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Abstract. This paper discusses several techniques to make the look-
ahead architecture for satisfiability (SAT) solvers more competitive. Our
contribution consists of reduction of the computational costs to perform
look-ahead and a cheap integration of both equivalence reasoning and lo-
cal learning. Most proposed techniques are illustrated with experimental
results of their implementation in our solver march_eq.

1 Introduction

Look-ahead SAT solvers usually consist of a simple DPLL algorithm [5] and a
more sophisticated look-ahead procedure to determine an effective branch vari-
able. The look-ahead procedure measures the effectiveness of variables by per-
forming look-ahead on a set of variables and evaluating the reduction of the for-
mula. We refer to the look-ahead on literal x as the Iterative Unit Propagation
(IUP) on the union of a formula with the unit clause z (in short IUP(F U {x})).
The effectiveness of a variable x; is obtained using a look-ahead evaluation func-
tion (in short DIFF), which evaluates the differences between F and the reduced
formula after TUP(F U {z;}) and TUP(F U {—x;}). A widely used DIFF counts
the newly created binary clauses.

Besides the selection of a branch variable, the look-ahead procedure may
detect failed literals: if the look-ahead on —x results in a conflict, x is forced
to true. Detection of failed literals can result in a substantial reduction of the
DPLL-tree.

During the last decade, several enhancements have been proposed to make
look-ahead SAT solvers more powerful. In satz by Li [9] pre-selection heuristics
PROP,, are used, which restrict the number of variables that enter the look-ahead
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procedure. Especially on random instances the application of these heuristics
results in a clear performance gain. However, the use of these heuristics is not
clear from a general viewpoint. Experiments with our pre-selection heuristics
show that different benchmark families require different numbers of variables
entering the look-ahead phase to perform optimally.

Since much reasoning is already performed at each node of the DPLL-tree,
it is relatively cheap to extend the look-ahead with (some) additional reason-
ing. For instance: integration of equivalence reasoning in satz - implemented in
egsatz [10] - made it possible to solve various crafted and real-world problems
which were beyond the reach of existing techniques. However, the performance
may drop significantly on some problems, due to the integrated equivalence rea-
soning. Our variant of equivalence reasoning extends the set of problems which
benefit from its integration and aims to remove the disadvantages.

Another form of additional reasoning is implemented in the OKsolver |1 [8]:
local learning. When performing look-ahead on z, any unit clause y; that is
found means that the binary clause -z V y; is implied by the formula, and can
be ”learned”, i.e. added to the current formula. As with equivalence reasoning,
addition of these local learned resolvents could both increase and decrease the
performance (depending on the formula). We propose a partial addition of these
resolvents which results in a speed-up practically everywhere.

Generally, look-ahead SAT solvers are effective on relatively small, hard for-
mulas. Le Berre proposes [2] a wide range of enhancements of the look-ahead
procedure. Most of them are implemented in march_eq. Due to the high com-
putational costs of the an enhanced look-ahead procedure, elaborate problems
are often solved more efficiently by other techniques. Reducing these costs is
essential for making look-ahead techniques more competitive on a wider range
of benchmarks problems. In this paper, we suggest (1) several techniques to re-
duce these costs and (2) a cheap integration of additional reasoning. Due to the
latter, benchmarks that do not profit from additional reasoning will not take
significantly more time to solve.

Most topics discussed in this paper are illustrated with experimental results
showing the performance gains by our proposed techniques. The benchmarks
range from uniform random 3-SAT near the threshold [1], to bounded model
checking (longmult [4], zarpas [3]), factoring problems (pyhala braun [12])
and crafted problems (stanion/hwb [3], quasigroup [14]). Only unsatisfiable
instances were selected to provide a more stable overview. Comparison of the
performance of march_eq with performances of state-of-the-art solvers is pre-
sented in [7], which appears in the same volume.

All techniques have been implemented into a reference variant of march_eq,
which is essentially a slightly optimised version of march_eq-100, the solver that
won two categories of the SAT 2004 competition [11]. This variant uses exactly
the same techniques as the winning variant: full (100%) look-ahead, addition
of all constraint resolvents, tree-based look-ahead, equivalence reasoning, and
removal of inactive clauses. All these techniques are discussed below.

! Version 1.2 at http://cs-svrl.swan.ac.uk/~csoliver/OKsolver.html
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2 Translation to 3-SAT

The translation of the input formula to 3-SAT stems from an early version of
march_eq, in which it was essential to allow fast computation of the pre-selection
heuristics. Translation is not required for the current pre-selection heuristics, yet
it is still used, because it enables significant optimisation of the internal data
structures.

The formula is pre-processed to reduce the amount of redundancy introduced
by a straightforward 3-SAT translation. Each pair of literals that occurs more
than once together in a clause in the formula is substituted by a single dummy
variable, starting with the most frequently occurring pair. Three clauses are
added for each dummy variable to make it logically equivalent to the disjunction
of the pair of literals it substitutes. In the following example -z V x4 is the most
occurring literal pair and is therefore replaced with the dummy variable d;.

$1V‘|IE2\/‘\$3\/ZIJ4\/‘\1’5 :171Vd1\/‘|$3V‘|II)5 dl\/$2

1V x2Vx3 VsV xs = x1Vdi V-x3Vxg A dy V —z4
—x1V xeVx3VxyV T —x1 VdiV —x3V g di v v

-1 \/‘!$2\/1}4\/.’L’5V$6 ﬁ$1Vd1 V$5\/II}6 s 2 T4

It appears that to achieve good performance, binary clauses obtained from
the original ternary clauses should be given more weight than binary clauses ob-
tained from ternary clauses which were generated by translation. This is accom-
plished by an appropriate look-ahead evaluation function, such as the variant of
DIFF proposed by Dubois et al. [6], which weighs all newly created binary clauses.

3 Time Stamps

March_eq uses a time stamp data structure, TimeAssignments (TA), which re-
duces backtracking during the look-ahead phase to a single integer addition:
increasing the CurrentTimeStamp (CTS).

All the variables that are assigned during look-ahead on a literal x are
stamped: if a variable is assigned the value true, it is stamped with the C'T'S;
if it is assigned the value false, it is stamped with CT'S + 1. Therefore, simply
adding 2 to the C'T'S unassigns all assigned variables.

The actual truth value that is assigned to a variable is not stored in the data
structure, but can be derived from the time stamp of the variable:

stamp < CTS unfixed
TA[z] = < stamp > CT'S and stamp =0 (mod 2) true
stamp > CTS and stamp = 1 (mod 2) false

Variables that have already been assigned before the start of the look-ahead
phase, i.e. during the solving phase, have been stamped with the Mazximum-
TimeStamp (MTS) or with MTS + 1. These variables can be unassigned by
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stamping them with the value zero, which happens while backtracking during
the solving phase (i.e. not during the look-ahead phase). The MT'S equals the
maximal even value of an (32-bit) integer. One has to ensure that the CTS is
always smaller than the MT'S. This will usually be the case and it can easily be
checked at the start of each look-ahead.

4 Constraint Resolvents

As mentioned in the introduction, a binary resolvent could be added for every
unary clause that is created during the propagation of a look-ahead literal -
provided that the binary clause does not already exist. A special type of resolvent
is created from a unary clause that was a ternary clause prior to the look-ahead.
In this case we speak of constraint resolvents.

Constraint resolvents have the property that they cannot be found by a look-
ahead on the complement of the unary clause. Adding these constraint resolvents
results in a more vigorous detection of failed literals. An example:

First, consider only the original clauses of an example formula (figure 1] (a)).
A look-ahead on —r, IUP(F U {—r}), results in the unary clause x. Therefore,
one could add the resolvent r V z to the formula. Since the unary clause = was
originally a ternary clause (before the look-ahead on —r), this is a constraint
resolvent. The unique property of constraints resolvents is that when they are
added to the formula, look-ahead on the complement of the unary clause results
in the complement of the look-ahead-literal. Without this addition this would
not be the case. Applying this to the example: after addition of r V x to the
formula, IUP(FU{—z}) will result in unary clause r, while without this addition
it will not.

IUP(F U {—r}) also results in unary clause —¢. Therefore, resolvent r V —t
could be added to the formula. Since unary clause —t was originally a binary
clause, r V =t is not a constraint resolvent. IUP(F U {t}) would result in unary
clause r.

rV s
sVt rVax
sVtVax
uwV v x
uV w uVx
vVwVe
-rV-uVaze

(a) (b) (c)

Fig. 1. Detection of a failed literal by adding constraint resolvents. (a) The original
clauses, (b) constraint resolvents and (c) a forced literal
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Table 1. Performance of march_eq on several benchmarks with three different settings
of addition of resolvents during the look-ahead phase

all binary all constraint
no resolvents

resolvents resolvents
Benchmarks time(s) | treesize | time(s) | treesize | time(s) | treesize
random_unsat_250 (100) 1.61 | 4059.1 1.51 | 3389.2 1.45 | 3391.7
random_unsat_350 (100) 55.41 |89709.4 51.28 |72721.1 | 48.78 |73357.2
stanion/hwb-n20-01 31.52 | 282882 24.76 | 180408 | 23.65 | 183553
stanion/hwb-n20-02 41.32 | 345703 33.94 | 219915 | 30.91 | 222251
stanion/hwb-n20-03 30.54 | 280561 23.48 | 161687 21.7 | 163984
longmult8 139.13 15905 | 341.46 8054 90.8 8149
longmult10 504.92 | 330094 | 915.84 11877 | 226.31 11597
longmult12 836.78 41522 | 847.95 5273 | 176.85 5426

pyhala-unsat-35-4-03 781.19 29591 |1379.33 19100 | 662.93 19517
pyhala-unsat-35-4-04 733.44 28312 |1366.19 18901 | 659.04 19364

quasigroup3-9 11.67 2139 11.09 1543 7.97 1495
quasigroup6-12 117.49 3177 66.13 1362 | 58.05 1311
quasigroup7-12 14.47 346 11.06 248 | 10.03 256
zarpas/rulel4_1_15dat | > 2000 - 46.59 0 20.7 0
zarpas/rulel4_1_30dat | > 2000 - | > 2000 - 1186.27 0

Constraint resolvent u V x is detected during ITUP(F U {-u}). After the addi-
tion of both constraint resolvents (figure[1] (b)), the look-ahead IUP(F U {—z})
results in a conflict, making —z a failed literal and thus forces x. Obviously,
TUP(F U {—z}) will not result in a conflict if the constraint resolvents r V x and
u V x were not added both.

Table[1/shows the usefulness of the concept of constraint resolvents: in all our
experiments, the addition of mere constraint resolvents outperformed a variant
with full local learning (adding all binary resolvents). This could be explained by
the above example: adding other resolvents than constraint resolvents will not
increase the number of detected failed literals. These resolvents merely increase
the computational costs. This explanation is supported by the data in the table:
the tree-size of both variants is comparable.

When we look at zarpas/rule_14_1_30dat, it appears that only adding con-
straint resolvents is essential to solve this benchmark within 2000 seconds. The
node-count of zero means that the instance is found unsatisfiable during the first
execution of the look-ahead procedure.

5 Implication Arrays

Due to the 3-SAT translation the data structure of march_eq only needs to ac-
commodate binary and ternary clauses. We will use the following formula as an
example:

Fexample = (aVc)A(mDVd)A(BVA)A(aV-bVA)A(—aVDV—d)A(-aVbVc)
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a a b | d b l c |
-a C —-a | —b d

b|—d bl a d

-b| d =b|-a |~d [[-a [ c |
c c

oCc|oa -c | —a b

d —|b d -a b

-d b —d a | b

(i) (ii)
Fig. 2. The binary (i) and ternary (ii) implication arrays that represent the example
formula Fexample

al 0|3
# clause | -l 415
0| a c bl 2|45
1| =b | ~d -b[1]3
2] b d cl0]|5
3 —b d —c
4| —a b | ~d dl 213
5| —a b c -d| 1|4

(i) (ii)
Fig.3. A common clause database / variable index data structure. All clauses are

stored in a clause database (i), and for each literal the variable index lists the clauses
in which it occurs (ii)

Binary and ternary clauses are stored separately in two implication arrays. A
binary clause a V c is stored as two implications: c¢ is stored in the binary im-
plication array of —a and a is stored in the binary implication array of —c. A
ternary clause (a V —bV d) is stored as three implications: —bV d is stored in the
ternary implication array of —a and the similar is done for b and —d. Figure[2
shows the implication arrays that represent the example formula Fexample-

Storing binary clauses in implication arrays requires only half the memory
that would be needed to store them in an ordinary clause database / variable
index data structure. (See figurel3.) Since march_eq adds many binary resolvents
during the solving phase, the binary clauses on average outnumber the ternary
clauses. Therefore, storing these binary clauses in implication arrays significantly
reduces the total amount of memory used by march_eq. Furthermore, the impli-
cation arrays improve data locality. This often leads to a speed-up due to better
usage of the cache.

March_eq uses a variant of iterative unit propagation (IFIUP) that propagates
binary implications before ternary implications. The first step of this procedure is
to assign as many variables as possible using only the binary implication arrays.
Then, if no conflict is found, the ternary implication array of each variable that
was assigned in the first step is evaluated. We will illustrate this second step
with an example.
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Suppose look-ahead is performed on —c¢. The ternary implication array of —c
contains (—a V b). Now there are five possibilities:

1. If the clause is already satisfied, i.e. a has already been assigned the value
false or b has already been assigned the value true, then nothing needs to be
done.

2. If a has already been assigned the value true, then b is implied and so b is
assigned the value true. The first step of the procedure is called to assign
as many variables implied by b as possible. Also, the constraint resolvent
(¢ V) is added as two binary implications.

3. If b has already been assigned the value false, then —a is implied and so a
is assigned the value false. The first step of the procedure is called to assign
as many variables implied by —a as possible. Also, the constraint resolvent
(¢V —a) is added as two binary implications.

4. If a and b are unassigned, then we have found a new binary clause.

5. If a has already been assigned the value true and b has already been assigned
the value false, then —c is a failed literal. Thus ¢ is implied.

The variant of DIFF used in march_eq weighs new binary clauses that are
produced during the look-ahead phase. A ternary clause that is reduced to a
binary clause that gets satisfied in the same iteration of IFIUP, should not be
included in this computation. However, in the current implementation these
clauses are in fact included, which causes noise in the DIFF heuristics. The
first step of the IFIUP procedure, combined with the addition of constraint
resolvents, ensures that the highest possible amount of variables are assigned
before the second step of the IFIUP procedure. This reduces the noise signifi-
cantly.

An advantage of IFITUP over general IUP is that it will detect conflicts faster.
Due to the addition of constraint resolvents, most conflicts will be detected in
the first call of the first step of IFIUP. In such a case, the second step of IFTUP
is never executed. Since the second step of IFIUP is considerably slower than
the first, an overall speed-up is expected.

Storage of ternary clauses in implication arrays requires an equal amount of
memory as the common alternative. However, ternary implication arrays allow
optimisation of the second step of the IFIUP procedure. On the other hand,
ternary clauses are no longer stored as such: it is not possible to efficiently verify
if they have already been satisfied and early detection of a solution is neglected.
One knows only that a solution exists if all variables have been assigned and no
conflict has occurred.

6 Equivalence Reasoning

During the pre-processing phase, march_eq extracts the so-called equivalence
clauses (I <> Iy < -+ < [;) from the formula and places them into a separate
data-structure called the Conjunction of Equivalences (CoE). After extraction,
a solution for the CoE is computed as described in [7,13].
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In [7] - appearing in the same volume - we propose a new look-ahead evalua-
tion function for benchmarks containing equivalence clauses: let eq, be a weight
for a reduced equivalence clause of new length n, C(x) the set of all reduced
equivalence clauses (Q;) during a look-ahead on x, and B(z) the set of all newly
created binary clauses during the look-ahead on x. Using both sets, the look-
ahead evaluation can be calculated as in equation (2). Variable z; with the
highest DIFF.,(x;) x DIFF.,(—z;) is selected for branching.

eqn = 5.5 x 0.85" (1)
DIFF., = |B| + Z €q|9;| (2)
QieC

Besides the look-ahead evaluation and the pre-selection heuristics (discussed
in section [7), the intensity of communication between the CoE- and CNF-part
of the formula is kept rather low (see figure(4). Naturally, all unary clauses in all
phases of the solver are exchanged between both parts. However, during the solv-
ing phase, all binary equivalences are removed from the CoE and transformed to
the four equivalent binary implications which in turn are added to the implica-
tion arrays. The reason for this is twofold: (1) the binary implication structure is
faster during the look-ahead phase than the CoE-structure, and (2) for all unary
clauses y; that are created in the CoE during IUP(F U{z}), constraint resolvent
-z Vy; can be added to the formula without having to check the original length.

We examined other forms of communication, but only small gains were no-
ticed on only some problems. Mostly, performance decreased due to higher com-

unary clauses

______________________ *
COE pre-selection C N F
______ * . . e —— - — — —
heuristics
............. IOOk_ahead e et e e e e e e
evaluation

— > communication during the pre-processing phase
— — — — > communication during the solving phase
--------- » communication during the look-ahead phase

Fig. 4. Various forms of communication in march_eq
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Table 2. Performance of march_eq on several benchmarks with and without equivalence
reasoning

without with
equivalence equivalence

reasoning reasoning
Benchmarks time(s) | treesize | time(s) | treesize | speed-up
random_unsat_250 (100) 1.45 | 3391.7 1.45 | 3391.7 -
random_unsat_350 (100) 48.78 | 73357.2 48.78 | 73357.2 -
stanion/hwb-n20-01 42.88 | 182575 23.65 | 183553 | 44.85 %
stanion/hwb-n20-02 55.34 | 222487 30.91 | 222251 | 44.15 %
stanion/hwb-n20-03 42.08 | 164131 21.70 | 163984 | 48.43 %
longmult8 76.69 8091 90.80 8149 | -18.40 %
longmult10 171.66 11597 | 226.31 11597 | -31.84 %
longmulti2 126.36 6038 | 176.85 5426 | -39.96 %
pyhala-unsat-35-4-03 737.15 19513 | 662.93 19517 | 10.07 %
pyhala-unsat-35-4-04 691.04 19378 | 659.04 19364 4.63 %
quasigroup3-9 7.97 1495 7.97 1495 -
quasigroup6-12 58.05 1311 58.05 1311 -
quasigroup7-12 10.03 256 10.03 256 -
zarpas/rulel4_1_15dat 21.68 0 20.70 0 4.52 %
zarpas/rulel4_1_30dat | 219.61 0| 186.27 0| 15.18 %

munication costs. For instance: communication of binary equivalences from the
CNF- to the CoE-part makes it possible to substitute those binary equivalences
in order to reduce the total length of the equivalence clauses. This rarely resulted
in an overall speed-up.

We tried to integrate the equivalence reasoning in such a manner that it
would only be applied when the performance would benefit from it. Therefore,
march_eq does not perform any equivalence reasoning if no equivalence clauses
are detected during the pre-processing phase (if no CoE exists), making march_eq
equivalent to its older brother march.

Table [2] shows that the integration of equivalence reasoning in march rarely
results in a loss of performance: on some benchmarks like the random unsat
and the quasigroup family no performance difference is noticed, since no equiv-
alence clauses were detected. Most families containing equivalence clauses are
solved faster due to the integration. However, there are some exceptions, like the
longmult family in the table.

If we compare the integration of equivalence reasoning in march (which re-
sulted in march_eq) with the integration in satz (which resulted in eqsatz), we
note that eqsatz is much slower than satz on benchmarks that contain no equiv-
alence clauses. While satz? solves 100 random_unsat_350 benchmarks near the
treshold on average in 22.14 seconds using 105798 nodes, eqsatzg requires on

% Version 2.15.2 at http://www.laria.u-picardie.fr/~cli/EnglishPage.html
3 Version 2.0 at http://www.laria.u-picardie.fr/~cli/EnglishPage.html
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average 795.85 seconds and 43308 nodes to solve the same set. Note that no
slowdown occurs for march_eq.

7 Pre-selection Heuristics

Overall performance can be gained or lost by performing look-ahead on a subset
of the free variables in a node: gains are achieved by the reduction of computa-
tional costs, while losses are the result of either the inability of the pre-selection
heuristics (heuristics that determine the set of variables to enter the look-ahead
phase) to select effective branching variables or the lack of detected failed lit-
erals. When look-ahead is performed on only a subset of the variables, only a
subset of the failed literals is most likely detected. Depending on the formula,
this could increase the size of the DPLL-tree.

During our experiments, we used pre-selection heuristics which are an ap-
proximation of our combined look-ahead evaluation function (ACE) [7]. These
pre-selection heuristics are costly, but because they provide a clear discrimination
between the variables, a small subset of variables could be selected. Experiments
with a fized number of variables entering the look-ahead procedure is shown in

50 270

45 — 1 20

40 \ 250

35 \ 240 \/

30 230 . —
25 220

20 210

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
(a) (b)

700 300

650 250

600

550 200

500 150

450 // \

00 100

350 50 1

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
(c) (d)
Fig.5. Runtime(s) vs. percentage look-ahead variables on single instances:

(a) random_unsat_350; (b) longmult10; (c) pyhala-braun-unsat-35-4-04; and
(d) quasigroup6-12
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figure [5| The fixed number is based on a percentage of the original number of
variables and the ”best” variables (with the highest pre-selection ranking) are
selected.

The plots in this figure do not offer any indication of which percentage is
required to achieve optimal general performance: while for some instances 100%
look-ahead appears optimal, others are solved faster using a much smaller per-
centage.

Two variants of march_eq have been submitted to the SAT 2004 competi-
tion [11]: one which selects in every node the ”best” 10 % variables (march_eq_010)
and one with full (100%) look-ahead (march_eq_100). Although during our ex-
periments the first variant solved the most benchmarks, at the competition both
variants solved the same number of benchmarks, albeit different ones. Figure[5
illustrates the influence of the number of variables entering the look-ahead pro-
cedure on the overall performance.

8 Tree-Based Look-Ahead

The structure of our look-ahead procedure is based on the observation that
different literals, often entail certain shared implications, and that we can form
‘sharing’ trees from these relations, which in turn may be used to reduce the
number of times these implications have to be propagated during look-ahead.

Suppose that two look-ahead literals share a certain implication. In this sim-
ple case, we could propagate the shared implication first, followed by a propa-
gation of one of the look-ahead literals, backtrack the latter, then propagate the
other look-ahead literal and only in the end backtrack to the initial state. This
way, the shared implication has been propagated only once.

Figure[6 shows this example graphically. The implications among a, b and ¢
form a small tree. Some thought reveals that this process, when applied recur-
sively, could work for arbitrary trees. Based on this idea, our solver extracts -
prior to look-ahead - trees from the implications among the literals selected for
look-ahead, in such a way that each literal occurs in exactly one tree. The look-

—>  implication

N __ .
\ N , // -> action
NN A P
S A e propagate a
@ ~J,. ]« ®
a
propagate b

backtrack b
propagate ¢
backtrack ¢
backtrack a

©)
POOOEO

Fig. 6. Graphical form of an implication tree with corresponding actions.
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Table 3. Performance of march_eq on several benchmarks with and without the use of
tree-based look-ahead

normal tree-based
look-ahead look-ahead
Benchmarks time(s) | treesize | time(s) | treesize | speed-up

random_unsat_250 (100) 1.24 | 3428.5 1.45 | 3391.7 | -16.94 %
random_unsat_350 (100) 40.57 | 74501.7 48.78 |73357.2 | -20.24 %

stanion/hwb-n20-01 29.55 | 184363 23.65 | 183553 | 19.97 %
stanion/hwb-n20-02 40.93 | 227237 30.91 | 222251 | 24.48 %
stanion/hwb-n20-03 25.88 | 155702 21.70 | 163984 | 16.15 %
longmult8 332.64 7918 90.80 8149 | 72.70 %
longmult10 1014.09 10861 | 226.31 11597 | 77.68 %
longmult12 727.01 4654 | 176.85 5426 | 75.67 %

pyhala-unsat-35-4-03 |1084.08 19093 | 662.93 19517 | 38.85 %
pyhala-unsat-35-4-04 |1098.50 | 19493 | 659.04 | 19364 | 40.01 %

quasigroup3-9 8.85 1508 7.97 1495 9.94 %
quasigroup6-12 78.75 1339 58.05 1311 | 26.29 %
quasigroup7-12 13.03 268 10.03 256 | 23.02 %
zarpas/rulel4_1_15dat 25.62 0 20.70 0| 19.20 %
zarpas/rulel4_1_30dat | 192.30 0 | 186.27 0 3.14 %

ahead procedure is improved by recursively visiting these trees. Of course, the
more dense the implication graph, the more possibilities are available for form-
ing trees, so local learning will in many cases be an important catalyst for the
effectiveness of this method.

Unfortunately, there are many ways of extracting trees from a graph, so that
each vertex occurs in exactly one tree. Large trees are obviously desirable, as they
imply more sharing, as does having literals with the most impact on the formula
near the root of a tree. To this end, we have developed a simple heuristic. More
involved methods would probably produce better results, although optimality in
this area could easily mean solving NP-complete problems again. We consider
this an interesting direction for future research.

Our heuristic requires a list of predictions to be available, of the relative
amount of propagations that each look-ahead literal implies, to be able to con-
struct trees that share as much of these as possible. In the case of march_eq, the
pre-selection heuristic provides us with such a list.

The heuristic now travels this list once, in order of decreasing prediction,
while constructing trees out of the corresponding literals. It does this by deter-
mining for each literal, if available, one other look-ahead literal that will become
its parent in some tree. When a literal is assigned a parent, this relationship
remains fixed. On the outset, as much trees are created as there are look-ahead
literals, each consisting of just the corresponding literal.

More specifically, for each literal that it encounters, the heuristic checks
whether this literal is implied by any other look-ahead literals that are the root
of some tree. If so, these are labelled child nodes of the node corresponding to the
implied literal. If not already encountered, these child nodes are now recursively
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Fig. 7. Five steps of building implication trees

checked in the same manner. At the same time, we remove the corresponding
elements from the list, so that each literal will be checked exactly once, and will
receive a position within exactly one tree.

As an example, we show the process for a small set of look-ahead literals. A
gray box denotes the current position:

Because of the order in which the list is travelled, literals which have re-
ceived higher predictions are labelled as parent nodes as early as possible. This
is important, because it is often possible to extract many different trees from an
implication graph, and because every literal should occur in exactly one tree.

Availability of implication trees opens up several possibilities of going beyond
resolution. One such possibility is to detect implied literals. Whenever a node has
descendants that are complementary, clearly the corresponding literal is implied.
By approximation, we detect this for the most important literals, as these should
have ended up near the roots of larger trees by the above heuristic. For solvers
unable to deduce such implications by themselves, we suggest a simple, linear-
time algorithm that scans the trees.

Some intriguing ideas for further research have occurred to us during the
development our tree-based look-ahead procedure, but which, we have not been
able to pursue due to time constraints. One possible extension would be to
add variables that both positively and negatively imply some look-ahead literal
as full-fledged look-ahead variables. This way we may discover important, but
previously undetected variables to perform look-ahead on and possibly branch
upon. Because of the inherent sharing, the overhead will be smaller than without
a tree-based look-ahead.
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Also, once trees have been created, we could include non-look-ahead liter-
als in the sharing, as well as in the checking of implied literals. As for the
first, suppose that literals ¢ and b imply some literal c¢. In this case we could
share not just the propagation of ¢, but also that of any other shared impli-
cations of a and b. Sharing among tree roots could be exploited in the same
manner, with the difference that in the case of many shared implications, we
would have to determine which trees could best share implications with each
other. In general, it might be a good idea to focus in detail on possibilities of
sharing.

9 Removal of Inactive Clauses

The presence of inactive clauses increases the computational costs of the pro-
cedures performed during the look-ahead phase. Two important causes can be
appointed: first, the larger the number of clauses considered during the look-
ahead, the poorer the performance of the cache. Second, if both active and in-
active clauses occur in the active data-structure during the look-ahead, a check
is necessary to determine the status of every clause. Removal of inactive clauses
from the active data-structure prevents these unfavourable effects.

When a variable z is assigned to a certain truth value during the solving
phase, all the ternary clauses in which it occurs become inactive in the ternary
implication arrays: the clauses in which x occurs positively become satisfied,
while those clauses in wich it occurs negatively are reduced to binary clauses.
These binary clauses are moved to the binary implication arrays.

Table 4. Performance of march_eq on several benchmarks with and without the removal
of inactive clauses on the chosen path

without removal| with removal
Benchmarks time(s) | treesize | time(s) | treesize | speed-up
random_unsat_250 (100) 1.70 | 3393.7 1.45 | 3391.7 | 14.71 %
random_unsat_350 (100) 63.38 | 73371.9 48.78 |73357.2 | 23.04 %

stanion/hwb-n20-01 24.92 | 182575 23.65 | 183553 5.10 %
stanion/hwb-n20-02 33.78 | 222487 30.91 | 222251 8.50 %
stanion/hwb-n20-03 23.68 | 164131 21.70 | 163984 8.36 %
longmult8 114.71 8091 90.80 8149 | 20.84 %
longmult10 287.37 11597 | 226.31 11597 | 21.25 %
longmulti2 254.51 6038 | 176.85 5426 | 30.51 %

pyhala-unsat-35-4-03 | 783.52 19513 | 662.93 19517 | 15.39 %
pyhala-unsat-35-4-04 772.59 19378 | 659.04 19364 | 14.70 %

quasigroup3-9 11.73 1497 7.97 1495 | 32.05 %
quasigroup6-12 136.70 1335 58.05 1311 | 57.53 %
quasigroup7-12 22.53 256 10.03 256 | 55.48 %
zarpas/rulel4_1_15dat 29.80 0 20.70 0| 30.54 %

zarpas/rulel4_1_30dat | 254.81 0| 186.27 0| 26.90 %
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Table[4 shows that the removal of inactive clauses during the solving phase is
useful on all kinds of benchmarks. Although the speed-up is only small on uniform
random benchmarks, larger gains are achieved on more structured instances.

10 Conclusion

Several techniques have been discussed to increase the solving capabilities of
a look-ahead SAT solver. Some are essential for solving various specific bench-
marks: a range of families can only be solved using equivalence reasoning, and
as we have seen, march_eq is able to solve a large zarpas benchmark by adding
only constraint resolvents.

Other proposed techniques generally result in a performance boost. However,
the usefulness of our pre-selection heuristics is as yet undoubtedly subject to
improvement and will be subject of future research.
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