\nabla_{x}\cdot\boldsymbol{\phi}=\sum_{i}\partial_{x_{i}}\boldsymbol{\phi}$$

Key: the objective is a *simple, linear functional* of ϕ :

0

$$-\frac{\partial}{\partial \epsilon} \mathrm{KL}(\boldsymbol{q}_{[\epsilon \boldsymbol{\phi}]} \mid| \boldsymbol{p})\big|_{\epsilon=0} = \mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}} \boldsymbol{\phi}(\boldsymbol{x})].$$

where \mathcal{T}_p is a linear operator called **Stein operator** related to *p*:

$$\mathcal{T}_{p}\phi(x) \stackrel{def}{=} \langle
abla_{x} \log p(x), \phi(x)
angle +
abla_{x} \cdot \phi(x).^{1}$$

- Stein's method: a set of theoretical techniques for proving fundamental approximation bounds and limits (such as central limit theorem) in probability theory.
- A large body of theoretical work. Known to be "remarkably powerful".

$${}^{1}\nabla_{x}\cdot\phi=\sum_{i}\partial_{x_{i}}\phi$$

Stein Discrepancy

The optimization is equivalent to

$$\mathbb{D}(\boldsymbol{q} \mid\mid \boldsymbol{p}) \stackrel{\text{def}}{=} \max_{\phi \in \mathcal{F}} \left\{ \mathbb{E}_{\boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}}\phi] \right\}$$

where $\mathbb{D}(q \mid \mid p)$ is called Stein discrepancy: $\mathbb{D}(q \mid \mid p) = 0$ iff q = p if \mathcal{F} is "large" enough.

Stein Discrepancy

The optimization is equivalent to

$$\mathbb{D}(\boldsymbol{q} \mid\mid \boldsymbol{p}) \stackrel{def}{=} \max_{\phi \in \mathcal{F}} \left\{ \mathbb{E}_{\boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}}\phi] \right\}$$

where $\mathbb{D}(q \mid \mid p)$ is called Stein discrepancy: $\mathbb{D}(q \mid \mid p) = 0$ iff q = p if \mathcal{F} is "large" enough.

- \bullet The choice of ${\cal F}$ is critical.
- Traditional Stein discrepancy is not computable: casts challenging infinite dimensional functional optimizations.
 - Imposing constraints only on finite numbers of points [Gorham, Mackey 15; Gorham et al. 16]
 - Obtaining closed form solution using reproducing kernel Hilbert space [Liu et al.

16; Chwialkowski et al. 16; Oates et al. 14; Gorham, Mackey 17]

Stein Discrepancy

The optimization is equivalent to

$$\mathbb{D}(\boldsymbol{q} \mid\mid \boldsymbol{p}) \stackrel{def}{=} \max_{\phi \in \mathcal{F}} \left\{ \mathbb{E}_{\boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}}\phi] \right\}$$

where $\mathbb{D}(q \mid \mid p)$ is called Stein discrepancy: $\mathbb{D}(q \mid \mid p) = 0$ iff q = p if \mathcal{F} is "large" enough.

- The choice of $\mathcal F$ is critical.
- Traditional Stein discrepancy is not computable: casts challenging infinite dimensional functional optimizations.
 - Imposing constraints only on finite numbers of points [Gorham, Mackey 15; Gorham et al. 16]
 - Obtaining closed form solution using reproducing kernel Hilbert space [Liu et al.

16; Chwialkowski et al. 16; Oates et al. 14; Gorham, Mackey 17]

Kernel Stein Discrepancy [Liu et al. 16; Chwialkowski et al. 16]

Computable Stein discrepancy using kernel:

• Take \mathcal{F} to be the unit ball of any reproducing kernel Hilbert space (RKHS) \mathcal{H} , with positive kernel k(x, x'):

$$\mathbb{D}(\boldsymbol{q} \mid\mid \boldsymbol{p}) \stackrel{def}{=} \max_{\boldsymbol{\phi} \in \mathcal{H}} \left\{ \mathbb{E}_{\boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}} \boldsymbol{\phi}] \quad s.t. \quad ||\boldsymbol{\phi}||_{\mathcal{H}} \leq 1
ight\}$$

Closed-form solution:

$$\begin{split} \phi^*(x) &\propto \mathbb{E}_{x \sim q}[\mathcal{T}_p k(x, \cdot)] \\ &= \mathbb{E}_{x \sim q}[\nabla_x \log p(x) k(x, \cdot) + \nabla k(x, \cdot)] \end{split}$$

Kernel Stein Discrepancy:

$$\mathbb{D}(q, p)^2 = \mathbb{E}_{x, x' \sim q}[\mathcal{T}_p^{\times} \mathcal{T}_p^{x'} k(x, x')]$$

• $\mathcal{T}_p^{\times}, \mathcal{T}_p^{\times'}$: Stein operator w.r.t. variable x, x'.

Kernel Stein Discrepancy [Liu et al. 16; Chwialkowski et al. 16]

• Computable Stein discrepancy using kernel:

• Take \mathcal{F} to be the unit ball of any reproducing kernel Hilbert space (RKHS) \mathcal{H} , with positive kernel k(x, x'):

$$\mathbb{D}(\boldsymbol{q} \mid\mid \boldsymbol{p}) \stackrel{def}{=} \max_{\boldsymbol{\phi} \in \mathcal{H}} \left\{ \mathbb{E}_{\boldsymbol{q}}[\mathcal{T}_{\boldsymbol{p}} \boldsymbol{\phi}] \quad s.t. \quad ||\boldsymbol{\phi}||_{\mathcal{H}} \leq 1
ight\}$$

Closed-form solution:

$$\begin{split} \phi^*(x) &\propto \mathbb{E}_{x \sim q}[\mathcal{T}_p k(x, \cdot)] \\ &= \mathbb{E}_{x \sim q}[\nabla_x \log p(x) k(x, \cdot) + \nabla k(x, \cdot)] \end{split}$$

• Kernel Stein Discrepancy:

$$\mathbb{D}(q, p)^2 = \mathbb{E}_{x, x' \sim q}[\mathcal{T}_p^x \mathcal{T}_p^{x'} k(x, x')]$$

• $\mathcal{T}_p^x, \mathcal{T}_p^{x'}$: Stein operator w.r.t. variable x, x'.

Kernel Stein Discrepancy

Kernel Stein discrepancy provides a computational tool for comparing samples $\{x_i\}$ (from unknown q) with unnormalized models p:

$$\mathbb{D}(\{\mathbf{x}_i\}, \mathbf{p})^2 \stackrel{\text{def}}{=} \frac{1}{n^2} \sum_{ij} \mathcal{T}_{\mathbf{p}}^{\mathbf{x}} \mathcal{T}_{\mathbf{p}}^{\mathbf{x}'} k(\mathbf{x}_i, \mathbf{x}_j).$$

Applications:

- Goodness-of-fit test for unnormalized distributions [Liu et al. 16; Chwialkowski et al. 16].
- Black-box importance sampling [Liu, Lee. 16]: importance weights for samples from unknown distributions by minimizing Stein discrepancy, with super-efficient convergence rates.

Stein Variational Gradient Descent

SVGD: Approximating $\mathbb{E}_{x \sim q}[\cdot]$ with empirical averaging $\hat{\mathbb{E}}_{x \sim \{x_i\}_{i=1}^n}[\cdot]$ over the current points:

$$x_i \leftarrow x_i + \epsilon \hat{\mathbb{E}}_{x \sim \{x_i\}_{i=1}^n} [\nabla_x logp(x)k(x, x_i) + \nabla_x k(x, x_i)], \quad \forall i = 1, \dots, n.$$

• Iteratively move particles $\{x_i\}$ to fit p.

Stein Variational Gradient Descent

SVGD: iteratively update $\{x_i\}$ until convergence:

$$x_i \leftarrow x_i + \epsilon \hat{\mathbb{E}}_{x \sim \{x_i\}_{i=1}^n} [\underbrace{\nabla_x logp(x)k(x, x_i)}_{i=1} + \underbrace{\nabla_x k(x, x_i)}_{i=1}], \quad \forall i = 1, \dots, n.$$

weighted sum of gradient

repulsive force

Two terms:

- $\nabla_x logp(x)$: moves the particles $\{x_i\}$ towards high probability regions of p(x).
- Nearby particles share gradient with weighted sum.
- $\nabla_x k(x, x')$: enforces diversity in $\{x_i\}$ (otherwise all x_i collapse to modes of p(x)).

Stein Variational Gradient Descent

SVGD: iteratively update $\{x_i\}$ until convergence:

$$x_i \leftarrow x_i + \epsilon \hat{\mathbb{E}}_{x \sim \{x_i\}_{i=1}^n} [\underbrace{\nabla_x logp(x)k(x, x_i)}_{i=1} + \underbrace{\nabla_x k(x, x_i)}_{i=1}], \quad \forall i = 1, \dots, n.$$

weighted sum of gradient

repulsive force

Two terms:

- $\nabla_x logp(x)$: moves the particles $\{x_i\}$ towards high probability regions of p(x).
- Nearby particles share gradient with weighted sum.
- $\nabla_x k(x, x')$: enforces diversity in $\{x_i\}$ (otherwise all x_i collapse to modes of p(x)).

SVGD vs. MAP and Monte Carlo

$$x_{i} \leftarrow x_{i} + \epsilon \hat{\mathbb{E}}_{x \sim \{x_{i}\}_{i=1}^{n}} [\underbrace{\nabla_{x} logp(x)}_{gradient} k(x, x_{i}) + \underbrace{\nabla_{x} k(x, x_{i})}_{repulsive force}], \quad \forall i = 1, \dots, n.$$

 When using a single particle (n = 1), SVGD reduces to standard gradient ascent for max_x log p(x) (i.e., maximum a posteriori (MAP)):

$$x \leftarrow x + \epsilon \nabla_x \log p(x).$$

MAP (SVGD with n = 1): already performs well in many practical cases.
Typical Monte Carlo / MCMC: perform worse when n = 1.

SVGD as Gradient Flow of KL Divergence [Liu 2016, arXiv:1704.07520]

The empirical measures of the particles weakly converge to the solution of a nonlinear Fokker-Planck equation, that is a gradient flow of KL divergence:

$$\frac{\partial}{\partial t}q_t = -\operatorname{grad}_{\mathcal{H}}\operatorname{KL}(q_t \mid\mid p),$$

which decreases KL divergence monotonically

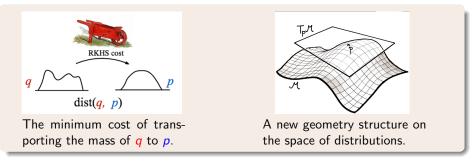
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{KL}(q_t \mid\mid p) = -\mathbb{D}(q_t, \ p)^2.$$

SVGD as Gradient Flow of KL Divergence [Liu 2016, arXiv:1704.07520]

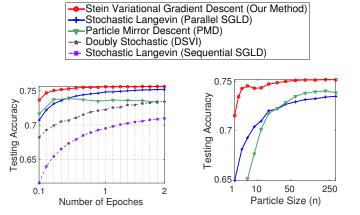
The empirical measures of the particles weakly converge to the solution of a nonlinear Fokker-Planck equation, that is a gradient flow of KL divergence:

$$\frac{\partial}{\partial t} q_t(x) = -\text{grad}_{\mathcal{H}} \text{KL}(q_t \mid\mid p),$$

 $\operatorname{grad}_{\mathcal{H}}\operatorname{KL}(q \mid\mid p)$ is a functional gradient defined w.r.t. a new notion of distance between distributions.



Bayesian Logistic Regression



(a) Results with particle size n = 100 (b) Results at the 3000th iteration

Bayesian Neural Network

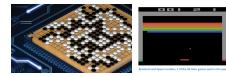
- Test Bayesian neural nets on benchmark datasets.
- Used 20 particles.
- Compared with probabilistic back propagation (PBP) [Hernandez-Lobato et al. 2015]

	Avg. Test RMSE		Avg. Test LL		Avg. Time (Secs)	
Dataset	PBP	Our Method	PBP	Our Method	PBP	Ours
Boston	2.977 ± 0.093	$\textbf{2.957} \pm \textbf{0.099}$	-2.579 ± 0.052	-2.504 ± 0.029	18	16
Concrete	5.506 ± 0.103	5.324 ± 0.104	-3.137 ± 0.021	-3.082 ± 0.018	33	24
Energy	1.734 ± 0.051	1.374 ± 0.045	-1.981 ± 0.028	-1.767 ± 0.024	25	21
Kin8nm	0.098 ± 0.001	0.090 ± 0.001	0.901 ± 0.010	$\textbf{0.984} \pm \textbf{0.008}$	118	41
Naval	0.006 ± 0.000	0.004 ± 0.000	3.735 ± 0.004	$\textbf{4.089} \pm \textbf{0.012}$	173	49
Combined	4.052 ± 0.031	$\textbf{4.033} \pm \textbf{0.033}$	-2.819 ± 0.008	-2.815 ± 0.008	136	51
Protein	4.623 ± 0.009	$\textbf{4.606} \pm \textbf{0.013}$	-2.950 ± 0.002	-2.947 ± 0.003	682	68
Wine	0.614 ± 0.008	0.609 ± 0.010	-0.931 ± 0.014	-0.925 ± 0.014	26	22
Yacht	0.778 ± 0.042	0.864 ± 0.052	-1.211 ± 0.044	-1.225 ± 0.042	25	25
Year	$8.733\pm\mathrm{NA}$	$8.684 \pm \mathrm{NA}$	$-3.586\pm\mathrm{NA}$	$-3.580\pm\mathrm{NA}$	7777	684

SVGD as a Search Heuristic

- Particles collaborate to explore large space.
- Can be used to solve challenging non-convex optimization problems.

• Application: Policy optimization in deep reinforcement learning.

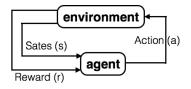


A Very Quick Intro to Reinforcement Learning

- Agents take actions *a* based on observed states *s*, and receive reward *r*.
- Policy $\pi_{\theta}(a|s)$, parameterized by θ .
- Goal: find optimal policy π_θ(a|s) to maximize the expected reward:

 $\max_{\theta} J(\theta) = \mathbb{E}[r(s, a) \mid \pi_{\theta}].$

• Viewed as a black-box optimization.



Model-Free Policy Gradient

Model-free policy gradient methods:

• Estimate the gradient (without knowing the transition and reward model), and perform gradient descent:

$$\theta \leftarrow \theta + \epsilon \nabla_{\theta} J(\theta).$$

• Different methods for gradient estimation:

- Finite difference methods.
- Likelihood ratio methods: REINFORCE, etc.
- Actor-critic methods: Advantage Actor-Critic (A2C), etc.

Model-Free Policy Gradient

Advantages:

- Better convergence, work for high dimensional, continuous control tasks.
- Impressive results on Atari games, vision-based navigation, etc.

• Challenges:

- Converge to local optima.
- High variance in gradient estimation.

Stein Variational Policy Gradient [Liu et al. 17, arXiv:1704.02399]

• Stein variational policy gradient: find a group of $\{\theta_i\}$ by

$$\theta_i \leftarrow \theta_i + \frac{\epsilon}{n} \sum_{j=1}^{n} [\underbrace{\nabla_{\theta_j} J(\theta_j) k(\theta_j, \theta_i)}_{\text{gradient sharing}} + \underbrace{\alpha \underbrace{\nabla_{\theta_j} k(\theta_j, \theta_i)}_{\text{repulsive force}}]$$

• Similar to collective behaviors in swarm intelligence.

Stein Variational Policy Gradient [Liu et al. 17, arXiv:1704.02399]

• Stein variational policy gradient: find a group of $\{\theta_i\}$ by

$$\theta_{i} \leftarrow \theta_{i} + \frac{\epsilon}{n} \sum_{j=1}^{n} [\underbrace{\nabla_{\theta_{j}} J(\theta_{j}) k(\theta_{j}, \theta_{i})}_{\text{gradient sharing}} + \alpha \underbrace{\nabla_{\theta_{j}} k(\theta_{j}, \theta_{i})}_{\text{repulsive force}}]$$

• Can be viewed as sampling $\{\theta_i\}$ from a Boltzmann distribution:

$$p(heta) \propto \exp(rac{1}{lpha}J(heta))$$

 α : temperature parameter.

Stein Variational Policy Gradient [Liu et al. 17, arXiv:1704.02399]

• Stein variational policy gradient: find a group of $\{\theta_i\}$ by

$$\theta_i \leftarrow \theta_i + \frac{\epsilon}{n} \sum_{j=1}^{n} [\underbrace{\nabla_{\theta_j} J(\theta_j) k(\theta_j, \theta_i)}_{\text{gradient sharing}} + \alpha \underbrace{\nabla_{\theta_j} k(\theta_j, \theta_i)}_{\text{repulsive force}}]$$

• Can be viewed as sampling $\{\theta_i\}$ from a Boltzmann distribution:

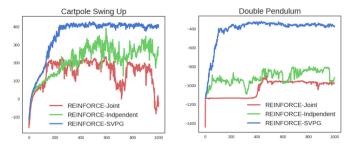
$$p(\theta) \propto \exp(\frac{1}{\alpha}J(\theta)) = \arg\max_{q} \{\mathbb{E}_{q}[J(\theta)] + \alpha H(q)\}.$$

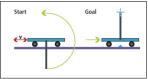
entropy regularization
encourage exploration

 α : temperature parameter. H(q): entropy.

- REINFORCE-SVPG: Stein variational gradient (n = 16 agents).
- REINFORCE-Independent: *n* independent gradient descent agents.

• REINFORCE-Joint: a single agent, using *n* times as many data per iteration.

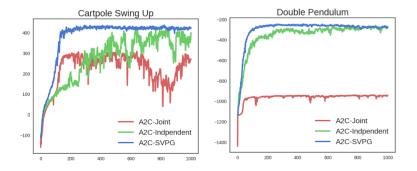




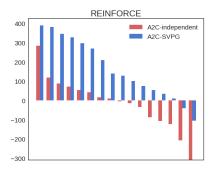
• A2C-SVPG: Stein variational gradient (n = 16 agents).

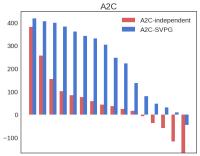
• A2C-Independent: *n* independent gradient descent agents.

• A2C-Joint: a single agent, using *n* times as many data per iteration.

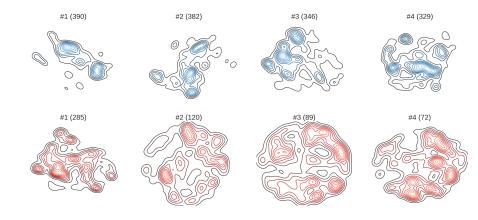


• Average returns of the policies given by SVGD (blue) and independent A2C (red), for Cartpole Swing Up.





State visitation density of the top 4 policies given by SVGD (upper) and independent REINFORCE (lower), for Cartpole Swing Up.

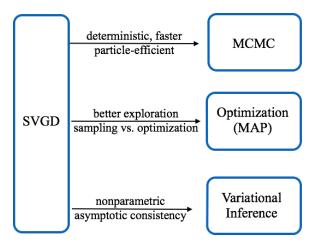


Swimmer

Top Four Policies by SVPG

Stein Variational Gradient Descent

• SVGD: a simple, efficient algorithm for sampling and non-convex optimization.



Amortized SVGD: Learning to Sample

• SVGD is designed for sampling **individual distributions**.

What if we need to solve many similar inference problems repeatedly?
Posterior inference for different users, images, documents, etc.
sampling as inner loops of all other algorithms.

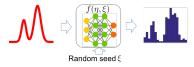
• We should not solve each problem from scratch.

• Amortized SVGD: train feedforward neural networks to learn to draw samples by mimicking the SVGD dynamics.

Learning to Sample

Problem formulation:

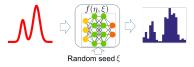
Given p and a neural net f(η, ξ) with parameter η and random input ξ.
Find η such that the random output x = f(η, ξ) approximates distribution p.



Learning to Sample

Problem formulation:

Given p and a neural net f(η, ξ) with parameter η and random input ξ.
Find η such that the random output x = f(η, ξ) approximates distribution p.



• Critically challenging to solve, when the structure of f and input ξ is complex, or even unknown (black-box).

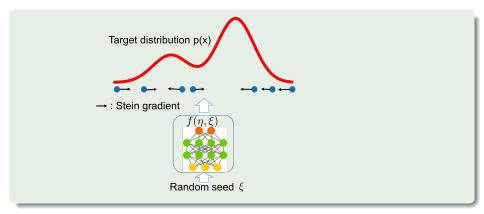
• Progresses made only very recently:

• Amortized SVGD: sidestep the difficulty using Stein variational gradient.

• Other recent works: [Ranganath et al. 16, Mescheder et al. 17, Li et al. 17]

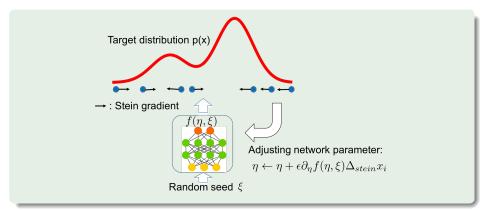
Amortized SVGD [Wang, Liu 16, arXiv:1611.01722; Liu, Feng 16, arXiv:1612.00081]

• Amortized SVGD: Iteratively adjust η to make the output move along the Stein variational gradient direction.



Amortized SVGD [Wang, Liu 16, arXiv:1611.01722; Liu, Feng 16, arXiv:1612.00081]

• Amortized SVGD: Iteratively adjust η to make the output move along the Stein variational gradient direction.



Learning energy-based models from data: Given observed data $\{x_{obs,i}\}_{i=1}^{n}$, want to learn model $p_{\theta}(x)$:

$$p_{ heta}(x) = rac{1}{Z} \exp(\psi_{ heta}(x)), \qquad Z = \int \exp(\psi_{ heta}(x)) dx.$$

• Deep energy model (when $\psi_{\theta}(x)$ is a neural net), graphical models, etc.

• Classical method: estimating θ by maximizing the likelihood:

$$\max_{\theta} \{ L(\theta) \equiv \hat{\mathbb{E}}_{obs}[\log p_{\theta}(x)] \}.$$

Gradient: $\nabla_{\theta} L(\theta) = \underbrace{\hat{\mathbb{E}}_{obs}[\partial_{\theta}\psi_{\theta}(x)]}_{\text{Average on observed data}} - \underbrace{\mathbb{E}_{p_{\theta}}[\partial_{\theta}\psi_{\theta}(x)]}_{\text{Expectation on model }p_{\theta}}$

• Difficulty: requires to sample from $p(x|\theta)$ at every iteration.

• Difficulty: requires to sample from $p(x|\theta)$ at every iteration.

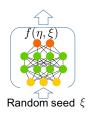
Gradient:

$$\nabla_{\theta} L(\theta) =$$

$$\mathbb{\hat{E}}_{obs}[\partial_{\theta}\psi_{\theta}(x)]$$

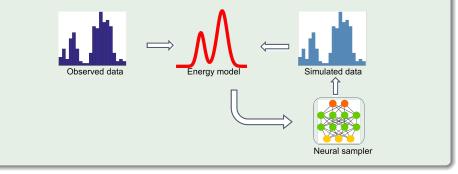
Average on observed data

Expectation on model p_{θ}



Amortized MLE as an Adversarial Game

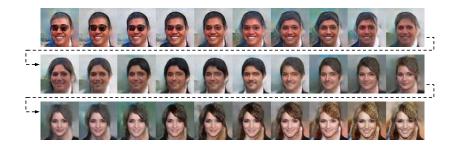
- Can be treated as an adversarial process between the energy model and the neural sampler.
- Similar to generative adversarial networks (GAN) [Goodfellow et al., 2014].



Real images

Generated by Stein neural sampler

- It captures the semantics of the data distribution.
- Changing the random input ξ smoothly.



Real images

Generated by Stein neural sampler

DCGAN

SteinGAN

	Real Training Set	500 Duplicate	DCGAN	SteinGAN
Inception Score	11.237	11.100	6.581	6.711
Testing Accuracy	92.58 %	44.96 %	44.78 %	61.09 %

What do we learn?

- The traditional maximum likelihood (MLE) framework failed to generate realistic-looking images, over-dominated by the recent GAN approaches.
- It turns out amortized inference is the key.
- Connecting these two approaches allows us to combine their advantages.

Thank You

Powered by SVGD

Liu et al. (Dartmouth)

August 4, 2017 45 / 46

References I

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.