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A Randomized v.s. Deterministic
Strategies

It is a well-known fact in decision theory that no ran-
domized strategy can improve on the utility of the best
deterministic strategy, so that:
Lemma 2.1. For any ID, maxδ∈∆EU(δ) =
maxδ∈∆o EU(δ).

Proof. Since ∆o ⊂ ∆, we need to show that for any
randomized strategy δ ∈ ∆, there exists a determinis-
tic strategy δ′ ∈ ∆o such that EU(δ) ≤ EU(δ′). Note
that

EU(δ) =
∑
x

q(x)
∏
i∈D

pδi (xi|xpa(i)),

Thus, EU(δ) is linear on pδi (xi|xpa(i)) for any i ∈ D
(with all the other policies fixed); therefore, one can
always replace pδi (xi|xpa(i)) with some deterministic

pδ
′
i (xi|xpa(i)) without decreasing EU(δ). Doing so se-

quentially for all i ∈ D yields to a deterministic rule
δ′ with EU(δ) ≤ EU(δ′).

One can further show that any (globally) optimal ran-
domized strategy can be represented as a convex com-
bination of a set of optimal deterministic strategies.

B Duality form of MEU

Here we give a proof of our main result.
Theorem 3.1. (a). For an influence diagram with
augmented distribution q(x) ∝ exp(θ(x)), its log max-
imum expected utility log MEU(θ) equals

max
τ∈M
{〈θ, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i); τ )}. (1)

Suppose τ ∗ is a maximum of (1), then δ∗ =
{τ ∗(xi|xpa(i))|i ∈ D} is an optimal strategy.

(b). Under the perfect recall assumption, (1) reduces
to

max
τ∈M
{〈θ, τ 〉+

∑
oi∈C

H(xoi |xo1:i−1
; τ )} (2)

where o1:i−1 = {oj |j = 1, . . . , i− 1}.

Proof. (a). Let qδ(x) = q(x)
∏
i∈D p

δ
i (xi|xpa(i)). We

apply the standard duality result (1) of partition func-

tion on qδ(x) ∝ exp(θδ(x)),

log MEU = max
δ

log
∑
x

exp(θδ(x))

= max
δ

{
max
τ∈M

[
〈θδ, τ 〉+H(x; τ )

]}
= max
τ∈M

{
max
δ

[
〈θδ, τ 〉

]
+H(x; τ )

}
, (3)

and we have

max
δ
{〈θδ, τ 〉}

= max
δ
{〈θ +

∑
i∈D

log pδi (xi|xpa(i)), τ 〉}

= 〈θ, τ 〉+
∑
i∈D

max
pδi

{
∑
x

τ(x) log pδi (xi|xpa(i))}

∗
= 〈θ, τ 〉+

∑
i∈D
{
∑
x

τ(x) log τ(xi|xpa(i))}

= 〈θ, τ 〉 −
∑
i∈D

H(xi|xpa(i); τ ), (4)

where the equality “
∗
=” holds because the solution of

maxpδi {
∑
x τ(x) log pδi (xi|xpa(i))} subject to the nor-

malization constraint
∑
xi
pδi (xi|xpa(i)) = 1 is pδi =

τ(xi|xpa(i)). We obtain (1) by plugging (4) into (3).

(b). By the chain rule of entropy, we have

H(x; τ ) =
∑
i

H(xoi |xo1:i−1
; τ ). (5)

Note that we have pa(i) = o1:i−1 for i ∈ D for ID with
perfect recall. The result follows by substituting (5)
into (1).

The following lemma is the “dual” version of
Lemma 2.1; it will be helpful for proving Corollary 3.2
and Corollary 3.3.

Lemma B.1. Let Mo be the set of distributions τ(x)
in which τ(xi|xpa(i)), i ∈ D are deterministic. Then
the optimization domain M in (1) of Theorem 3.1 can
be replaced by Mo without changing the result, that is,
log MEU(θ) equals

max
τ∈Mo

{〈θ, τ 〉+H(x; τ )−
∑
i∈D

H(xi|xpa(i); τ )}. (6)

Proof. Note that Mo is equivalent to the set of de-
terministic strategies ∆o. As shown in the proof of
Lemma 2.1, there always exists optimal deterministic
strategies, that is, at least one optimal solutions of (1)
falls in Mo. Therefore, the result follows.

Corollary 3.2. For an ID with parameter θ, we have

log MEU = max
τ∈I
{〈θ, τ 〉+

∑
i∈C

H(xi|xo1:i−1 ; τ )} (7)



where I = {τ ∈ M : xoi ⊥ xo1:i−1\pa(oi)|xpa(oi)}, corre-
sponding to the distributions respecting the imperfect
recall structures; “x ⊥ y | z” means that x and y are
conditionally independent given z.

Proof. For any τ ∈ I, we have H(xi|xpa(i); τ ) =
H(xi|xo1:i−1

; τ ), hence by the entropic chain rule, the
objective function in (7) is the same as that in (1).

Then, for any τ ∈ Mo and oi ∈ D, since
τ(xoi |xpa(oi)) is deterministic, we have 0 ≤
H(xoi |xo1:i−1

) ≤ H(xoi |xpa(oi)) = 0, which implies
I(xoi ;xo1:i\pa(oi)|xpa(oi)) = 0, and hence Mo ⊆ I ⊆M.
We thus have that the LHS of (7) is no larger than
(1), while no smaller than (6). The result follows since
(1) and (6) equal by Lemma B.1.

Corollary 3.3. For any ε, let τ ∗ be an optimum of

max
τ∈M
{〈θ, τ 〉+H(x)− (1− ε)

∑
i∈D

H(xi|xpa(i))}. (8)

If δ∗ = {τ∗(xi|xpa(i))|i ∈ D} is an deterministic strat-
egy, then it is an optimal strategy of the MEU.

Proof. First, we have H(xi|xpa(i); τ ) = 0 for τ ∈ Mo

and i ∈ D, since such τ(xi|xpa(i)) are determinis-
tic. Therefore, the objective functions in (8) and
(6) are equivalent when the maximization domains
are restricted on Mo. The result follows by applying
Lemma B.1.

B.1 Derivation of Belief Propagation for
MEU

Eq. (11) is similar to the objective of sum-product
junction graph BP, except the entropy terms of the
decision clusters are replaced by Ĥε(xck), which can
be thought of as corresponding to some local MEU
problem. In the sequel, we derive a similar belief prop-
agation algorithm for (11), which requires that the de-
cision clusters receive some special consideration. To
demonstrate how this can be done, we feel it is helpful
to first consider a local optimization problem associ-
ated with a single decision cluster.

Lemma B.2. Consider a local optimization problem
on decision cluster ck,

max
τck
{〈ϑck , τck〉+Hε(xck ; τck)}.

Its solution is,

τck(xck) ∝ σk[bck(xck), ε]
def
= b(xck)bε(xdk |xpa(dk))

1−ε

where bck(xck) ∝ exp(ϑck(xck)) and bε(xdk |xpa(dk)) is
the “annealed” conditional probability of bck ,

bε(xdk |xpa(dk)) =
b(xdk , xpa(dk))

1/ε∑
xdk

b(xdk , xpa(dk))1/ε
,

b(xdk , xpa(dk)) =
∑
xzk

b(xck), zk = ck \ {dk,pa(dk)}.

Proof. The Lagrangian function is

〈ϑck , τck〉+Hε(xck ; τck) + λ
∑
xck

[τck(xck)− 1].

Its stationary point satisfies

ϑck(xck)− log τck(xck)+(ε−1) log τck(xdk |xpa(dk))+λ,

or equivalently,

τck(xck)[τck(xdk |xpa(dk))]
ε−1 = bck(xck). (9)

Summing over xzk on both side of (9), we have

τck(xpa(dk))[τck(xdk |xpa(dk))]
ε = bck(xdk , xpa(dk)), (10)

Raising both sides of (9) to the power 1/ε and sum-
ming over xdk , we have

[τck(xxpa(dk)
)]1/ε =

∑
xdk

[bck(xdk , xpa(dk))]
1/ε. (11)

Combining (11) with (10), we have

τck(xdk |xpa(dk)) = bε(xdk |xpa(dk)). (12)

Finally, combining (12) with (9) gives

τck(xck) = bck(xck)bε(xdk |xpa(dk))
1−ε. (13)

The operator σk[b(xc); ε] can be treated as im-
puting b(xc) with an “annealed” policy defined as
bε(xdk |xpa(dk)); this can be seen more clearly in the
limit as ε→ 0+.

Lemma B.3. Consider a local MEU problem of a sin-
gle decision node dk with parent nodes pa(dk) and an
augmented probability bck(xck); let

b∗(xdk |xpa(dk)) = lim
ε→0+

bε(xdk |xpa(dk)), ∀dk ∈ D,

then δ∗ = {b∗(xdk |xpa(dk)) : dk ∈ D} is an optimal
strategy.

Proof. Let

δ∗dk(xpa(dk)) = arg max
xdk

{bε(xdk |xpa(dk))},



One can show that as ε→ 0+,

b∗(xdk |xpa(dk)) =

{
1/|δ∗dk | if xdk ∈ δ∗dk
0 if otherwise,

(14)

thus, b∗(xdk |xpa(dk)) acts as a “maximum operator” of
b(xdk |xpa(dk)), that is,∑
xdk

b(xdk |xpa(dk))b
∗(xdk |xpa(dk)) = max

xdk

b(xdk |xpa(dk)).

Therefore, for any δ ∈ ∆, we have

EU(δ) =
∑
xck

bck(xck)bδ(xdk |xpa(dk))

=
∑

xpa(dk)

b(xpa(dk))
∑
xdk

b(xdk |xpa(dk))b
δ(xdk |xpa(dk))

≤
∑

xpa(dk)

b(xpa(dk)) max
xdk

b(xdk |xpa(dk))

=
∑

xpa(dk)

b(xpa(dk))
∑
xdk

b(xdk |xpa(dk))b
∗(xdk |xpa(dk))

= EU(δ∗).

This concludes the proof.

Therefore, at zero temperature limit, the σk[·] operator
in MEU-BP (12)-(13) can be directly calculated via
(14), avoiding the necessity for power operations.

We now derive the MEU-BP in (12)-(13) for solving
(11) using a Lagrange multiplier method similar to
Yedidia et al. [2005]. Consider the Lagrange multi-
plier of (8),

〈θ, τ 〉+
∑
k∈R

Hck +
∑
k∈D

Hε
ck
−
∑

(kl)∈E

Hskl+∑
(kl)∈E

∑
xck\skl

λsk→l(xskl)[
∑
xskl

τck(xck)− τskl(xskl)],

where the nonnegative and normalization constraints
are not included and are dealt with implicitly. Tak-
ing its gradient w.r.t. τck and τskl , one has

τck ∝ ψckm∼k for normal clusters, (15)

τck ∝ σk[ψckm∼k; ε] for decision clusters, (16)

τskl ∝ mk→lml→k for separators, (17)

where ψck = exp(θck), mk→l = exp(λk→l) and m∼k =∏
l∈N (k)ml→k is the product of messages sending from

the set of neighboring clusters N (k) to ck. The deriva-
tion of Eq. 16 used the results in Lemma B.2.

Finally, substituting the consistency constraints∑
xck\skl

τck = τskl

into (15)-(17) leads the fixed point updates in (12)-
(13).

B.2 Reparameterization Interpretation

We can give a reparameterization interpretation for
the MEU-BP update in (12)-(13) similar to that of the
sum-, max- and hybrid- BP algorithms [e.g., Wain-
wright et al., 2003a, Weiss et al., 2007, Liu and Ihler,
2011]. We start by defining a set of “MEU-beliefs”
b = {b(xck), b(xskl)} by b(xck) ∝ ψckmk for all ck ∈ C,
and b(xskl) ∝ mk→lml→k. Note that we distinguish
between the “beliefs” b and the “marginals” τ in (15)-
(17). We have:

Lemma B.4. (a). At each iteration of MEU-BP in
(12)-(13), the MEU-beliefs b satisfy

q(x) ∝
∏
k∈V b(xck)∏

(kl)∈E b(xskl)
(18)

where q(x) is the augmented distribution of the ID.

(b). At a fixed point of MEU-BP, we have

Sum-consistency:

(normal clusters)

∑
ck\sij

b(xck) = b(xskl),

MEU-consistency:

(decision clusters)

∑
ck\sij

σk[b(xck); ε] = b(xskl).

Proof. (a). By simple algebraic substitution, one can
show ∏

k∈V b(xck)∏
(kl)∈E b(xskl)

∝
∏
ck∈C

ψck(xck).

Since p(x) ∝
∏
ck∈C ψck(xck), the result follows.

(b). Simply substitute the definition of b into the mes-
sage passing scheme (12)-(13).

B.3 Correctness Guarantees

Theorem 4.1. Let (G, C,S) be a consistent junc-
tion tree for a subset of decision nodes D′, and b
be a set of MEU-beliefs satisfying the reparameteri-
zation and the consistency conditions in Lemma B.4
with ε → 0+. Let δ∗ = {bε(xdk |xpa(dk)) : dk ∈ D},
then δ∗ is a locally optimal strategy in that sense that
EU({δ∗D′ , δD\D′}) ≤ EU(δ∗) for any δD\D′ .

Proof. On a junction tree, the reparameterization in
(18) can be rewritten as

q(x) = b0
∏
k∈V

b(xck)

b(xsk)
,

where sk = sk,π(k) (sk = ∅ for the root node) and b0
is the normalization constant.

For notational convenience, we only prove the case
when D′ = D, i.e., the junction tree is globally con-
sistent . More general cases follow similarly, by noting



that any decision node imputed with a fixed decision
rule can be simply treated as a chance node.

First, we can rewrite EU(δ∗) as

EU(δ∗) =
∑
x

q(x)
∏
i∈D

bε(xi|xpa(i))

= b0
∑
x

∏
k∈V

b(xck)

b(xsk)

∏
i∈D

bε(xi|xpa(i))

= b0
∑
x

{∏
k∈C

b(xck)

b(xsk)

}
·
{ ∏
k∈D

b(xck)bε(xdk |xpa(dk))

b(xsk)

}
= b0,

where the last equality follows by the sum- and MEU-
consistency condition (with ε→ 0+). To complete the
proof, we just need to show that EU(δ) ≤ b0 for any
δ ∈ ∆. Again, note that EU(δ)/b0 equals

∑
x

{∏
k∈C

b(xck)

b(xsk)

}
·
{ ∏
k∈D

b(xck)pδ(xdk |xpa(dk))

b(xsk)

}
.

Let zk = ck \sk; since G is a junction tree, the zk form
a partition of V , i.e., ∪kzk = V and zk∩zl = 1 for any
k 6= l. We have

See insert (*)

where the equality (*) holds because {zk} forms a
partition of V , and equality (19) holds due to the sum-
consistency condition. The last inequality follows the
proof in Lemma B.3. This completes the proof.

Based to Theorem 4.1, we can easily establish person-
by-person optimality of BP on an arbitrary junction
tree.

Theorem 4.2. Let (G, C,S) be an arbitrary junc-
tion tree, and b and δ∗ defined in Theorem 4.1.
Then δ∗ is a locally optimal strategy in Nash’s sense:
EU({δ∗i , δD\i}) ≤ EU(δ∗) for any i ∈ D and δD\i.

Proof. Following Theorem 4.1, one need only show
that any junction tree is consistent for any single de-
cision node i ∈ D; this is easily done by choosing a
tree-ordering rooted at i’s decision cluster.

C About the Proximal Algorithm

The proximal method can be equivalently interpreted
as a marjorize-minimize (MM) algorithm [Hunter and
Lange, 2004], or a convex concave procedure [Yuille,
2002]. The MM and CCCP algorithms have been
widely applied to standard inference problems to ob-
tain convergence guarantees or better solutions, see
e.g., Yuille [2002], Liu and Ihler [2011].

The MM algorithm is an generalization of the EM al-
gorithm, which solves minτ∈M f(τ ) by a sequence of
surrogate optimization problems

τ t+1 = arg min
τ∈M

f t(τ ),

where f t(τ ), known as a majorizing function, should
satisfy f t(τ ) ≥ f(τ ) for all τ ∈M and f t(τ t) = f(τ t).
It is straightforward to check that the objective in the
proximal update (20) is a majorizing function. There-
fore, the proximal algorithm can be treated as a special
MM algorithm.

The convex concave procedure (CCCP) [Yuille and
Rangarajan, 2003] is a special MM algorithm which
decomposes the objective into a difference of two con-
vex functions, that is,

f(τ ) = f+(τ )− f−(τ ),

where f+(τ ) and f−(τ ) are both convex, and con-
structs a majorizing function by linearizing the nega-
tive part, that is,

f t(τ ) = f+(τ )−∇f−(τ t)T (τ − τ t).

One can easily show that f t(τ ) is a majorizing function
via Jensen’s inequality. To apply CCCP on the MEU
dual (1), it is natural to set

f+(τ ) = −[〈θ, τ 〉+H(x; τ )]

and
f−(τ ) = −

∑
i∈D

H(xi|xpa(i); τ ).

Such a CCCP algorithm is recognizable as equivalent
to the proximal algorithm in Section 4.2 with wt = 1.

The convergence results for MM algorithms and CCCP
are also well established; see Vaida [2005], Lange et al.
[2000], Schifano et al. [2010] for the MM algorithm
and Sriperumbudur and Lanckriet [2009], Yuille and
Rangarajan [2003] for CCCP.

D Additively Decomposable Utilities

The algorithms we describe require the augmented
distribution q(x) to be factored, or have low (con-
strained) tree-width. However, this can easily not
be the case for a direct representation of additively
decomposable utilities. To explain, recall that the
augmented distribution is q(x) ∝ q0(x)u(x), where
q0(x) =

∏
i∈C p(xi|xpa(i)), and u(x) =

∑
j∈U uj(xβj ).

In this case, the utility u(x) creates a large factor
with variable domain ∪jβj , and can easily destroy the
factored structure of q(x). Unfortunately, the näıve
method of calculating the expectation node by node, or



EU(δ)/b0 ≤
∑
x

{∏
k∈C

max
xsk

b(xck)

b(xsk)

}
·
{ ∏
k∈D

max
xsk

b(xck)pδ(xdk |xpa(dk))

b(xsk)

}
(*)

=

{∏
k∈C

max
xsk

∑
xzk

b(xck)

b(xsk)

}
·
{ ∏
k∈D

max
xsk

∑
xzk

b(xck)pδ(xdk |xpa(dk))

b(xsk)

}
(19)

=
∏
k∈D

max
xsk

∑
xzk

b(xck)pδ(xdk |xpa(dk))

b(xsk)
(20)

=
∏
k∈D

max
xsk

∑
xdk

b(xdk , xpa(dk))p
δ(xdk |xpa(dk))

b(xsk)

≤
∏
k∈D

max
xsk

∑
xdk

b(xdk , xpa(dk))bε(xdk |xpa(dk))

b(xsk)

= 1,

the commonly used general variable elimination proce-
dures [e.g., Jensen et al., 1994] do not appear suitable
for our variational framework.

Instead, we introduce an artificial product structure
into the utility function by augmenting the model with
a latent “selector” variable, similar to that used for the
“complete likelihood” in mixture models. Let y0 be an
auxiliary random variable taking values in the utility
index set U , so that

q̃(x, y0) = q0(x)
∏
j

ũj(xβj , y0),

where ũj(xβj , y0) is defined by ũj(xβj , j) = ũj(xβj )
and ũj(xβj , k) = 1 for j 6= k. It is easy to ver-
ify that the marginal distribution of q̃(x, y0) over y0

is q(x), that is,
∑
y0
q̃(x, y0) = q(x). The tree-

width of q̃(x, y0) is no larger than one plus the tree-
width of the graph (with utility nodes included) of
the ID, which is typically much smaller than that of
q(x) when the complete utility u(x) is included di-
rectly. A derivation similar to that in Theorem 3.1
shows that we can replace θ(x) = log q(x) in (1) with
θ̃(x, y0) = log q̃(x, y0), where y0 is treated as a regular
chance node, without changing the results. The com-
plexity of this method may be further improved by ex-
ploiting the context-specific independence of q̃(x, y0),
i.e., that q̃(x|y0) has a different dependency structure
for different values of y0, but we leave this for future
work.

E Decentralized Sensor Network

In this section, we provide detailed information about
the influence diagram constructed for the decentral-
ized sensor network detection problem in Section 5.
Let hi, i = 1, . . . , nh, be the hidden variables we want

to detect using sensors. We assume the distribu-
tion p(h) is an attractive pairwise MRF on a graph
Gh = (Vh, Eh),

p(h) =
1

Z
exp[

∑
(ij)∈Gh

θij(hi, hj))], (21)

where hi are discrete variables with ph states (we take
ph = 5); we set θij(k, k) = 0 and randomly draw
θij(k, l) (k 6= l) from the negative absolute values of a
standard Gaussian variable N (0, 1). Each sensor gives
a noisy measurement vi of the local variable hi with
probability of error ei, that is, p(vi|hi) = 1 − ei for
vi = hi and p(vi|hi) = ei/(ph − 1) (uniformly) for
vi 6= hi.

Let Gs be a DAG that defines the path on which the
sensors are allowed to broadcast signals (all the down-
stream sensors receive the same signal); we assume
the channels are noise free. Each sensor is associated
with two decision variables: si ∈ {0,±1} represents
the signal send from sensor i, where ±1 represents a
one-bit signal with cost λ and 0 represents “off” with
no cost; and di represents the prediction of hi based
on vi and the signals spas(i)

received from i’s upper-
stream sensors; a correct prediction (di = hi) yields
a reward γ (we set γ = ln 2). Hence, two types of
utility functions are involved, the signal cost utilities
uλ, with uλ(si = ±1) = −λ and uλ(si = 0) = 0;
the prediction reward utilities uγ with uγ(di, hi) = γ
if di = hi and uγ(di, hi) = 0 otherwise. The to-
tal utility function is constructed multiplicatively via
u = exp[

∑
i uγ(di, hi) + uλ(si)].

We also create two qualities of sensors: “good” sen-
sors for which ei are drawn from U([0, .1]) and “bad”
sensors (ei ∼ U([.7, .8])), where U is the uniform dis-
tribution. Generally speaking, the optimal strategies
should pass signals from the good sensors to bad sen-
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Figure 1: (a) A node of the sensor network structure; the green lines denote the MRF edges, on some of which (red
arrows) signals are allowed to path. (b) The influence diagram constructed for the sensor network in (a). (c) A junction
graph for the ID in (b); π(i) denotes the parent set of i in terms of the signal path Gs, and π′(i) denotes the parent set
in terms of the hidden process p(h) (when p(h) is transformed into a Bayesian network by triangularizing reversely along
order o). The decision clusters (black rectangles) are labeled with their corresponding decision variables on their top.



sors to improve their predictive power. See Fig. 1 for
the actual influence diagram.

The definition of the ID here is not a standard one,
since p(h) is not specified as a Bayesian network; but
one could convert p(h) to an equivalent Bayesian net-
work by the standard triangulation procedure. The
normalization constant Z in (21) only changes the ex-
pected utility function by a constant and so does not
need to be calculated for the purpose of the MEU task.

Without loss of generality, for notation we assume the
order [1, . . . , nh] is consistent with the signal path Gh.
Let o = [h1, v1, d1, s1 ; . . . ; hnh , vnh , dnh , snh ]. The
junction tree we used in the experiment is constructed
by the standard triangulation procedure, backwards
along the order o. A proper construction of a loopy
junction graph is non-trivial; we show in Fig. 1(c)
the one we used in Section 5. It is constructed such
that the decision structure inside each sensor node is
preserved to be exact, while at a higher level (among
sensors), a standard loopy junction graph (similar to
that introduced in Mateescu et al. [2010] that corre-
sponds to Pearl’s loopy BP) captures the correlation
between the sensor nodes. One can shown that such a
constructed junction graph reduces to a junction tree
when the MRF Gh is a tree and the signal path Gs is
an oriented tree.

F Additional Related Work

There exists a large body of work for solving influ-
ence diagrams, mostly on exact algorithms with pre-
fect recall; see Koller and Friedman [2009] for a recent
review. Our work is most closely connected to the
early work of Jensen et al. [1994], who compile an ID
to a junction tree structure on which a special mes-
sage passing algorithm is performed; their notion of
strong junction trees is related to our notion of global
consistency. However, their framework requires the
perfect recall assumption and it is unclear how to ex-
tend it to approximate inference. A somewhat differ-
ent approach transforms the decision problem into a
sequence of standard Bayesian network inference prob-
lems [Cooper, 1988, Shachter and Peot, 1992, Zhang,
1998], where each subroutine is a standard inference
problem, and can be solved using standard algorithms,
either exactly or approximately; again, their method
only works within the perfect recall assumption. Other
approximation algorithms for ID are also based on sep-
arately approximating individual components of ex-
act algorithms, e.g., Sabbadin et al. [2011] and Sal-
lans [2003] approximate the policy update methods by
mean field methods; Nath and Domingos [2010] uses
adaptive belief propagation to approximate the inner
loop of greedy search algorithms. [Watthayu, 2008]

proposed a loopy BP algorithm, but without theo-
retical justification. To the best of our knowledge,
we know of no well-established “direct” approximation
methods.

For ID without perfect recall (LIMID), backward-
induction-like methods do not apply; most algorithms
work by optimizing the decision rules node-by-node or
group-by-group; see e.g., Lauritzen and Nilsson [2001],
Madsen and Nilsson [2001], Koller and Milch [2003];
these methods reduce to the exact backward-reduction
(hence guaranteeing global optimality) if applied on
IDs with perfect recall and update backwards along
the temporal ordering. However, they only guarantee
local person-by-person optimality for general LIMIDs,
which may be weaker than the optimality guaranteed
by our BP-like methods. Other styles of approaches,
such as Monte Carlo methods [e.g., Bielza et al., 1999,
Cano et al., 2006, Charnes and Shenoy, 2004, Garcia-
Sanchez and Druzdzel, 2004] and search-based meth-
ods [e.g., Luque et al., 2008, Qi and Poole, 1995, Yuan
and Wu, 2010, Marinescu, 2010] have also been pro-
posed. Recently, Maua and Campos [2011] proposed
a method for finding the globally optimal strategies
of LIMIDs by iteratively pruning non-maximal poli-
cies. However, these methods usually appear to have
much greater computational complexity than SPU or
our BP-like methods.

Finally, some variational inference ideas have been ap-
plied to the related problems of reinforcement learning
or solving Markov decision processes [e,g., Sallans and
Hinton, 2001, Furmston and Barber, 2010, Yoshimoto
and Ishii, 2004].
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