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Abstract

Variational inference algorithms such as be-
lief propagation have had tremendous im-
pact on our ability to learn and use graph-
ical models, and give many insights for de-
veloping or understanding exact and approx-
imate inference. However, variational ap-
proaches have not been widely adoped for
decision making in graphical models, often
formulated through influence diagrams and
including both centralized and decentralized
(or multi-agent) decisions. In this work,
we present a general variational framework
for solving structured cooperative decision-
making problems, use it to propose several
belief propagation-like algorithms, and ana-
lyze them both theoretically and empirically.

1 Introduction

Graphical modeling approaches, including Bayesian
networks and Markov random fields, have been widely
adopted for problems with complicated dependency
structures and uncertainties. The problems of learn-
ing, i.e., estimating a model from data, and inference,
e.g., calculating marginal probabilities or maximum a
posteriori (MAP) estimates, have attracted wide at-
tention and are well explored. Variational inference
approaches have been widely adopted as a principled
way to develop and understand many exact and ap-
proximate algorithms. On the other hand, the prob-
lem of decision making in graphical models, sometimes
formulated via influence diagrams or decision networks
and including both sequential centralized decisions and
decentralized or multi-agent decisions, is surprisingly
less explored in the approximate inference community.

Influence diagrams (ID), or decision networks,
[Howard and Matheson, 1985, 2005] are a graphical
model representation of structured decision problems

under uncertainty; they can be treated as an extension
of Bayesian networks, augmented with decision nodes
and utility functions. Traditionally, IDs are used to
model centralized, sequential decision processes under
“perfect recall”, which assumes that the decision steps
are ordered in time and that all information is remem-
bered across time; limited memory influence diagrams
(LIMIDs) [Zhang et al., 1994, Lauritzen and Nilsson,
2001] relax the perfect recall assumption, creating a
natural framework for representing decentralized and
information-limited decision problems, such as team
decision making and multi-agent systems. Despite the
close connection and similarity to Bayes nets, IDs have
less visibility in the graphical model and automated re-
seasoning community, both in terms of modeling and
algorithm development; see Pearl [2005] for an inter-
esting historical perspective.

Solving an ID refers to finding decision rules that max-
imize the expected utility function (MEU); this task
is significantly more difficult than standard inference
on a Bayes net. For IDs with perfect recall, MEU
can be restated as a dynamic program, and solved
with cost exponential in a constrained tree-width of
the graph that is subject to the temporal ordering of
the decision nodes. The constrained tree-width can be
much higher than the tree-width associated with typ-
ical inference, making MEU significantly more com-
plex. For LIMIDs, non-convexity issues also arise,
since the limited shared information and simultane-
ous decisions may create locally optimal policies. The
most popular algorithm for LIMIDs is based on policy-
by-policy improvement [Lauritzen and Nilsson, 2001],
and provides only a “person-by-person” notion of opti-
mality. Surprisingly, the variational ideas that revolu-
tionized inference in Bayes nets have not been adopted
for influence diagrams. Although there exists work on
transforming MEU problems into sequences of stan-
dard marginalization problems [e.g., Zhang, 1998], on
which variational methods apply, these methods do
not yield general frameworks, and usually only work
for IDs with perfect recall. A full variational frame-



work would provide general procedures for developing
efficient approximations such as loopy belief propaga-
tion (BP), that are crucial for large scale problems, or
providing new theoretical analysis.

In this work, we propose a general variational frame-
work for solving influence diagrams, both with and
without perfect recall. Our results on centralized deci-
sion making include traditional inference in graphical
models as special cases. We propose a spectrum of
exact and approximate algorithms for MEU problems
based on the variational framework. We give several
optimality guarantees, showing that under certain con-
ditions, our BP algorithm can find the globally optimal
solution for ID with perfect recall and solve LIMIDs in
a stronger locally optimal sense than coordinate-wise
optimality. We show that a temperature parameter
can also be introduced to smooth between MEU tasks
and standard (easier) marginalization problems, and
can provide good solutions by annealing the tempera-
ture or using iterative proximal updates.

This paper is organized as follows. Section 2 sets up
background on graphical models, variational methods
and influence diagrams. We present our variational
framework of MEU in Section 3, and use it to develop
several BP algorithms in Section 4. We present nu-
merical experiments in Section 5. Finally, we discuss
additional related work in Section 6 and concluding re-
marks in Section 7. Proofs and additional information
can be found in the appendix.

2 Background

2.1 Graphical Models

Let x = {x1, x2, · · · , xn} be a random vector in X =
X1× · · · ×Xn. Consider a factorized probability on x,

p(x) =
1

Z

∏
α∈I

ψα(xα) =
1

Z
exp

[∑
α∈I

θα(xα)
]
,

where I is a set of variable subsets, and ψα : Xα → R+

are positive factors; the θα(xα) = logψα(xα) are the
natural parameters of the exponential family repre-
sentation; and Z =

∑
x

∏
α∈I ψα is the normaliza-

tion constant or partition function with Φ(θ) = logZ
the log-partition function. Let θ = {θα|α ∈ I} and
θ(x) =

∑
α θα(xα). There are several ways to repre-

sent a factorized distribution using graphs (i.e., graphi-
cal models), including Markov random fields, Bayesian
networks, factors graphs and others.

Given a graphical model, inference refers to the pro-
cedure of answering probabilistic queries. Important
inference tasks include marginalization, maximum a
posteriori (MAP, sometimes called maximum proba-
bility of evidence or MPE), and marginal MAP (some-

times simply MAP). All these are NP-hard in general.
Marginalization calculates the marginal probabilities
of one or a few variables, or equivalently the normal-
ization constant Z, while MAP/MPE finds the mode
of the distribution. More generally, marginal MAP
seeks the mode of a marginal probability,

Marginal MAP: x∗ = arg max
xA

∑
xB

∏
α

ψα(xα),

where A,B are disjoint sets with A∪B = V ; it reduces
to marginalization if A = ∅ and to MAP if B = ∅.

Marginal Polytope. A marginal polytope M is a
set of local marginals τ = {τα(xα) : α ∈ I} that are
extensible to a global distribution over x, that is, M =
{τ | ∃ a distribution p(x), s.t.

∑
xV \α

p(x) = τα(xα) }.
Call P[τ ] the set of global distributions consistent
with τ ∈M; there exists a unique distribution in P[τ ]
that has maximum entropy and follows the exponen-
tial family form for some θ. We abuse notation to
denote this unique global distribution τ(x).

A basic result for variational methods is that Φ(θ) is
convex and can be rewritten into a dual form,

Φ(θ) = max
τ∈M
{〈θ, τ 〉+H(x; τ )}, (1)

where 〈θ, τ 〉 =
∑
x

∑
α θα(xα)τα(xα) is the point-wise

inner product, and H(x; τ ) = −
∑
x τ(x) log τ(x) is

the entropy of distribution τ(x); the maximum of (1)
is obtained when τ equals the marginals of the original
distribution with parameter θ. See Wainwright and
Jordan [2008].

Similar dual forms hold for MAP and marginal MAP.
Letting ΦA,B(θ) = log maxxA

∑
xB

exp(θ(x)), we have
[Liu and Ihler, 2011]

ΦA,B(θ) = max
τ∈M
{〈θ, τ 〉+H(xB |xA ; τ )}, (2)

where H(xB |xA ; τ ) = −
∑
x τ(x) log τ(xB |xA) is the

conditional entropy; its appearance corresponds to the
sum operators.

The dual forms in (1) and (2) are no easier to compute
than the original inference. However, one can approxi-
mate the marginal polytope M and the entropy in var-
ious ways, yielding a body of approximate inference
algorithms, such as loopy belief propagation (BP) and
its generalizations [Yedidia et al., 2005, Wainwright
et al., 2005], linear programming solvers [e.g., Wain-
wright et al., 2003b], and recently hybrid message pass-
ing algorithms [Liu and Ihler, 2011, Jiang et al., 2011].

Junction Graph BP. Junction graphs provide a
procedural framework to approximate the dual (1). A
cluster graph is a triple (G, C,S), where G = (V, E) is
an undirected graph, with each node k ∈ V associated



with a subset of variables ck ∈ C (clusters), and each
edge (kl) ∈ E a subset skl ∈ S (separator) satisfying
skl ⊆ ck ∩ cl. We assume that C subsumes the index
set I, that is, for any α ∈ I, there exists a ck ∈ C,
denoted c[α], such that α ⊆ ck. In this case, we can
reparameterize θ = {θα|α ∈ I} into θ = {θck |k ∈ V}
by taking θck =

∑
α : c[α]=ck

θα, without changing the
distribution. A cluster graph is called a junction graph
if it satisfies the running intersection property – for
each i ∈ V , the induced sub-graph consisting of the
clusters and separators that include i is a connected
tree. A junction graph is a junction tree if G is tree.

To approximate the dual (1), we can replace M with
a locally consistent polytope L: the set of local
marginals τ = {τck , τskl : k ∈ V, (kl) ∈ E} satisfying∑
xck\skl

τck(xck) = τ(xskl). Clearly, M ⊆ L. We then

approximate (1) by

max
τ∈L
{〈θ, τ 〉+

∑
k∈V

H(xck ; τ ck)−
∑

(kl)∈E

H(xskl ; τ skl)},

where the joint entropy is approximated by a linear
combination of the entropies of local marginals. The
approximate objective can be solved using Lagrange
multipliers [Yedidia et al., 2005], leading to a sum-
product message passing algorithm that iteratively
sends messages between neighboring clusters via

mk→l(xcl) ∝
∑

xck\skl

ψck(xck)m∼k\l(xcN(k)
), (3)

where ψck = exp(θck), and m∼k\l is the product of
messages into k from its neighbors N (k) except l. At
convergence, the (locally) optimal marginals are

τck ∝ ψckm∼k and τskl ∝ mk→lml→k,

where m∼k is the product of messages into k. Max-
product and hybrid methods can be derived analo-
gously for MAP and marginal MAP problems.

2.2 Influence Diagrams

Influence diagrams (IDs) or decision networks are ex-
tensions of Bayesian networks to represent structured
decision problems under uncertainty. Formally, an in-
fluence diagram is defined on a directed acyclic graph
G = (V,E), where the nodes V are divided into two
subsets, V = R∪D, where R and D represent respec-
tively the set of chance nodes and decision nodes. Each
chance node i ∈ R represents a random variable xi
with a conditional probability table pi(xi|xpa(i)). Each
decision node i ∈ D represents a controllable decision
variable xi, whose value is determined by a decision
maker via a decision rule (or policy) δi : Xpa(i) → Xi,
which determines the values of xi based on the obser-
vation on the values of xpa(i); we call the collection

Weather 
Forecast 

Weather 
Condition 

Vacation 
Activity Satisfaction 

Chance nodes 

Decision nodes 

Utility nodes 

Figure 1: A simple influence diagram for deciding va-
cation activity [Shachter, 2007].

of policies δ = {δi|i ∈ D} a strategy. Finally, a util-
ity function u : X → R+ measures the reward given
an instantiation of x = [xR, xD], which the decision
maker wants to maximize. It is reasonable to assume
some decomposition structure on the utility u(x), ei-
ther additive, u(x) =

∑
j∈U uj(xβj ), or multiplicative,

u(x) =
∏
j∈U uj(xβj ). A decomposable utility func-

tion can be visualized by augmenting the DAG with
a set of leaf nodes U , called utility nodes, each with
parent set βj . See Fig. 1 for a simple example.

A decision rule δi is alternatively represented as a
deterministic conditional “probability” pδi (xi|xpa(i)),

where pδi (xi|xpa(i)) = 1 for xi = δi(xpa(i)) and zero
otherwise. It is helpful to allow soft decision rules
where pδi (xi|xpa(i)) takes fractional values; these de-
fine a randomized strategy in which xi is determined
by randomly drawing from pδi (xi|xpa(i)). We denote
by ∆o the set of deterministic strategies and ∆ the set
of randomized strategies. Note that ∆o is a discrete
set, while ∆ is its convex hull.

Given an influence diagram, the optimal strategy
should maximize the expected utility function (MEU):

MEU = max
δ∈∆

EU(δ) = max
δ∈∆

E(u(x)|δ)

= max
δ∈∆

∑
x

u(x)
∏
i∈C

pi(xi|xpa(i))
∏
i∈D

pδi (xi|xpa(i))

def
= max

δ∈∆

∑
x

exp(θ(x))
∏
i∈D

pδi (xi|xpa(i)) (4)

where θ(x) = log[u(x)
∏
i∈C pi(xi|xpa(i))]; we call the

distribution q(x) ∝ exp(θ(x)) the augmented distri-
bution [Bielza et al., 1999]. The concept of the aug-
mented distribution is critical since it completely spec-
ifies a MEU problem without the semantics of the in-
fluence diagram; hence one can specify q(x) arbitrarily,
e.g., via an undirected MRF, extending the definition
of IDs. We can treat MEU as a special sort of “infer-
ence” on the augmented distribution, which as we will
show, generalizes more common inference tasks.

In (4) we maximize the expected utility over ∆; this
is equivalent to maximizing over ∆o, since

Lemma 2.1. For any ID, maxδ∈∆EU(δ) =
maxδ∈∆o EU(δ).



Perfect Recall Assumption. The MEU prob-
lem can be solved in closed form if the influence di-
agram satisfies a perfect recall assumption (PRA) —
there exists a “temporal” ordering over all the deci-
sion nodes, say {d1, d2, · · · , dm}, consistent with the
partial order defined by the DAG G, such that every
decision node observes all the earlier decision nodes
and their parents, that is, {dj} ∪ pa(dj) ⊆ pa(di) for
any j < i. Intuitively, PRA implies a centralized de-
cision scenario, where a global decision maker sets all
the decision nodes in a predefined order, with perfect
memory of all the past observations and decisions.

With PRA, the chance nodes can be grouped by when
they are observed. Let ri−1 (i = 1, . . . ,m) be the set
of chance nodes that are parents of di but not of any
dj for j < i; then both decision and chance nodes are
ordered by o = {r0, d1, r1, · · · , dm, rm}. The MEU and
its optimal strategy for IDs with PRA can be calcu-
lated by a sequential sum-max-sum rule,

MEU =
∑
xr0

max
xd1

∑
xr1

· · ·max
xdm

∑
xrm

exp(θ(x)), (5)

δ∗di(xpa(di)) = arg max
xdi

{∑
xri

· · ·max
xdm

∑
xrm

exp(θ(x))
}
,

where the calculation is performed in reverse temporal
ordering, interleaving marginalizing chance nodes and
maximizing decision nodes. Eq. (5) generalizes the
inference tasks in Section 2.1, arbitrarily interleaving
the sum and max operators. For example, marginal
MAP can be treated as a blind decision problem, where
no chance nodes are observed by any decision nodes.

As in other inference tasks, the calculation of the sum-
max-sum rule can be organized into local computa-
tions if the augmented distribution q(x) is factorized.
However, since the max and sum operators are not ex-
changeable, the calculation of (5) is restricted to elimi-
nation orders consistent with the “temporal ordering”.
Notoriously, this “constrained” tree-width can be very
high even for trees. See Koller and Friedman [2009].

However, PRA is often unrealistic. First, most systems
lack enough memory to express arbitrary policies over
an entire history of observations. Second, many prac-
tical scenarios, like team decision analysis [Detwarasiti
and Shachter, 2005] and decentralized sensor networks
[Kreidl and Willsky, 2006], are distributed by nature:
a team of agents makes decisions independently based
on sharing limited information with their neighbors.
In these cases, relaxing PRA is very important.

Imperfect Recall. General IDs with the perfect
recall assumption relaxed are discussed in Zhang et al.
[1994], Lauritzen and Nilsson [2001], Koller and Milch
[2003], and are commonly referred as limited memory
influence diagrams (LIMIDs). Unfortunately, the re-

d1 d2

u

d1 d2

u

d1 d2 u(d1, d2)
1 1 1
0 1 0
1 0 0
0 0 0.5

(a) Perfect Recall (b) Imperfect Recall (c) Utility Function

Figure 2: Illustrating imperfect recall. In (a) d2 ob-
serves d1; its optimal decision rule is to equal d1’s state
(whatever it is); knowing d2 will follow, d1 can choose
d1 = 1 to achieve the global optimum. In (b) d1 and
d2 do not know the other’s states; both d1 = d2 = 1
and d1 = d2 = 0 (suboptimal) become locally optimal
strategies and the problem is multi-modal.

laxation causes many difficulties. First, it is no longer
possible to eliminate the decision nodes in a sequential
“sum-max-sum” fashion. Instead, the dependencies of
the decision nodes have cycles, formally discussed in
Koller and Milch [2003] by defining a relevance graph
over the decision nodes; the relevance graph is a tree
with PRA, but is usually loopy with imperfect recall.
Thus iterative algorithms are usually required for LIM-
IDs. Second and more importantly, the incomplete in-
formation may cause the agents to behave myopically,
selfishly choosing locally optimal strategies due to ig-
norance of the global statistics. This breaks the strat-
egy space into many local modes, making the MEU
problem non-convex; see Fig. 2 for an illustration.

The most popular algorithms for LIMIDs are based on
policy-by-policy improvement, e.g., the single policy
update (SPU) algorithm [Lauritzen and Nilsson, 2001]
sequentially optimizes δi with δ¬i = {δj : j 6= i} fixed:

δi(xpa(i))← arg max
xi

E(u(x)|xfam(i) ; δ¬i), (6)

E(u(x)|xfam(i); δ¬i) =
∑

x¬fam(i)

exp(θ(x))
∏

j∈D\{i}

pδj(xj |xpa(j)),

where fam(i) = {i}∪pa(i). The update circles through
all i ∈ D in some order, and ties are broken arbitrar-
ily in case of multiple maxima. The expected util-
ity in SPU is non-decreasing at each iteration, and it
gives a locally optimal strategy at convergence in the
sense that the expected utility can not be improved
by changing any single node’s policy. Unfortunately,
SPU’s solution is heavily influenced by initialization
and can be very suboptimal.

This issue is helped by generalizing SPU to the
strategy improvement (SI) algorithm [Detwarasiti and
Shachter, 2005], which simultaneously updates sub-
groups of decisions nodes. However, the time and
space complexity of SI grows exponentially with the
sizes of subgroups. In the sequel, we present a novel
variational framework for MEU, and propose BP-like
algorithms that go beyond the näıve greedy paradigm.



3 Duality Form of MEU

In this section, we derive a duality form for MEU, gen-
eralizing the duality results of the standard inference
in Section 2.1. Our main result is summarized in the
following theorem.

Theorem 3.1. (a). For an influence diagram with
augmented distribution q(x) ∝ exp(θ(x)), its log max-
imum expected utility log MEU(θ) equals

max
τ∈M
{〈θ, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i); τ )}. (7)

Suppose τ ∗ is a maximum of (7), then δ∗ =
{τ ∗(xi|xpa(i))|i ∈ D} is an optimal strategy.

(b). For IDs with perfect recall, (7) reduces to

max
τ∈M
{〈θ, τ 〉+

∑
oi∈C

H(xoi |xo1:i−1
; τ )}, (8)

where o is the temporal ordering of the perfect recall.

Proof. (a) See appendix; (b) note PRA implies pa(i) =
o1:i−1 (i ∈ D), and apply the entropy chain rule.

The distinction between (8) and (7) is subtle but im-
portant: although (8) (with perfect recall) is always
(if not strictly) a convex optimization, (7) (without
perfect recall) may be non-convex if the subtracted
entropy terms overwhelm; this matches the intuition
that incomplete information sharing gives rise to mul-
tiple locally optimal strategies.

The MEU duality (8) for ID with PRA generalizes ear-
lier duality results of inference: with no decision nodes,
D = ∅ and (8) reduces to (1) for the log-partition
function; when C = ∅, no entropy terms appear and
(8) reduces to the linear program relaxation of MAP.
Also, (8) reduces to marginal MAP when no chance
nodes are observed before any decision. As we show
in Section 4, this unification suggests a line of unified
algorithms for all these different inference tasks.

Several corollaries provide additional insights.

Corollary 3.2. For an ID with parameter θ, we have

log MEU = max
τ∈I
{〈θ, τ 〉+

∑
oi∈C

H(xoi |xo1:i−1 ; τ )} (9)

where I = {τ ∈ M : xoi ⊥ xo1:i−1\pa(oi)|xpa(oi),∀oi ∈
D}, corresponding to those distributions that respect
the imperfect recall constraints; “x ⊥ y | z” denotes
conditional independence of x and y given z.

Corollary 3.2 gives another intuitive interpretation of
imperfect recall vs. perfect recall: MEU with imper-
fect recall optimizes same objective function, but over

a subset of the marginal polytope that restricts the
observation domains of the decision rules; this non-
convex inner subset is similar to the mean field approx-
imation for partition functions. See Wolpert [2006] for
a similar connection to mean field for bounded rational
game theory. Interestingly, this shows that extending
a LIMID to have perfect recall (by extending the ob-
servation domains of the decision nodes) can be con-
sidered a “convex” relaxation of the LIMID.

Corollary 3.3. For any ε, if τ ∗ is global optimum of

max
τ∈M
{〈θ, τ 〉+H(x)− (1− ε)

∑
i∈D

H(xi|xpa(i))}. (10)

and δ∗ = {τ∗(xi|xpa(i))|i ∈ D} is a deterministic strat-
egy, then it is an optimal strategy for MEU.

The parameter ε is a temperature to “anneal” the
MEU problem, and trades off convexity and optimal-
ity. For large ε, e.g., ε ≥ 1, the objective in (10) is a
strictly convex function, while δ∗ is unlikely to be de-
terministic nor optimal (if ε = 1, (10) reduces to stan-
dard marginazation); as ε decreases towards zero, δ∗

becomes more deterministic, but (10) becomes more
non-convex and is harder to solve. In Section 4 we
derive several possible optimization approaches.

4 Algorithms

The duality results in Section 3 offer new perspectives
for MEU, allowing us to bring the tools of variational
inference to develop new efficient algorithms. In this
section, we present a junction graph framework for BP-
like MEU algorithms, and provide theoretical analysis.
In addition, we propose two double-loop algorithms
that alleviate the issue of non-convexity in LIMIDs or
provide convergence guarantees: a deterministic an-
nealing approach suggested by Corollary 3.3 and a
method based on the proximal point algorithm.

4.1 A Belief Propagation Algorithm

We start by formulating the problem (7) into the
junction graph framework. Let (G, C,S) be a junc-
tion graph for the augmented distribution q(x) ∝
exp(θ(x)). For each decision node i ∈ D, we as-
sociate it with exactly one cluster ck ∈ C satisfying
{i,pa(i)} ⊆ ck; we call such a cluster a decision clus-
ter. The clusters C are thus partitioned into decision
clusters D and the other (normal) clusters R. For
simplicity, we assume each decision cluster ck ∈ D is
associated with exactly one decision node, denoted dk.

Following the junction graph framework in Section 2.1,
the MEU dual (10) (with temperature parameter ε) is



approximated by

max
τ∈L
{〈θ, τ 〉+

∑
k∈R

Hck +
∑
k∈D

Hε
ck
−
∑

(kl)∈E

Hskl}, (11)

where Hck = H(xck), Hskl = H(xskl) and Hε(xck) =
H(xck)−(1−ε)H(xdk |xpa(dk)). The dependence of en-
tropies on τ is suppressed for compactness. Eq. (11)
is similar to the objective of regular sum-product junc-
tion graph BP, except the entropy terms of the decision
clusters are replaced by Hε

ck
.

Using a Lagrange multiplier method similar to Yedidia
et al. [2005], a hybrid message passing algorithm can
be derived for solving (11):

Sum messages:

(normal clusters)
mk→l ∝

∑
xck\skl

ψckm∼k\l, (12)

MEU messages:

(decision clusters)
mk→l ∝

∑
xck\skl

σk[ψckm∼k; ε]

ml→k
, (13)

where σk[·] is an operator that solves an annealed local
MEU problem associated with b(xck) ∝ ψckm∼k:

σk[b(xck); ε]
def
= b(xck)bε(xdk |xpa(dk))

1−ε

where bε(xdk |xpa(dk)) is the “annealed” optimal policy

bε(xdk |xpa(dk)) =
b(xdk , xpa(dk))

1/ε∑
xdk

b(xdk , xpa(dk))1/ε
,

b(xdk , xpa(dk)) =
∑
xzk

b(xck), zk = ck \ {dk,pa(dk)}.

As ε→ 0+, one can show that bε(xdk |xpa(dk)) is exactly
an optimal strategy of the local MEU problem with
augmented distribution b(xck).

At convergence, the stationary point of (11) is:

τck ∝ ψckm∼k for normal clusters (14)

τck ∝ σk[ψckm∼k; ε] for decision clusters (15)

τskl ∝ mk→lml→k for separators (16)

This message passing algorithm reduces to sum-
product BP when there are no decision clusters. The
outgoing messages from decision clusters are the cru-
cial ingredient, and correspond to solving local (an-
nealed) MEU problems.

Taking ε→ 0+ in the MEU message update (13) gives
a fixed point algorithm for solving the original objec-
tive directly. Alternatively, one can adopt a deter-
ministic annealing approach [Rose, 1998] by gradually
decreasing ε, e.g., taking εt = 1/t at iteration t.

Reparameterization Properties. BP algorithms,
including sum-product, max-product, and hybrid mes-
sage passing, can often be interpreted as reparame-
terization operators, with fixed points satisfying some

sum (resp. max or hybrid) consistency property yet
leaving the joint distribution unchanged [e.g., Wain-
wright et al., 2003a, Weiss et al., 2007, Liu and Ih-
ler, 2011]. We define a set of “MEU-beliefs” b =
{b(xck), b(xskl)} by b(xck) ∝ ψckmk for all ck ∈ C, and
b(xskl) ∝ mk→lml→k; note that the “beliefs” b are dis-
tinguished from the “marginals” τ . We can show that
at each iteration of MEU-BP in (12)-(13), the b satisfy

Reparameterization: q(x) ∝
∏
k∈V b(xck)∏

(kl)∈E b(xskl)
, (17)

and further, at a fixed point of MEU-BP we have

Sum-consistency:

(normal clusters)

∑
ck\sij

b(xck) = b(xskl), (18)

MEU-consistency:

(decision clusters)

∑
ck\sij

σk[b(xck); ε] = b(xskl). (19)

Optimality Guarantees. Optimality guarantees of
MEU-BP (with ε → 0+) can be derived via reparam-
eterization. Our result is analogous to those of Weiss
and Freeman [2001] for max-product BP and Liu and
Ihler [2011] for marginal-MAP.

For a junction tree, a tree-order is a partial ordering on
the nodes with k � l iff the unique path from a special
cluster (called root) to l passes through k; the parent
π(k) is the unique neighbor of k on the path to the
root. Given a subset of decision nodes D′, a junction
tree is said to be consistent for D′ if there exists a
tree-order with sk,π(k) ⊆ pa(dk) for any dk ∈ D′.
Theorem 4.1. Let (G, C,S) be a consistent junction
tree for a subset of decision nodes D′, and b be a set
of MEU-beliefs satisfying the reparameterization and
consistency conditions (17)-(19) with ε → 0+. Let
δ∗ = {bck(xdk |xpa(dk)) : dk ∈ D}; then δ∗ is a locally
optimal strategy in the sense that EU({δ∗D′ , δD\D′}) ≤
EU(δ∗) for any δD\D′ .

A junction tree is said to be globally consistent if it
is consistent for all the decision nodes, which as im-
plied by Theorem 4.1, ensures a globally optimal strat-
egy; this notation of global consistency is similar to
the strong junction trees in Jensen et al. [1994]. For
IDs with perfect recall, a globally consistent junction
tree can be constructed by a standard procedure which
triangulates the DAG of the ID along reverse tempo-
ral order. For IDs without perfect recall, it is usually
not possible to construct a globally consistent junction
tree; this is the case for the toy example in Fig. 2b.
However, coordinate-wise optimality follows as a con-
sequence of Theorem 4.1 for general IDs with arbitrary
junction trees, indicating that MEU-BP is at least as
“optimal” as SPU.



Theorem 4.2. Let (G, C,S) be an arbitrary junc-
tion tree, and b and δ∗ defined in Theorem 4.1.
Then δ∗ is a locally person-by-person optimal strategy:
EU({δ∗i , δD\i}) ≤ EU(δ∗) for any i ∈ D and δD\i.

Additively Decomposable Utilities. Our al-
gorithms rely on the factorization structure of the
augmented distribution q(x). For this reason, mul-
tiplicative utilities fit naturally, but additive utilities
are more difficult (as they also are in exact inference)
[Koller and Friedman, 2009]. To create factorization
structure in additive utility problems, we augment the
model with a latent “selector” variable, similar to that
in mixture models. For details, see the appendix.

4.2 Proximal Algorithms

In this section, we present a proximal point approach
[e.g., Martinet, 1970, Rockafellar, 1976] for the MEU
problems. Similar methods have been applied to stan-
dard inference problems, e.g., Ravikumar et al. [2010].

We start with a brief introduction to the proximal
point algorithm. Consider an optimization problem
minτ∈M f(τ ). A proximal method instead iteratively
solves a sequence of “proximal” problems

τ t+1 = arg min
τ∈M

{f(τ ) + wtD(τ ||τ t)}, (20)

where τ t is the solution at iteration t and wt is a pos-
itive coefficient. D(·||·) is a distance, called the prox-
imal function; typical choices are Euclidean or Breg-
man distances or ψ-divergences [e.g., Teboulle, 1992,
Iusem and Teboulle, 1993]. Convergence of proxi-
mal algorithms has been well studied: the objective
series {f(τ t)} is guaranteed to be non-increasing at
each iteration, and {τ t} converges to an optimal so-
lution (sometimes superlinearly) for convex programs,
under some regularity conditions on the coefficients
{wt}. See, e.g., Rockafellar [1976], Tseng and Bert-
sekas [1993], Iusem and Teboulle [1993].

Here, we use an entropic proximal function that natu-
rally fits the MEU problem:

D(τ ||τ ′) =
∑
i∈D

∑
x

τ(x) log[τi(xi|xpa(i))/τ
′
i(xi|xpa(i))],

a sum of conditional KL-divergences. The proximal
update for the MEU dual (7) then reduces to

τ t+1 = arg max
τ∈M

{〈θt, τ 〉+H(x)− (1− wt)H(xi|xpa(i))}

where θt(x) = θ(x) + wt
∑
i∈D log τ ti (xi|xpa(i)). This

has the same form as the annealed problem (10) and
can be solved by the message passing scheme (12)-(13).
Unlike annealing, the proximal algorithm updates θt

each iteration and does not need wt to approach zero.

We use two choices of coefficients {wt}: (1) wt = 1
(constant), and (2) wt = 1/t (harmonic). The choice
wt = 1 is especially interesting because the proximal
update reduces to a standard marginalization prob-
lem, solvable by standard tools without the MEU’s
temporal elimination order restrictions. Concretely,
the proximal update in this case reduces to

τ t+1
i (xi|xpa(i)) ∝ τ ti (xi|xpa(i))E(u(x)|xfam(i) ; δn¬i)

with E(u(x)|xfam(i) ; δn¬i) as defined in (6). This prox-
imal update can be seen as a “soft” and “parallel”
version of the greedy update (6), which makes a hard
update at a single decision node, instead of a soft mod-
ification simutaneously for all decision nodes. The soft
update makes it possible to correct earlier suboptimal
choices and allows decision nodes to make cooperative
movements. However, convergence with wt = 1 may
be slow; using wt = 1/t takes larger steps but is no
longer a standard marginalization.

5 Experiments

We demonstrate our algorithms on several influence di-
agrams, including randomly generated IDs, large scale
IDs constructed from problems in the UAI08 infer-
ence challenge, and finally practically motivated IDs
for decentralized detection in wireless sensor networks.
We find that our algorithms typically find better so-
lutions than SPU with comparable time complexity;
for large scale problems with many decision nodes,
our algorithms are more computationally efficient than
SPU because one step of SPU requires updating (6) (a
global expectation) for all the decision nodes.

In all experiments, we test single policy updating
(SPU), our MEU-BP running directly at zero temper-
ature (BP-0+), annealed BP with temperature εt =
1/t (Anneal-BP-1/t), and the proximal versions with
wt = 1 (Prox-BP-one) and wt = 1/t (Prox-BP-1/t).
For the BP-based algorithms, we use two construc-
tions of junction graphs: a standard junction tree by
triangulating the DAG in backwards topological order,
and a loopy junction graph following [Mateescu et al.,
2010] that corresponds to Pearl’s loopy BP; for SPU,
we use the same junction graphs to calculate the in-
ner update (6). The junction trees ensure the inner
updates of SPU and Prox-BP-one are performed ex-
actly, and has optimality guarantees in Theorem 4.1,
but may be computationally more expensive than the
loopy junction graphs. For the proximal versions, we
set a maximum of 5 iterations in the inner loop; chang-
ing this value did not seem to lead to significantly dif-
ferent results. The BP-based algorithms may return
non-deterministic strategies; we round to determinis-
tic strategies by taking the largest values.
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Figure 3: Results on random IDs of size 20. The y-
axes show the log MEU of each algorithm compared to
SPU on a junction tree. The left panels correspond to
running the algorithms on junction trees, and right
panels on loopy junction graphs. (a) & (b) shows
MEUs as the percentage of decision nodes changes.
(c) & (d) show MEUs v.s. the Dirichlet parameter α.
The results are averaged on 20 random models.

Random Bayesian Networks. We test our algo-
rithms on randomly constructed IDs with additive util-
ities. We first generate a set of random DAGs of size
20 with maximum parent size of 3. To create IDs, we
take the leaf nodes to be utility nodes, and among non-
leaf nodes we randomly select a fixed percentage to be
decision nodes, with the others being chance nodes.
We assume the chance and decision variables are dis-
crete with 4 states. The conditional probability tables
of the chance nodes are randomly drawn from a sym-
metric Dirichlet distribution Dir(α), and the entries of
the utility function from Gamma distribution Γ(α, 1).

The relative improvement of log MEU compared to the
SPU with junction tree are reported in Fig. 3. We find
that when using junction trees, all our BP-based meth-
ods dominate SPU; for loopy junction graphs, BP-0+

occasionally performs worse than SPU, but all the an-
nealed and proximal algorithms outperform SPU with
the same loopy junction graph, and often even SPU

with junction tree. As the percentage of decision nodes
increases, the improvement of the BP-based methods
on SPU generally increases. Fig. 4 shows a typical tra-
jectory of the algorithms across iterations. The algo-
rithms were initialized uniformly; random initializa-
tions behaved similarly, but are omitted for space.

Diagnostic Bayesian networks. We construct

10 20 30 40 50
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Figure 4: A typical trajectory of MEU (of the rounded
deterministic strategies) v.s. iterations for the random
IDs in Fig. 3. One iteration of the BP-like methods
denotes a forward-backward reduction on the junction
graph; One step of SPU requires |D| (number of deci-
sion nodes) reductions. SPU and BP-0+ are stuck at a
local model in the 2nd iteration.
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Figure 5: Results on IDs constructed from two di-
agnostic BNs from the UAI08 challenge. Here all al-
gorithms used the loopy junction graph and are ini-
tialized uniformly. (a)-(b) the logMEU of algorithms
normalized to that of SPU. Averaged on 10 trails.

larger scale IDs based on two diagnostic Bayes nets
with 200-300 nodes and 300-600 edges, taken from the
UAI08 inference challenge. To create influence dia-
grams, we made the leaf nodes utilities, each defined
by its conditional probability when clamped to a ran-
domly chosen state, and total utility as the product
of the local utilities (multiplicatively decomposable).
The set of decision nodes is again randomly selected
among the non-leaf nodes with a fixed percentage.
Since the network sizes are large, we only run the al-
gorithms on the loopy junction graphs. Again, our
algorithms significantly improve on SPU; see Fig. 5.

Decentralized Sensor Network. In this sec-
tion, we test an influence diagram constructed for de-
centralized detection in wireless sensor networks [e.g.,
Viswanathan and Varshney, 1997, Kreidl and Willsky,
2006]. The task is to detect the states of a hidden
process p(h) (as a pairwise MRF) using a set of dis-
tributed sensors; each sensor provides a noisy mea-
surement vi of the local state hi, and overall perfor-
mance is boosted by allowing the sensor to transmit
small (1-bit) signals si along an directional path, to
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Figure 6: (a) A sensor network on 3 × 3 grid; green lines denote the MRF edges of the hidden process p(h),
on some of which (red arrows) signals are allowed to pass; each sensor may be accurate (purple) or noisy
(black). Optimal strategies should pass signals from accurate sensors to noisy ones but not the reverse. (b)-(c)
The log MEU of algorithms running on (b) a junction tree and (c) a loopy junction graph. As the signal cost
increases, all algorithms converge to the communication-free strategy. Results averaged on 10 random trials.

help the predictions of their downstream sensors. The
utility function includes rewards for correct prediction
and a cost for sending signals. We construct an ID as
sketched in Fig. 6(a) for addressing the offline policy
design task, finding optimal policies of how to predict
the states based on the local measurement and received
signals, and policies of whether and how to pass signals
to downstream nodes; see appendix for more details.

To escape the “all-zero” fixed point, we initialize the
proximal algorithms and SPU with 5 random policies,
and BP-0+ and Anneal-BP-1/t with 5 random mes-
sages. We first test on a sensor network on a 3 × 3
grid, where the algorithms are run on both a junction
tree constructed by standard triangulation and a loopy
junction graph (see the Appendix for construction de-
tails). As shown in Fig. 6(b)-(c), SPU performs worst in
all cases. Interestingly, Anneal-BP-1/t performs rela-
tively poorly here, because the annealing steps make it
insensitive to and unable to exploit the random initial-
izations; this can be fixed by a “perturbed” annealed
method that injects a random perturbation into the
model, and gradually decreases the perturbation level
across iterations (Anneal-BP-1/t (Perturbed)).

A similar experiment (with only the loopy junction
graph) is performed on the larger random graph in
Fig. 7; the algorithm performances follow similar
trends. SPU performs even worse in this case since
it appears to over-send signals when two “good” sen-
sors connect to one “bad” sensor.

6 Related Works

Many exact algorithms for ID have been developed,
usually in a variable-elimination or message-passing
form; see Koller and Friedman [2009] for a recent re-
view. Approximation algorithms are relatively unex-
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Figure 7: The results on a sensor network on a random
graph with 30 nodes (the MRF edges overlap with the
signal paths). Averaged on 5 random models.

plored, and usually based on separately approximating
individual components of exact algorithms [e.g., Sab-
badin et al., 2011, Sallans, 2003]; our method instead
builds an integrated framework. Other approaches, in-
cluding MCMC [e.g., Charnes and Shenoy, 2004] and
search methods [e.g., Marinescu, 2010], also exist but
are usually more expensive than SPU or our BP-like
methods. See the appendix for more discussion.

7 Conclusion

In this work we derive a general variational framework
for influence diagrams, for both the “convex” central-
ized decisions with perfect recall and “non-convex” de-
centralized decisions. We derive several algorithms,
but equally importantly open the door for many oth-
ers that can be applied within our framework. Since
these algorithms rely on decomposing the global prob-
lems into local ones, they also open the possibility of
efficiently distributable algorithms.
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This document contains proofs and other supplemen-
tal information for the UAI 2012 submission, “Belief
Propagation for Structured Decision Making”.

A Randomized v.s. Deterministic
Strategies

It is a well-known fact in decision theory that no ran-
domized strategy can improve on the utility of the best
deterministic strategy, so that:
Lemma 2.1. For any ID, maxδ∈∆EU(δ) =
maxδ∈∆o EU(δ).

Proof. Since ∆o ⊂ ∆, we need to show that for any
randomized strategy δ ∈ ∆, there exists a determinis-
tic strategy δ′ ∈ ∆o such that EU(δ) ≤ EU(δ′). Note
that

EU(δ) =
∑
x

q(x)
∏
i∈D

pδi (xi|xpa(i)),

Thus, EU(δ) is linear on pδi (xi|xpa(i)) for any i ∈ D
(with all the other policies fixed); therefore, one can
always replace pδi (xi|xpa(i)) with some deterministic

pδ
′
i (xi|xpa(i)) without decreasing EU(δ). Doing so se-

quentially for all i ∈ D yields to a deterministic rule
δ′ with EU(δ) ≤ EU(δ′).

One can further show that any (globally) optimal ran-
domized strategy can be represented as a convex com-
bination of a set of optimal deterministic strategies.

B Duality form of MEU

Here we give a proof of our main result.
Theorem 3.1. (a). For an influence diagram with
augmented distribution q(x) ∝ exp(θ(x)), its log max-
imum expected utility log MEU(θ) equals

max
τ∈M
{〈θ, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i); τ )}. (1)

Suppose τ ∗ is a maximum of (1), then δ∗ =
{τ ∗(xi|xpa(i))|i ∈ D} is an optimal strategy.

(b). Under the perfect recall assumption, (1) reduces
to

max
τ∈M
{〈θ, τ 〉+

∑
oi∈C

H(xoi |xo1:i−1
; τ )} (2)

where o1:i−1 = {oj |j = 1, . . . , i− 1}.

Proof. (a). Let qδ(x) = q(x)
∏
i∈D p

δ
i (xi|xpa(i)). We

apply the standard duality result (1) of partition func-

tion on qδ(x) ∝ exp(θδ(x)),

log MEU = max
δ

log
∑
x

exp(θδ(x))

= max
δ

{
max
τ∈M

[
〈θδ, τ 〉+H(x; τ )

]}
= max
τ∈M

{
max
δ

[
〈θδ, τ 〉

]
+H(x; τ )

}
, (3)

and we have

max
δ
{〈θδ, τ 〉}

= max
δ
{〈θ +

∑
i∈D

log pδi (xi|xpa(i)), τ 〉}

= 〈θ, τ 〉+
∑
i∈D

max
pδi

{
∑
x

τ(x) log pδi (xi|xpa(i))}

∗
= 〈θ, τ 〉+

∑
i∈D
{
∑
x

τ(x) log τ(xi|xpa(i))}

= 〈θ, τ 〉 −
∑
i∈D

H(xi|xpa(i); τ ), (4)

where the equality “
∗
=” holds because the solution of

maxpδi {
∑
x τ(x) log pδi (xi|xpa(i))} subject to the nor-

malization constraint
∑
xi
pδi (xi|xpa(i)) = 1 is pδi =

τ(xi|xpa(i)). We obtain (1) by plugging (4) into (3).

(b). By the chain rule of entropy, we have

H(x; τ ) =
∑
i

H(xoi |xo1:i−1
; τ ). (5)

Note that we have pa(i) = o1:i−1 for i ∈ D for ID with
perfect recall. The result follows by substituting (5)
into (1).

The following lemma is the “dual” version of
Lemma 2.1; it will be helpful for proving Corollary 3.2
and Corollary 3.3.

Lemma B.1. Let Mo be the set of distributions τ(x)
in which τ(xi|xpa(i)), i ∈ D are deterministic. Then
the optimization domain M in (1) of Theorem 3.1 can
be replaced by Mo without changing the result, that is,
log MEU(θ) equals

max
τ∈Mo

{〈θ, τ 〉+H(x; τ )−
∑
i∈D

H(xi|xpa(i); τ )}. (6)

Proof. Note that Mo is equivalent to the set of de-
terministic strategies ∆o. As shown in the proof of
Lemma 2.1, there always exists optimal deterministic
strategies, that is, at least one optimal solutions of (1)
falls in Mo. Therefore, the result follows.

Corollary 3.2. For an ID with parameter θ, we have

log MEU = max
τ∈I
{〈θ, τ 〉+

∑
i∈C

H(xi|xo1:i−1 ; τ )} (7)



where I = {τ ∈ M : xoi ⊥ xo1:i−1\pa(oi)|xpa(oi)}, corre-
sponding to the distributions respecting the imperfect
recall structures; “x ⊥ y | z” means that x and y are
conditionally independent given z.

Proof. For any τ ∈ I, we have H(xi|xpa(i); τ ) =
H(xi|xo1:i−1

; τ ), hence by the entropic chain rule, the
objective function in (7) is the same as that in (1).

Then, for any τ ∈ Mo and oi ∈ D, since
τ(xoi |xpa(oi)) is deterministic, we have 0 ≤
H(xoi |xo1:i−1

) ≤ H(xoi |xpa(oi)) = 0, which implies
I(xoi ;xo1:i\pa(oi)|xpa(oi)) = 0, and hence Mo ⊆ I ⊆M.
We thus have that the LHS of (7) is no larger than
(1), while no smaller than (6). The result follows since
(1) and (6) equal by Lemma B.1.

Corollary 3.3. For any ε, let τ ∗ be an optimum of

max
τ∈M
{〈θ, τ 〉+H(x)− (1− ε)

∑
i∈D

H(xi|xpa(i))}. (8)

If δ∗ = {τ∗(xi|xpa(i))|i ∈ D} is an deterministic strat-
egy, then it is an optimal strategy of the MEU.

Proof. First, we have H(xi|xpa(i); τ ) = 0 for τ ∈ Mo

and i ∈ D, since such τ(xi|xpa(i)) are determinis-
tic. Therefore, the objective functions in (8) and
(6) are equivalent when the maximization domains
are restricted on Mo. The result follows by applying
Lemma B.1.

B.1 Derivation of Belief Propagation for
MEU

Eq. (11) is similar to the objective of sum-product
junction graph BP, except the entropy terms of the
decision clusters are replaced by Ĥε(xck), which can
be thought of as corresponding to some local MEU
problem. In the sequel, we derive a similar belief prop-
agation algorithm for (11), which requires that the de-
cision clusters receive some special consideration. To
demonstrate how this can be done, we feel it is helpful
to first consider a local optimization problem associ-
ated with a single decision cluster.

Lemma B.2. Consider a local optimization problem
on decision cluster ck,

max
τck
{〈ϑck , τck〉+Hε(xck ; τck)}.

Its solution is,

τck(xck) ∝ σk[bck(xck), ε]
def
= b(xck)bε(xdk |xpa(dk))

1−ε

where bck(xck) ∝ exp(ϑck(xck)) and bε(xdk |xpa(dk)) is
the “annealed” conditional probability of bck ,

bε(xdk |xpa(dk)) =
b(xdk , xpa(dk))

1/ε∑
xdk

b(xdk , xpa(dk))1/ε
,

b(xdk , xpa(dk)) =
∑
xzk

b(xck), zk = ck \ {dk,pa(dk)}.

Proof. The Lagrangian function is

〈ϑck , τck〉+Hε(xck ; τck) + λ
∑
xck

[τck(xck)− 1].

Its stationary point satisfies

ϑck(xck)− log τck(xck)+(ε−1) log τck(xdk |xpa(dk))+λ,

or equivalently,

τck(xck)[τck(xdk |xpa(dk))]
ε−1 = bck(xck). (9)

Summing over xzk on both side of (9), we have

τck(xpa(dk))[τck(xdk |xpa(dk))]
ε = bck(xdk , xpa(dk)), (10)

Raising both sides of (9) to the power 1/ε and sum-
ming over xdk , we have

[τck(xxpa(dk)
)]1/ε =

∑
xdk

[bck(xdk , xpa(dk))]
1/ε. (11)

Combining (11) with (10), we have

τck(xdk |xpa(dk)) = bε(xdk |xpa(dk)). (12)

Finally, combining (12) with (9) gives

τck(xck) = bck(xck)bε(xdk |xpa(dk))
1−ε. (13)

The operator σk[b(xc); ε] can be treated as im-
puting b(xc) with an “annealed” policy defined as
bε(xdk |xpa(dk)); this can be seen more clearly in the
limit as ε→ 0+.

Lemma B.3. Consider a local MEU problem of a sin-
gle decision node dk with parent nodes pa(dk) and an
augmented probability bck(xck); let

b∗(xdk |xpa(dk)) = lim
ε→0+

bε(xdk |xpa(dk)), ∀dk ∈ D,

then δ∗ = {b∗(xdk |xpa(dk)) : dk ∈ D} is an optimal
strategy.

Proof. Let

δ∗dk(xpa(dk)) = arg max
xdk

{bε(xdk |xpa(dk))},



One can show that as ε→ 0+,

b∗(xdk |xpa(dk)) =

{
1/|δ∗dk | if xdk ∈ δ∗dk
0 if otherwise,

(14)

thus, b∗(xdk |xpa(dk)) acts as a “maximum operator” of
b(xdk |xpa(dk)), that is,∑
xdk

b(xdk |xpa(dk))b
∗(xdk |xpa(dk)) = max

xdk

b(xdk |xpa(dk)).

Therefore, for any δ ∈ ∆, we have

EU(δ) =
∑
xck

bck(xck)bδ(xdk |xpa(dk))

=
∑

xpa(dk)

b(xpa(dk))
∑
xdk

b(xdk |xpa(dk))b
δ(xdk |xpa(dk))

≤
∑

xpa(dk)

b(xpa(dk)) max
xdk

b(xdk |xpa(dk))

=
∑

xpa(dk)

b(xpa(dk))
∑
xdk

b(xdk |xpa(dk))b
∗(xdk |xpa(dk))

= EU(δ∗).

This concludes the proof.

Therefore, at zero temperature limit, the σk[·] operator
in MEU-BP (12)-(13) can be directly calculated via
(14), avoiding the necessity for power operations.

We now derive the MEU-BP in (12)-(13) for solving
(11) using a Lagrange multiplier method similar to
Yedidia et al. [2005]. Consider the Lagrange multi-
plier of (8),

〈θ, τ 〉+
∑
k∈R

Hck +
∑
k∈D

Hε
ck
−
∑

(kl)∈E

Hskl+∑
(kl)∈E

∑
xck\skl

λsk→l(xskl)[
∑
xskl

τck(xck)− τskl(xskl)],

where the nonnegative and normalization constraints
are not included and are dealt with implicitly. Tak-
ing its gradient w.r.t. τck and τskl , one has

τck ∝ ψckm∼k for normal clusters, (15)

τck ∝ σk[ψckm∼k; ε] for decision clusters, (16)

τskl ∝ mk→lml→k for separators, (17)

where ψck = exp(θck), mk→l = exp(λk→l) and m∼k =∏
l∈N (k)ml→k is the product of messages sending from

the set of neighboring clusters N (k) to ck. The deriva-
tion of Eq. 16 used the results in Lemma B.2.

Finally, substituting the consistency constraints∑
xck\skl

τck = τskl

into (15)-(17) leads the fixed point updates in (12)-
(13).

B.2 Reparameterization Interpretation

We can give a reparameterization interpretation for
the MEU-BP update in (12)-(13) similar to that of the
sum-, max- and hybrid- BP algorithms [e.g., Wain-
wright et al., 2003a, Weiss et al., 2007, Liu and Ihler,
2011]. We start by defining a set of “MEU-beliefs”
b = {b(xck), b(xskl)} by b(xck) ∝ ψckmk for all ck ∈ C,
and b(xskl) ∝ mk→lml→k. Note that we distinguish
between the “beliefs” b and the “marginals” τ in (15)-
(17). We have:

Lemma B.4. (a). At each iteration of MEU-BP in
(12)-(13), the MEU-beliefs b satisfy

q(x) ∝
∏
k∈V b(xck)∏

(kl)∈E b(xskl)
(18)

where q(x) is the augmented distribution of the ID.

(b). At a fixed point of MEU-BP, we have

Sum-consistency:

(normal clusters)

∑
ck\sij

b(xck) = b(xskl),

MEU-consistency:

(decision clusters)

∑
ck\sij

σk[b(xck); ε] = b(xskl).

Proof. (a). By simple algebraic substitution, one can
show ∏

k∈V b(xck)∏
(kl)∈E b(xskl)

∝
∏
ck∈C

ψck(xck).

Since p(x) ∝
∏
ck∈C ψck(xck), the result follows.

(b). Simply substitute the definition of b into the mes-
sage passing scheme (12)-(13).

B.3 Correctness Guarantees

Theorem 4.1. Let (G, C,S) be a consistent junc-
tion tree for a subset of decision nodes D′, and b
be a set of MEU-beliefs satisfying the reparameteri-
zation and the consistency conditions in Lemma B.4
with ε → 0+. Let δ∗ = {bε(xdk |xpa(dk)) : dk ∈ D},
then δ∗ is a locally optimal strategy in that sense that
EU({δ∗D′ , δD\D′}) ≤ EU(δ∗) for any δD\D′ .

Proof. On a junction tree, the reparameterization in
(18) can be rewritten as

q(x) = b0
∏
k∈V

b(xck)

b(xsk)
,

where sk = sk,π(k) (sk = ∅ for the root node) and b0
is the normalization constant.

For notational convenience, we only prove the case
when D′ = D, i.e., the junction tree is globally con-
sistent . More general cases follow similarly, by noting



that any decision node imputed with a fixed decision
rule can be simply treated as a chance node.

First, we can rewrite EU(δ∗) as

EU(δ∗) =
∑
x

q(x)
∏
i∈D

bε(xi|xpa(i))

= b0
∑
x

∏
k∈V

b(xck)

b(xsk)

∏
i∈D

bε(xi|xpa(i))

= b0
∑
x

{∏
k∈C

b(xck)

b(xsk)

}
·
{ ∏
k∈D

b(xck)bε(xdk |xpa(dk))

b(xsk)

}
= b0,

where the last equality follows by the sum- and MEU-
consistency condition (with ε→ 0+). To complete the
proof, we just need to show that EU(δ) ≤ b0 for any
δ ∈ ∆. Again, note that EU(δ)/b0 equals

∑
x

{∏
k∈C

b(xck)

b(xsk)

}
·
{ ∏
k∈D

b(xck)pδ(xdk |xpa(dk))

b(xsk)

}
.

Let zk = ck \sk; since G is a junction tree, the zk form
a partition of V , i.e., ∪kzk = V and zk∩zl = 1 for any
k 6= l. We have

See insert (*)

where the equality (*) holds because {zk} forms a
partition of V , and equality (19) holds due to the sum-
consistency condition. The last inequality follows the
proof in Lemma B.3. This completes the proof.

Based to Theorem 4.1, we can easily establish person-
by-person optimality of BP on an arbitrary junction
tree.

Theorem 4.2. Let (G, C,S) be an arbitrary junc-
tion tree, and b and δ∗ defined in Theorem 4.1.
Then δ∗ is a locally optimal strategy in Nash’s sense:
EU({δ∗i , δD\i}) ≤ EU(δ∗) for any i ∈ D and δD\i.

Proof. Following Theorem 4.1, one need only show
that any junction tree is consistent for any single de-
cision node i ∈ D; this is easily done by choosing a
tree-ordering rooted at i’s decision cluster.

C About the Proximal Algorithm

The proximal method can be equivalently interpreted
as a marjorize-minimize (MM) algorithm [Hunter and
Lange, 2004], or a convex concave procedure [Yuille,
2002]. The MM and CCCP algorithms have been
widely applied to standard inference problems to ob-
tain convergence guarantees or better solutions, see
e.g., Yuille [2002], Liu and Ihler [2011].

The MM algorithm is an generalization of the EM al-
gorithm, which solves minτ∈M f(τ ) by a sequence of
surrogate optimization problems

τ t+1 = arg min
τ∈M

f t(τ ),

where f t(τ ), known as a majorizing function, should
satisfy f t(τ ) ≥ f(τ ) for all τ ∈M and f t(τ t) = f(τ t).
It is straightforward to check that the objective in the
proximal update (20) is a majorizing function. There-
fore, the proximal algorithm can be treated as a special
MM algorithm.

The convex concave procedure (CCCP) [Yuille and
Rangarajan, 2003] is a special MM algorithm which
decomposes the objective into a difference of two con-
vex functions, that is,

f(τ ) = f+(τ )− f−(τ ),

where f+(τ ) and f−(τ ) are both convex, and con-
structs a majorizing function by linearizing the nega-
tive part, that is,

f t(τ ) = f+(τ )−∇f−(τ t)T (τ − τ t).

One can easily show that f t(τ ) is a majorizing function
via Jensen’s inequality. To apply CCCP on the MEU
dual (1), it is natural to set

f+(τ ) = −[〈θ, τ 〉+H(x; τ )]

and
f−(τ ) = −

∑
i∈D

H(xi|xpa(i); τ ).

Such a CCCP algorithm is recognizable as equivalent
to the proximal algorithm in Section 4.2 with wt = 1.

The convergence results for MM algorithms and CCCP
are also well established; see Vaida [2005], Lange et al.
[2000], Schifano et al. [2010] for the MM algorithm
and Sriperumbudur and Lanckriet [2009], Yuille and
Rangarajan [2003] for CCCP.

D Additively Decomposable Utilities

The algorithms we describe require the augmented
distribution q(x) to be factored, or have low (con-
strained) tree-width. However, can easily not be the
case for a direct representation of additively decompos-
able utilities. To explain, recall that the augmented
distribution is q(x) ∝ q0(x)u(x), where q0(x) =∏
i∈C p(xi|xpa(i)), and u(x) =

∑
j∈U uj(xβj ). In this

case, the utility u(x) creates a large factor with vari-
able domain ∪jβj , and can easily destroy the factored
structure of q(x). Unfortunately, the na ive method of
calculating the expectation node by node, or the com-
monly used general variable elimination procedures



EU(δ)/b0 ≤
∑
x

{∏
k∈C

max
xsk

b(xck)

b(xsk)

}
·
{ ∏
k∈D

max
xsk

b(xck)pδ(xdk |xpa(dk))

b(xsk)

}
(*)

=

{∏
k∈C

max
xsk

∑
xzk

b(xck)

b(xsk)

}
·
{ ∏
k∈D

max
xsk

∑
xzk

b(xck)pδ(xdk |xpa(dk))

b(xsk)

}
(19)

=
∏
k∈D

max
xsk

∑
xzk

b(xck)pδ(xdk |xpa(dk))

b(xsk)
(20)

=
∏
k∈D

max
xsk

∑
xdk

b(xdk , xpa(dk))p
δ(xdk |xpa(dk))

b(xsk)

≤
∏
k∈D

max
xsk

∑
xdk

b(xdk , xpa(dk))bε(xdk |xpa(dk))

b(xsk)

= 1,

[e.g., Jensen et al., 1994] do not appear suitable for
our variational framework.

Instead, we introduce an artificial product structure
into the utility function by augmenting the model with
a latent “selector” variable, similar to that used for the
“complete likelihood” in mixture models. Let y0 be an
auxiliary random variable taking values in the utility
index set U , so that

q̃(x, y0) = q0(x)
∏
j

ũj(xβj , y0),

where ũj(xβj , y0) is defined by ũj(xβj , j) = ũj(xβj )
and ũj(xβj , k) = 1 for j 6= k. It is easy to verify
that the marginal distribution of q̃(x, y0) over y0 is
q(x), that is,

∑
y0
q̃(x, y0) = q(x). The tree-width of

q̃(x, y0) is no larger than one plus the tree-width of the
graph (with utility nodes included) of the ID, which
is typically much smaller than that of q(x) when the
complete utility u(x) is included directly. A deriva-
tion similar to that in Theorem 3.1 shows that we
can replace θ(x) = log q(x) with θ̂(x) = log q̂(x) in
(1) without changing the results. The complexity of
this method may be further improved by exploiting
the context-specific independence of q̂(x, y), i.e., that
q̂(x|y0) has a different dependency structure for differ-
ent values of y0, but we leave this for future work.

E Decentralized Sensor Network

In this section, we provide detailed information about
the influence diagram constructed for the decentral-
ized sensor network detection problem in Section 5.
Let hi, i = 1, . . . , nh, be the hidden variables we want
to detect using sensors. We assume the distribu-
tion p(h) is an attractive pairwise MRF on a graph

Gh = (Vh, Eh),

p(h) =
1

Z
exp[

∑
(ij)∈Gh

θij(hi, hj))], (21)

where hi are discrete variables with ph states (we take
ph = 5); we set θij(k, k) = 0 and randomly draw
θij(k, l) (k 6= l) from the negative absolute values of a
standard Gaussian variable N (0, 1). Each sensor gives
a noisy measurement vi of the local variable hi with
probability of error ei, that is, p(vi|hi) = 1 − ei for
vi = hi and p(vi|hi) = ei/(ph − 1) (uniformly) for
vi 6= hi.

Let Gs be a DAG that defines the path on which the
sensors are allowed to broadcast signals (all the down-
stream sensors receive the same signal); we assume
the channels are noise free. Each sensor is associated
with two decision variables: si ∈ {0,±1} represents
the signal send from sensor i, where ±1 represents a
one-bit signal with cost λ and 0 represents “off” with
no cost; and di represents the prediction of hi based
on vi and the signals spas(i)

received from i’s upper-
stream sensors; a correct prediction (di = hi) yields
a reward γ (we set γ = ln 2). Hence, two types of
utility functions are involved, the signal cost utilities
uλ, with uλ(si = ±1) = −λ and uλ(si = 0) = 0;
the prediction reward utilities uγ with uγ(di, hi) = γ
if di = hi and uγ(di, hi) = 0 otherwise. The to-
tal utility function is constructed multiplicatively via
u = exp[

∑
i uγ(di, hi) + uλ(si)].

We also create two qualities of sensors: “good” sen-
sors for which ei are drawn from U([0, .1]) and “bad”
sensors (ei ∼ U([.7, .8])), where U is the uniform dis-
tribution. Generally speaking, the optimal strategies
should pass signals from the good sensors to bad sen-
sors to improve their predictive power. See Fig. 1 for
the actual influence diagram.
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Figure 1: (a) A node of the sensor network structure; the green lines denote the MRF edges, on some of which (red
arrows) signals are allowed to path. (b) The influence diagram constructed for the sensor network in (a). (c) A junction
graph for the ID in (b); π(i) denotes the parent set of i in terms of the signal path Gs, and π′(i) denotes the parent set
in terms of the hidden process p(h) (when p(h) is transformed into a Bayesian network by triangularizing reversely along
order o). The decision clusters (black rectangles) are labeled with their corresponding decision variables on their top.



The definition of the ID here is not a standard one,
since p(h) is not specified as a Bayesian network; but
one could convert p(h) to an equivalent Bayesian net-
work by the standard triangulation procedure. The
normalization constant Z in (21) only changes the ex-
pected utility function by a constant and so does not
need to be calculated for the purpose of the MEU task.

Without loss of generality, for notation we assume the
order [1, . . . , nh] is consistent with the signal path Gh.
Let o = [h1, v1, d1, s1 ; . . . ; hnh , vnh , dnh , snh ]. The
junction tree we used in the experiment is constructed
by the standard triangulation procedure, backwards
along the order o. A proper construction of a loopy
junction graph is non-trivial; we show in Fig. 1(c)
the one we used in Section 5. It is constructed such
that the decision structure inside each sensor node is
preserved to be exact, while at a higher level (among
sensors), a standard loopy junction graph (similar to
that introduced in Mateescu et al. [2010] that corre-
sponds to Pearl’s loopy BP) captures the correlation
between the sensor nodes. One can shown that such a
constructed junction graph reduces to a junction tree
when the MRF Gh is a tree and the signal path Gs is
an oriented tree.

F Additional Related Work

There exists a large body of work for solving influ-
ence diagrams, mostly on exact algorithms with pre-
fect recall; see Koller and Friedman [2009] for a recent
review. Our work is most closely connected to the
early work of Jensen et al. [1994], who compile an ID
to a junction tree structure on which a special mes-
sage passing algorithm is performed; their notion of
strong junction trees is related to our notion of global
consistency. However, their framework requires the
perfect recall assumption and it is unclear how to ex-
tend it to approximate inference. A somewhat differ-
ent approach transforms the decision problem into a
sequence of standard Bayesian network inference prob-
lems [Cooper, 1988, Shachter and Peot, 1992, Zhang,
1998], where each subroutine is a standard inference
problem, and can be solved using standard algorithms,
either exactly or approximately; again, their method
only works within the perfect recall assumption. Other
approximation algorithms for ID are also based on ap-
proximating some inner step of exact algorithms, e.g.,
Sabbadin et al. [2011] and Sallans [2003] approximate
the policy update methods by mean field methods;
Nath and Domingos [2010] uses adaptive belief propa-
gation to approximate the inner loop of greedy search
algorithms. [Watthayu, 2008] proposed a loopy BP al-
gorithm, but without theoretical justification. To the
best of our knowledge, we know of no well-established
“direct” approximation methods.

For ID without perfect recall (LIMID), backward-
induction-like methods do not apply; most algorithms
work by optimizing the decision rules node-by-node or
group-by-group; see e.g., Lauritzen and Nilsson [2001],
Madsen and Nilsson [2001], Koller and Milch [2003];
these methods reduce to the exact backward-reduction
(hence guaranteeing global optimality) if applied on
IDs with perfect recall and update backwards along
the temporal ordering. However, they only guarantee
local person-by-person optimality for general LIMIDs,
which may be weaker than the optimality guaranteed
by our BP-like methods. Other styles of approaches,
such as Monte Carlo methods [e.g., Bielza et al., 1999,
Cano et al., 2006, Charnes and Shenoy, 2004, Garcia-
Sanchez and Druzdzel, 2004] and search-based meth-
ods [e.g., Luque et al., 2008, Qi and Poole, 1995, Yuan
and Wu, 2010, Marinescu, 2010] have also been pro-
posed. Recently, Maua and Campos [2011] proposed
a method for finding the globally optimal strategies
of LIMIDs by iteratively pruning non-maximal poli-
cies. However, these methods usually appear to have
much greater computational complexity than SPU or
our BP-like methods.

Finally, some variational inference ideas have been ap-
plied to the related problems of reinforcement learning
or solving Markov decision processes [e,g., Sallans and
Hinton, 2001, Furmston and Barber, 2010, Yoshimoto
and Ishii, 2004].
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