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Machine Learning and Statistics

data {xi} models p(x)
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Data-Model Discrepancy

D( , )
data {xi}ni=1 model p

Learning (model estimation): Given {xi}, find an optimal p:

min
p

D({xi}, p).

Inference (or sampling): Given p, find optimal {xi}:

min
{xi}

D({xi}, p).

Model checking (e.g., goodness of fit test): Given both p and {xi},
tell if they are consistent:

D({xi}, p)
?
= 0.
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In Reality ...

Modern machine learning = Complex data + Complex models

Complex data {xi} Complex models p(x)
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Unnormalized Distributions

In practice, many distributions have unnormalized densities:

p(x) =
1

Z
p̄(x), Z =

∫
p̄(x)dx .

Z : normalization constant, critically difficult to calculate!

Widely appear in
Bayesian inference,

Probabilistic graphical models,

Deep energy-based models,

Log-linear models,

and many more ...

Highly difficult to learn, sample and evaluate.
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Scalable computational algorithms are the key.

Can benefit from integrating tools in different areas ...
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This Talk

This talk focuses on the inference (sampling) problem:

Given p, find {xi} to approximation p.

Two applications:

Policy optimization in reinforcement learning.

Training neural networks to generate natural images.
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Classical Methods for Inference (Sampling)

Sampling: Given p, find {xi} to approximation p.

Monte Carlo / Markov chain Monte Carlo (MCMC):

Simulate random points.

Asymptotically “correct”, but slow.

Variational inference:

Approximate p with a simpler qθ (e.g., Gaussian): minθ∈Θ KL(qθ || p).

Need parametric assumption: fast, but “wrong”.

Optimization (maximum a posteriori (MAP)):

Find a single point approximation: x∗ = arg max p(x).

Faster, local optima, no uncertainty assessment.
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Stein Variational Gradient Descent (SVGD) [Liu Wang,

2016]

Directly minimize the Kullback-Leibler (KL) divergence between {xi}
and p:

min
{xi}

KL({xi}, p)

An ill-posed problem? KL({xi}, p) =∞.

Turns out to be doable, with some new insights.
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Stein Variational Gradient Descent (SVGD) [Liu Wang, 2016]

Idea: Iteratively move {xi}ni=1 towards the
target p by updates of form

x ′i ← xi + εφ(xi ),

ε: step-size. φ: a perturbation direction
chosen to maximally decrease the KL di-
vergence with p:

φ = arg max
φ∈F

{
KL(q || p)︸ ︷︷ ︸
old particles

−KL(q[εφ] || p)︸ ︷︷ ︸
updated particles

}

where q[εφ] is the density of x ′ = x + εφ(x) when the density of x is q.

Liu et al. (Dartmouth) August 4, 2017 10 / 46



Stein Variational Gradient Descent (SVGD) [Liu Wang, 2016]

Idea: Iteratively move {xi}ni=1 towards the
target p by updates of form

x ′i ← xi + εφ(xi ),

ε: step-size. φ: a perturbation direction
chosen to maximally decrease the KL di-
vergence with p:

φ = arg max
φ∈F

{
KL(q || p)−KL(q[εφ] || p)

}
≈ arg max

φ∈F

{
− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

}
, //when step size ε is small

where q[εφ] is the density of x ′ = x + εφ(x) when the density of x is q.
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Stein Variational Gradient Descent (SVGD) [Liu Wang, 2016]

Key: the objective is a simple, linear functional of φ:

− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)].

where Tp is a linear operator called Stein operator related to p:

Tpφ(x)
def
= 〈∇x log p(x), φ(x)〉+∇x · φ(x).1

1∇x · φ =
∑

i ∂xiφ
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Score function ∇x log p(x) = ∇xp(x)
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Stein Variational Gradient Descent (SVGD) [Liu Wang, 2016]

Key: the objective is a simple, linear functional of φ:

− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)].

where Tp is a linear operator called Stein operator related to p:

Tpφ(x)
def
= 〈∇x log p(x), φ(x)〉+∇x · φ(x).1

Stein’s method: a set of theoretical
techniques for proving fundamental
approximation bounds and limits (such as
central limit theorem) in probability theory.

A large body of theoretical work. Known
to be “remarkably powerful”.

1∇x · φ =
∑

i ∂xiφ
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Stein Discrepancy

The optimization is equivalent to

D(q || p)
def
= max

φ∈F

{
Eq[Tpφ]

}
where D(q || p) is called Stein discrepancy: D(q || p) = 0 iff q = p if F is
“large” enough.

Liu et al. (Dartmouth) August 4, 2017 12 / 46



Stein Discrepancy

The optimization is equivalent to

D(q || p)
def
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φ∈F

{
Eq[Tpφ]

}
where D(q || p) is called Stein discrepancy: D(q || p) = 0 iff q = p if F is
“large” enough.

The choice of F is critical.

Traditional Stein discrepancy is not computable: casts challenging
infinite dimensional functional optimizations.

Imposing constraints only on finite numbers of points [Gorham, Mackey 15; Gorham et al.

16]

Obtaining closed form solution using reproducing kernel Hilbert space [Liu et al.

16; Chwialkowski et al. 16; Oates et al. 14; Gorham, Mackey 17]
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Kernel Stein Discrepancy [Liu et al. 16; Chwialkowski et al. 16]

Computable Stein discrepancy using kernel:

Take F to be the unit ball of any reproducing kernel Hilbert space (RKHS)
H, with positive kernel k(x , x ′):

D(q || p)
def
= max

φ∈H

{
Eq[Tpφ] s.t. ||φ||H ≤ 1

}
Closed-form solution:

φ∗(x) ∝ Ex∼q[Tpk(x , ·)]

= Ex∼q[∇x log p(x)k(x , ·) +∇k(x , ·)]

Kernel Stein Discrepancy:

D(q, p)2 = Ex ,x ′∼q[T x
p T x ′

p k(x , x ′)]

T x
p , T x′

p : Stein operator w.r.t. variable x , x ′.
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Kernel Stein Discrepancy

Kernel Stein discrepancy provides a computational tool for comparing
samples {xi} (from unknown q) with unnormalized models p:

D({xi}, p)2 def
=

1

n2

∑
ij

T x
p T x ′

p k(xi , xj).

Applications:

Goodness-of-fit test for unnormalized
distributions [Liu et al. 16; Chwialkowski et al. 16].

Black-box importance sampling [Liu, Lee. 16]:
importance weights for samples from unknown
distributions by minimizing Stein discrepancy,
with super-efficient convergence rates.
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Stein Variational Gradient Descent

SVGD: Approximating Ex∼q[·] with empirical averaging Êx∼{xi}ni=1
[·] over

the current points:

xi ← xi + εÊx∼{xi}ni=1
[∇x logp(x)k(x , xi ) +∇xk(x , xi )], ∀i = 1, . . . , n.

Iteratively move particles {xi} to fit p.
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Stein Variational Gradient Descent

SVGD: iteratively update {xi} until convergence:

xi ← xi + εÊx∼{xi}ni=1
[ ∇x logp(x)k(x , xi )︸ ︷︷ ︸

weighted sum of gradient

+ ∇xk(x , xi )︸ ︷︷ ︸
repulsive force

], ∀i = 1, . . . , n.

Two terms:

∇x logp(x): moves the particles {xi}
towards high probability regions of
p(x).

Nearby particles share gradient with
weighted sum.

∇xk(x , x ′): enforces diversity in {xi}
(otherwise all xi collapse to modes of
p(x)).
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SVGD vs. MAP and Monte Carlo

xi ← xi + εÊx∼{xi}ni=1
[∇x logp(x)︸ ︷︷ ︸

gradient

k(x , xi ) + ∇xk(x , xi )︸ ︷︷ ︸
repulsive force

], ∀i = 1, . . . , n.

When using a single particle (n = 1), SVGD reduces to standard
gradient ascent for maxx log p(x) (i.e., maximum a posteriori (MAP)):

x ← x + ε∇x log p(x).

MAP (SVGD with n = 1): already performs well in many practical cases.

Typical Monte Carlo / MCMC: perform worse when n = 1.
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SVGD as Gradient Flow of KL Divergence [Liu 2016, arXiv:1704.07520]

The empirical measures of the particles weakly converge to the solution of
a nonlinear Fokker-Planck equation, that is a gradient flow of KL
divergence:

∂

∂t
qt = −gradHKL(qt || p),

which decreases KL divergence monotonically

d

dt
KL(qt || p) = −D(qt , p)2.
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SVGD as Gradient Flow of KL Divergence [Liu 2016, arXiv:1704.07520]

The empirical measures of the particles weakly converge to the solution of
a nonlinear Fokker-Planck equation, that is a gradient flow of KL
divergence:

∂

∂t
qt(x) = −gradHKL(qt || p),

gradHKL(q || p) is a functional gradient defined w.r.t. a new notion of
distance between distributions.

The minimum cost of trans-
porting the mass of q to p.

A new geometry structure on
the space of distributions.
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Bayesian Logistic Regression

Stein Variational Gradient Descent (Our Method)
Stochastic Langevin (Parallel SGLD)
Particle Mirror Descent (PMD)
Doubly Stochastic (DSVI)
Stochastic Langevin (Sequential SGLD)
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(a) Results with particle size n = 100 (b) Results at the 3000th iteration
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Bayesian Neural Network

Test Bayesian neural nets on benchmark datasets.

Used 20 particles.

Compared with probabilistic back propagation (PBP)
[Hernandez-Lobato et al. 2015]

Avg. Test RMSE Avg. Test LL Avg. Time (Secs)
Dataset PBP Our Method PBP Our Method PBP Ours
Boston 2.977± 0.093 2.957± 0.0992.957± 0.0992.957± 0.099 −2.579± 0.052 −2.504± 0.029−2.504± 0.029−2.504± 0.029 18 161616
Concrete 5.506± 0.103 5.324± 0.1045.324± 0.1045.324± 0.104 −3.137± 0.021 −3.082± 0.018−3.082± 0.018−3.082± 0.018 33 242424
Energy 1.734± 0.051 1.374± 0.0451.374± 0.0451.374± 0.045 −1.981± 0.028 −1.767± 0.024−1.767± 0.024−1.767± 0.024 25 212121
Kin8nm 0.098± 0.001 0.090± 0.0010.090± 0.0010.090± 0.001 0.901± 0.010 0.984± 0.0080.984± 0.0080.984± 0.008 118 414141
Naval 0.006± 0.000 0.004± 0.0000.004± 0.0000.004± 0.000 3.735± 0.004 4.089± 0.0124.089± 0.0124.089± 0.012 173 494949
Combined 4.052± 0.031 4.033± 0.0334.033± 0.0334.033± 0.033 −2.819± 0.008 −2.815± 0.008−2.815± 0.008−2.815± 0.008 136 515151
Protein 4.623± 0.009 4.606± 0.0134.606± 0.0134.606± 0.013 −2.950± 0.002 −2.947± 0.003−2.947± 0.003−2.947± 0.003 682 686868
Wine 0.614± 0.008 0.609± 0.0100.609± 0.0100.609± 0.010 −0.931± 0.014 −0.925± 0.014−0.925± 0.014−0.925± 0.014 26 222222
Yacht 0.778± 0.0420.778± 0.0420.778± 0.042 0.864± 0.052 −1.211± 0.044−1.211± 0.044−1.211± 0.044 −1.225± 0.042 25 25
Year 8.733±NA 8.684±NA8.684±NA8.684±NA −3.586±NA −3.580±NA−3.580±NA−3.580±NA 7777 684684684
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SVGD as a Search Heuristic

Particles collaborate to explore large space.

Can be used to solve challenging non-convex optimization problems.

Application: Policy optimization in deep reinforcement learning.
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A Very Quick Intro to Reinforcement Learning

Agents take actions a based on
observed states s, and receive
reward r .

Policy πθ(a|s), parameterized by θ.

Goal: find optimal policy πθ(a|s)
to maximize the expected reward:

max
θ

J(θ) = E[r(s, a) | πθ].

Viewed as a black-box optimization.
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Model-Free Policy Gradient

Model-free policy gradient methods:

Estimate the gradient (without knowing the transition and reward
model), and perform gradient descent:

θ ← θ + ε∇θJ(θ).

Different methods for gradient estimation:

Finite difference methods.
Likelihood ratio methods: REINFORCE, etc.
Actor-critic methods: Advantage Actor-Critic (A2C), etc.
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Model-Free Policy Gradient

Advantages:

Better convergence, work for high dimensional, continuous control tasks.
Impressive results on Atari games, vision-based navigation, etc.

Challenges:

Converge to local optima.
High variance in gradient estimation.
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Stein Variational Policy Gradient [Liu et al. 17, arXiv:1704.02399]

Stein variational policy gradient: find a group of {θi} by

θi ← θi +
ε

n

n∑
j=1

[∇θjJ(θj)k(θj , θi )︸ ︷︷ ︸
gradient sharing

+ α∇θjk(θj , θi )︸ ︷︷ ︸
repulsive force

]

Similar to collective behaviors in swarm intelligence.
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p(θ) ∝ exp(
1

α
J(θ))

= arg max
q

{
Eq[J(θ)] + αH(q)

}
.︸ ︷︷ ︸

entropy regularization
encourage exploration

α : temperature parameter.

H(q): entropy.
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REINFORCE-SVPG: Stein variational gradient (n = 16 agents).

REINFORCE-Independent: n independent gradient descent agents.

REINFORCE-Joint: a single agent, using n times as many data per iteration.
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A2C-SVPG: Stein variational gradient (n = 16 agents).

A2C-Independent: n independent gradient descent agents.

A2C-Joint: a single agent, using n times as many data per iteration.
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Average returns of the policies given by SVGD (blue) and independent
A2C (red), for Cartpole Swing Up.
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State visitation density of the top 4 policies given by SVGD (upper) and
independent REINFORCE (lower), for Cartpole Swing Up.
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Swimmer
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Top Four Policies by SVPG
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Stein Variational Gradient Descent

SVGD: a simple, efficient algorithm for sampling and non-convex
optimization.
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Amortized SVGD: Learning to Sample

SVGD is designed for sampling individual distributions.

What if we need to solve many similar inference problems repeatedly?
Posterior inference for different users, images, documents, etc.
sampling as inner loops of all other algorithms.

We should not solve each problem from scratch.

Amortized SVGD: train feedforward neural networks to learn to draw
samples by mimicking the SVGD dynamics.
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Learning to Sample

Problem formulation:

Given p and a neural net f (η, ξ) with parameter η and random input ξ.

Find η such that the random output x = f (η, ξ) approximates
distribution p.

Critically challenging to solve, when the structure of f and input ξ is
complex, or even unknown (black-box).

Progresses made only very recently:

Amortized SVGD: sidestep the difficulty using Stein variational gradient.

Other recent works: [Ranganath et al. 16, Mescheder et al. 17, Li et al. 17]

.
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Amortized SVGD [Wang, Liu 16, arXiv:1611.01722; Liu, Feng 16, arXiv:1612.00081]

Amortized SVGD: Iteratively adjust η to make the output move along
the Stein variational gradient direction.
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Learning energy-based models from data: Given observed data
{xobs,i}ni=1, want to learn model pθ(x):

pθ(x) =
1

Z
exp(ψθ(x)), Z =

∫
exp(ψθ(x))dx .

Deep energy model (when ψθ(x) is a neural net), graphical models, etc.

Classical method: estimating θ by maximizing the likelihood:

max
θ

{
L(θ) ≡ Êobs [log pθ(x)]

}
.

Gradient: ∇θL(θ) = Êobs [∂θψθ(x)]︸ ︷︷ ︸
Average on observed data

− Epθ [∂θψθ(x)]︸ ︷︷ ︸
Expectation on model pθ

Difficulty: requires to sample from p(x |θ) at every iteration.
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Difficulty: requires to sample from p(x |θ) at every iteration.

Gradient: ∇θL(θ) = Êobs [∂θψθ(x)]︸ ︷︷ ︸
Average on observed data

− Epθ [∂θψθ(x)]︸ ︷︷ ︸
Expectation on model pθ

G(Z)

Random  seed      

f(⌘, ⇠)

⇠
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Amortized MLE as an Adversarial Game

Can be treated as an adversarial process between the energy model and the neural
sampler.

Similar to generative adversarial networks (GAN) [Goodfellow et al., 2014].
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Real images Generated by Stein neural sampler
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It captures the semantics of the data distribution.

Changing the random input ξ smoothly.
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Real images Generated by Stein neural sampler
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What do we learn?

The traditional maximum likelihood (MLE) framework failed to generate
realistic-looking images, over-dominated by the recent GAN approaches.

It turns out amortized inference is the key.

Connecting these two approaches allows us to combine their advantages.
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Thank You

Powered by SVGD
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