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Abstract

Although optimization can be done very efficiently using gradient-based optimiza-
tion these days, Bayesian inference or probabilistic sampling has been considered
to be much more difficult. Stein variational gradient descent (SVGD) is a new
particle-based inference method derived using a functional gradient descent for
minimizing KL divergence without explicit parametric assumptions. SVGD can
be viewed a natural counterpart of gradient descent for optimization, and in fact
exactly reduces to the typical gradient ascent for MAP using only a single particle.
This short paper gives a brief introduction to SVGD, and discusses its theoretical
foundation and applications.

1 Introduction

Bayesian inference provides a unified, powerful framework for reasoning about complex phenomena
under uncertainty, and has been widely adopted as a powerful tool for statistical data analysis in many
scientific areas, as well as state-of-the-art machine learning and AI techniques. Unfortunately, the
current Bayesian computation techniques tend to scale poorly to big data and big models. Markov
chain Monte Carlo (MCMC) has been routinely used for Bayesian computation, but is widely
criticized for its convergence issues and has particular difficulty scaling up to big data settings.
Variational inference has been widely used in machine learning, especially for deep learning and
probabilistic graphical models, but does not guarantee asymptotic exactness due to deterministic
approximation errors, and requires users to make careful, often case-by-case choices of parametric
approximation families. These difficulties form a major barrier to developing highly scalable, fully
automatic Bayesian inference tools easily assessable to practitioners.

This situation is in sharp contrast with the optimization techniques for point estimation, or maximum
a posteriori (MAP) estimation, for which simple gradient-based methods provide efficient, generic
and easy-to-use tools, scalable to big data settings via stochastic gradient, and has been known to be
surprisingly efficient in deep neural models. It is highly desirable to develop new Bayesian inference
methods that incorporate the key advantages of gradient-based optimization to enable scalable and
automatic inference.

Stein variational gradient descent (SVGD) [1] is a new Bayesian inference algorithm that seeks
a set of points (or particles) to approximate the target distribution using iterative gradient based
updates. It has a simple form that closely mimics the typical gradient descent for optimization, and
in fact reduces to the typical gradient descent for optimization when using only one particle. This
makes SVGD highly flexible and scalable, and can be easily combined with various state-of-the-art
techniques that have been responsible for the success of gradient optimization, including stochastic
gradient, adaptive learning rates (such as adagrad), and momentum.
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Figure 1: Illustrating how the interactive particle dynamics of SVGD in (4) can escape local modes and obtain
diverse points to approximate the full distribution. In (a), 10 particles are initialized far away on the left, but
move quickly towards the high probability area of the target distribution p(x) driven by the gradient information.
In (b), (c), (d), the leading particle has arrived stationary points (with zero gradient itself), but is pushed further
to the right side by the repulsive force and shared gradient from the other particles. In (e), the particles have
reached equilibrium and form a close approximation for the target distribution. Note that typical non-gradient
based particle methods such as sequential Monte Carlo may experience weight degeneration in this example due
to the poor initialization we set up in (a).{fig:1dgmmparticle}

This short paper gives a brief overview of the key idea of SVGD, and outline several directions
for future work, including a new theoretical framework that interprets SVGD as a natural gradient
descent of the KL divergence functional on a Riemannian-like metric structure on the space of
distributions, and extensions of SVGD that allow us to train neural networks to draw approximate
samples from given distributions, and develop new adaptive importance sampling methods without
assuming parametric forms on the proposals.

2 Stein Variational Gradient Descent

To give a quick overview of the main idea of SVGD, let p(x) be the positive density function on
X ⊆ Rd which we want to approximate with a set of particles {xi}ni=1. We initialize the particles
with some simple distribution q0, and iteratively update them via

xi ← xi + εφ(xi), ∀i = 1, . . . , n,

where ε is a small step size, and φ(x) is a perturbation direction, or velocity field, chosen to
maximumly decrease the KL divergence between the distribution of the updated particles and the
target distribution, in the sense that

φ = arg max
φ∈F

{
− d

dε
KL(q[εφ] || p)

∣∣
ε=0

}
, (1){equ:ff00}

where q[εφ] denotes the density of the updated particle x′ = x + εφ(x) when the density of the
original particle x is q, and F is a set of perturbation directions that we optimize over. We take F to
be the unit ball of a vector-valued reproducing kernel Hilbert space (RKHS)H = H0×· · ·H0, where
H0 is a scalar-valued RKHS associated with a scalar-valued positive definite kernel k(x, x′), which
is a dense subset of the space of continuous vector-valued functions with typical universal kernels
such as the RBF kernel. Extension to matrix-valued positive definite kernels is also straightforward.

A key observation is that the objective in (1) is a simple linear functional of φ. In fact, we have

− d

dε
KL(q[εφ] || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)], (2){equ:klstein00}

with Tpφ(x)
def
= ∇x log p(x)>φ(x) +∇x · φ(x),

where Tp is considered as a linear operator acting on function φ and is called the Stein operator in
connection with Stein’s identity, which shows that the RHS of (2) equals zero if p = q:

Ep[Tpφ] = Ep[∇x log p>φ +∇x · φ] = 0.

This is a result of integration by parts assuming the value of p(x)φ(x) vanishes on the boundary of
the integration domain X .

Therefore, the optimization in (2) reduces to

D(q || p) def= max
φ∈F

{
Ex∼q[Tpφ(x)]

}
, (3){equ:ksd}

2



where D(q || p) is defined as the kernelized Stein discrepancy (KSD) between p and q [2–4]. It has
been shown that the optimal solution of (2) has a simple closed form:

φ∗(x′) ∝ Ex∼q[Tpk(x, x′)] = Ex∼q[∇x log p(x)k(x, x′) +∇xk(x, x′)].

By approximating the expectation under q with the empirical averaging of the current particles
{xi}ni=1, our algorithm admits a simple form of updates:

xi ← xi + ε Êx∼{xi}ni=1
[∇x log p(x)k(x, xi) +∇xk(x, xi)], ∀i = 1, . . . , n, (4){equ:update11}

where Êx∼{xi}ni=1
denotes empirical averaging over {xi}, that is, Êx∼{xi}ni=1

[f(x)] =
∑
i f(xi)/n.

Intuitively, this update pushes the particles towards the high probability regions of the target prob-
ability via the gradient term ∇x log p, while maintaining a degree of diversity via the second term
∇xk(x, xi), which can be shown to serve as a repulsive force between the particles. Overall, this par-
ticle update produces an interesting “momentum” effect in which the particles move collaboratively
to escape the local optima to converge to diverse points to approximate the target distribution (see
Figure 1).

It is easy to see that (4) reduces to the typical gradient descent if we use only a single particle (n = 1)
and ∇xk(x, x′) = 0 when x = x′; with more particles, (4) allows a full Bayesian sampling to cover
more local modes and provide uncertainty measure.

3 Gradient Flow, Optimal Transport, Nonparametric Information
Geometry

As the number of the particles becomes large (n→∞), our process can be interpreted as a particle
approximation of a functional gradient descent of the KL divergence functional on a new Remamian-
like metric structure defined on the space of probability distributions.

Here we briefly introduce this perspective and we will elaborate the details in our incoming work. Let
q` be the limit distribution of the particles at the `-th iteration as we take n→∞, and F (log q) =
KL(q || p) the KL divergence as a functional of log q. As the step-size ε approaches zero (ε→ 0),
we can define a continuous time t = ε`, and we can show that the evolution of density qt is governed
by a gradient flow:

d log qt
dt

= −∇̃F (log qt), (5){equ:gradklqt}

where ∇̃F (log q) represents a type of functional gradient of F (log q) w.r.t. log q induced by a
Riemannian metric structure on the space of log-density functions defined by the RKHS-related cost
of transforming one distribution to another.

We now define this Riemannian metric. For each log-density log q for which Stein’s identity holds
for q, we define the tangent spaceHq around log p to be the set of functions formed by the outputs of
Stein operator:

Hq
def
= {f = Tqφ, ∀φ ∈ H},

where H is any d × 1 vector-valued RKHS. By stein’s identity, all the functions in Hp have zero-
expectation under q, that is, Eq[f ] = 0, ∀f ∈ Hq .
In addition, It has been shown thatHq forms a RKHS whose kernel is denoted by κq(x, x′) [3]. This
allows us to define a Riemannian metric with inner product 〈f, g〉Hq

on the elements f, g ∈ Hq in
the tangent space. It is then possible to define a gradient of functional F (log q) to be any function
∇̃F (log q) that satisfies

F (log q + df) = F (log q) + 〈∇̃F (log q), df〉Hq
,

for any infinite element df in the tangent spaceHq .
This Remannian inner product structure then induces a geodesic distance between two points q and p
in the space, which can be interpreted as an optimal transport metric induced by RKHS norm. To be
specific, let Φ = {φt(x) : t ∈ [0, T ]} be a collection of velocity field index by continuous time t and
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xt the solution of ODE dx = φt(x)dt. Then Φ = {φt(x) : t ∈ [0, 1]} is called to transport q to p if
when x0 ∼ q and have x1 ∼ p. This allows us define a metric between q and p via

d(q, p) = min
Φ
{
∫
||φt||Hdt : Φ = {φt : t ∈ [0, 1]} transports q to p}. (6){equ:roptd}

It is also possible to define the gradient ∇̃F (log q) as the steepest descent direction for F (log q) in
the neighborhood defined by metric d(q, p).

Overall, SVGD can be treated as an Optimization-Then-Approximate approach for solving the
infinite dimensional optimization problem of minq KL(q || p): it first derives an infinite dimensional
gradient descent (5) (effectively a partial differential equation (PDE)) that attempts to solve the
infinite dimensional optimization in that it converges to the exact p as t→∞, and then develop a
finite dimensional particle approximation for the gradient flow (or effectively a numerical solution
of the corresponding PDE). This is in contrast with the traditional variational inference method
that can be treated as Approximate-Then-Optimization approaches, in which we first approximate
the infinite dimensional optimization minq KL(q || p) with a finite dimensional one by restricting
q in a parametric family, and then solve the corresponding parametric optimization. We think it
is possible to derive a host of new approaches based on the new Optimization-Then-Approximate
framework, which allows us to leverage the large literature of PDE and their numerical solutions, and
has the advantage of requiring no explicit parametric assumptions, amending asymptotic consistency
analysis.

This framework has deep theoretical implication that deserves in-depth study to establish a solid
mathematical foundation and connection with existing theories. In particular, the RKHS-based
optimal transport metric (6) seems to yield an extension to the classical theory of optimal transport
and gradient flow in optimal transport (Weierstrass) metric space in which the transport cost is often
defined by Lp, rather than RKHS cost [5–7], and extensive studies are need to understand its basic
properties in parallel to the Lp-based Weierstrass metric. In addition, the gradient flow (5) can be
shown to be an instance of Vlasov equation [8] known in physics, with rich connection to stochastic
systems with mean field interactions [9]. Concepts related to displacement convexity [10] and
logarithmic Sobolev inequalities [11] can play critical roles in establishing exponential convergence
rate of the nonlinear evolutionary PDF in (5). The Riemannian metric structure here induced by Stein
operator seems to open the possibility of establishing a new theory of nonparametric information
geometry (in contrast with the typical information geometry which only considers distributions that
are indexed by infinite dimensional parameters), connections to existing theories of nonparametric
information geometry is needed [e.g., 12, 13].

4 Applications and Extensions

In addition to providing an efficient general-purpose particle inference algorithm, SVGD and its
basic idea provides a foundation for developing new tools for solving difficult problems. Here we
present two examples: one for training stochastic neural networks to “learn to sample” from given
distributions, another for developing efficient adaptive importance sampling based on the optimal
variable transforms given by SVGD.

Amortized SVGD SVGD and other particle-based methods become inefficient when we need to
repeatedly infer a large number of different target distributions for multiple tasks, because they can
not improve based on the experience from the past tasks, and may require a large memory to restore
a large number of particles; this happens, for example, in MLE training of intractable distributions
when fast inference is needed as the inner loop. One possible solution for this is to “amortize SVGD”,
training a stochastic neural network so that its output mimics the SVGD dynamics, and hence closely
approximates the target distribution when it converges. This essentially allows us to train neural
samplers to learn to draw samples for given target distributions, and hence yield wide application.

In Wang and Liu [14], this idea is used to train neural samplers to approximate MLE for intractable
energy-based models, yielding an algorithm that can be interpreted as an adversarial game [15]
between the deep energy model and the neural sampler, which allows us to generate high quality
realistic-looking images. We refer the readers to Wang and Liu [14] for more details.
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DCGAN [16] Our Method 

Figure 2: Samples drawn by our neural samplers trained by amortized SVGD for approximating MLE in a deep
energy model on the CelebA dataset Upper: images generated by DCGAN [16] and our neural sampler. Lower:
images generated by our method when the random seed of the neural sampler changes gradually; we can see that
a man with glasses and black hair gradually changes to a woman with blonde hair. See Wang and Liu [14] for
more examples.{fig:face}

Stein Variational Importance Sampling Because SVGD reduces to MAP when using one single
particle, it is “particle-efficient” in that good practical results can be achieved using a small number
of particles. This is contrast with the typical Monte Carlo methods which often require to average
a large number of particles to obtain good results. On the other hand, the theoretical properties of
typical Monte Carlo is much more understood, and can be more attractive when emphasis is on
getting well-calibrated confidence intervals or unbiased estimates. In fact, it is easy to turn SVGD
into an efficient adaptive importance sampling procedure, in which the SVGD update (4) serves to
iteratively improve the proposal distribution using optimal variable transforms.

To give a brief overview, note that our method can be treated as constructing a path of distributions
{q`} that connects the initial distribution q0 with the target distribution p, in which q` gets closer
to the target p along a steepest descent direction of KL divergence. Therefore, we can leverage q`
as excellent proposal distributions for importance sampling estimates of p. In order to draw i.i.d.
sample from q` needed for importance sampling, we introduce an additional set of particles {yi}
in additional to the {xi} updated by (4), where {xi} is responsible for constructing q`, while {yi}
simply follows the updates constructed by {xi} (without influence the trajectory of {xi}); as a result
{yi} can be viewed as i.i.d. samples from q`, whose importance weights wi = p(xi)/q`(xi) can be
also calculated efficiently with an iterative update.

This method can be viewed as a special adaptive importance sampling, where at each iteration the
proposal distribution q` is improved by applying a variable transform defined by (4) that promises
to design its KL divergence with the target distribution. This distinguishes us with the traditional
adaptive importance sampling in which the proposals are optimized in predefined parametric families
(usually mixture families).
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This method can also be used to estimate the partition function for unnormalized distributions. It
is interesting to compare it with the path integration ideas (e.g., Gelman and Meng [17], Neal [18])
which are also based on a path of distributions that connects the target distribution with a simple
reference distribution. Typically, these methods construct the annealing path using simple geometric
mean of the probabilities, while our path moves along the steepest descent direction of KL divergence
and can potentially better with less intermediate distributions.

5 Conclusion

In this short paper, we introduced the key idea of Stein variational gradient descent (SVGD), and
discussed its theoretical properties and several extensions.
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