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Abstract. We present an exact algorithm for identification of determin-
istic finite automata (DFA) which is based on satisfiability (SAT) solvers.
Despite the size of the low level SAT representation, our approach is
competitive with alternative techniques. Our contributions are fourfold:
First, we propose a compact translation of DFA identification into SAT.
Second, we reduce the SAT search space by adding lower bound informa-
tion using a fast max-clique approximation algorithm. Third, we include
many redundant clauses to provide the SAT solver with some additional
knowledge about the problem. Fourth, we show how to use the flexibility
of our translation in order to apply it to very hard problems. Experiments
on a well-known suite of random DFA identification problems show that
SAT solvers can efficiently tackle all instances. Moreover, our algorithm
outperforms state-of-the-art techniques on several hard problems.

1 Introduction

The problem of identifying (learning) a deterministic finite state automaton
(DFA) is one of the best studied problems in grammatical inference, see, e.g., [1].
A DFA is a well-known language model that can be used to recognize a regular
language. The goal of DFA identification is to find a (non-unique) smallest DFA
that is consistent with a set of given labeled examples. The size of a DFA is
measured by the amount of states it contains. An identified DFA has to be
as small as possible because of an important principle known as Occam’s razor,
which states that among all possible explanations for a phenomenon, the simplest
is to be preferred. A smaller DFA is simpler, and therefore a better explanation
for the observed examples. DFA identification thus consists of finding the regular
language that is most likely to have generated a set of labeled examples. This
problem has many applications in for example computational linguistics, bio-
informatics, speech processing, and verification.

The problem of finding a smallest consistent DFA can be very difficult. It is
the optimization variant of the problem of finding a consistent DFA of fixed size,
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which has been shown to be NP-complete [2]. In spite of this hardness results,
quite a few DFA identification algorithms exist, see, e.g., [1]. The current state-
of-the-art in DFA identification is the evidence driven state-merging (EDSM)
algorithm [3]. Essentially, EDSM is a heuristic method that tries to find a good
local optimum efficiently. It has been shown using a version of EDSM called
RPNI, that it is guaranteed to efficiently converge to the global optimum in the
limit [4]. However, wrapping a specialized search procedure around the EDSM
heuristic method will typically lead to better results, see, e.g., [5,6,7,8].

Although the different search techniques improve the performance of EDSM,
they are still less advanced than solvers for well-studied problems such as graph
coloring and satisfiability (SAT). Especially SAT solvers have become very power-
ful in the last decade. The power of these solvers can be used in other problems by
translating these problems into SAT instances, and subsequently running a SAT
solver on these translated problems. This approach is very competitive for several
problems, see, e.g., [9,10,11]. We adopt this approach for DFA identification.

In [12], such a translation is introduced from DFA identification into graph
coloring. The main idea of this translation is to use a distinct color for every state
of the identified DFA. The nodes in the graph coloring instance represent the
labeled examples. Two nodes are connected if the examples they represent have
different labels, i.e., if they cannot end in the same state in the DFA. Dynamic
constraints are used to guarantee that examples with different labels cannot end
in the same state. The amount of colors used in the graph coloring problem is
equal to the size of the identified DFA, and hence this should be as small as
possible. Finding this minimum can be done by iterating over this amount.

An alternative approach [13] uses the well-known translation of DFA identifi-
cation to an integer constraint satisfaction problem (CSP) from [14]. It translates
this CSP into SAT in two ways: a unary and a binary encoding of the integers.
Again, the minimum can be found by iterating over the number of states.

We propose a different method inspired by the encoding by [12]. The main
problem we solve is how to efficiently encode the graph coloring constraints
of [12] into SAT. A naive direct encoding [15] of these constraints would lead to
O(k2|V |2) clauses, where k is the size of the identified DFA, and V is the set of
labeled examples. Such a direct encoding is in fact identical to the unary encod-
ing from [13], which can be considered the current state-of-the-art in translations
of DFA identification to SAT. Our encoding, however, requires only O(k2|V |)
clauses. The crucial part of our translation is the use auxiliary variables to repre-
sent the problem more efficiently. In addition, we apply symmetry breaking [16]
to prevent overlapping searches with different colors by preprocessing the result
of our translation with a fast max-clique approximation algorithm. Furthermore,
we add many redundant clauses to our translation that provide the SAT solver
with some additional knowledge about the DFA identification instance.

A nice feature of our encoding is that it is flexible in the sense that it can
also be applied to partially identified DFAs. Starting with a partially identified
DFA reduces the size of the SAT instance significantly. Thus, one could use our
encoding as a subprocess in a larger DFA identification algorithm as follows:
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first identify a small part of a DFA, and then run our encoding to determine
how many additional states are required. In this way, our encoding can also be
applied in cases where the number of clauses resulting from our initial encoding
is too large for the current state-of-the-art SAT solvers.

The contributions of this paper are thus fourfold:

– We introduce a simple and efficient encoding of DFA identification to SAT.
– We suggest max-clique symmetry breaking to reduce the search space.
– We add redundant clauses to improve the performance of the SAT solver.
– We show how the flexibility of our encoding can be used in order to apply

it to very hard problems.

We compare the performance of our SAT approach with the naive direct encod-
ing, and two state-of-the-art search procedures for EDSM. We first tested these
algorithms on a set of well-known benchmark problem instances. These results
show that our approach is competitive with the state-of-the-art in DFA identifi-
cation, and significantly outperforms the current state-of-the-art in translations
of DFA identification to SAT. In addition, we tested our approach on a very
challenging suite of very hard instances. For the second experiment we applied
our encoding to a DFA that was partially identified by EDSM. This second ex-
periment shows that the flexibility of our encoding allows it to be applied to very
difficult DFA identification problems. In a few of these instances we could deter-
mine the exact solution starting from a short initial run of EDSM. In addition,
during these experiments we discovered that our max-clique symmetry break-
ing technique can potentially be used to reduce the search space of the EDSM
algorithm. Adapting EDSM to make use of this technique is left as future work.

This paper is organized as follows. We start with a short description of the
EDSM algorithm (Section 2) and the translation into graph coloring (Section 3).
We then give our translation into SAT, including symmetry breaking and redun-
dant clauses (Section 4). Next, we explain the application of our encoding to par-
tially identified DFA (Section 5). We present our experimental results (Section 6),
and end with some conclusions and some ideas for future work (Section 7).

2 The State-of-the-Art in DFA Identification

We assume the reader to be familiar with the theory of languages and automata.
A deterministic finite state automaton (DFA) A is a automaton model consisting
of states and labeled transitions. It recognizes those symbol sequences formed by
the labels of transitions on paths from a specific start start to a final state. In this
way, DFAs can be used to recognize any regular language. We use L(A) to denote
the language of a DFA A. Given a pair of finite sets of positive sample strings
S+ and negative sample strings S−, called the input sample, the goal of DFA
identification is to find a smallest DFA A that is consistent with S = {S+, S−},
i.e., such that S+ ⊆ L(A) and S− ⊆ Σ∗\L(A) (where Σ∗ is the set of all strings).
The size of a DFA is measured by the usual measure, i.e., by the number of states
it contains.
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Fig. 1. An augmented prefix tree acceptor for S = (S+ = {a, abaa, bb}, S− = {abb, b})
(left) and the corresponding consistency graph (right). Some vertices in the consis-
tency graph are not directly inconsistent, but inconsistent due to determinization. For
instance state 2 and 6 are inconsistent because the strings abb and bb will end in the
same state if these states are merged. Also state 1 and 2 are inconsistent because the
strings a and abb will end in the same state if these states are merged.

The idea of a state-merging algorithm is to first construct a tree-shaped DFA
from this input, and then to merge the states of this DFA. Such a tree-shaped
DFA is called an augmented prefix tree acceptor (APTA), see Figure 1. An APTA
is a DFA such that the computations of two strings s and s′ reach the same state
q if and only if s and s′ share the same prefix until they reach q, hence the name
prefix tree. An APTA is called augmented because it contains (is augmented
with) states for which it is yet unknown whether they are accepting or rejecting.
No execution of any sample string from S ends in such a state. We use V , V+,
and V− to denote all states, the accepting states, and the rejecting states in the
APTA, respectively.

A merge of two states q and q′ combines the states into one: it creates a new
state q′′ that has the same incoming and outgoing transitions of both q and
q′. Such a merge is only allowed if the states are consistent, i.e., it is not the
case that q is accepting while q′ is rejecting, or vice versa. Whenever a merge
introduces a non-deterministic choice, i.e., q′′ is the source of two transitions
with the same symbol, the target states of these transitions are merged as well.
This is called the determinization process, and is continued until there are no
non-deterministic choices left. Of course, all of these merges should be consistent
too. A state-merging algorithm iteratively applies the state-merging process until
no more consistent merges are possible.

Currently, the most successful method for solving the DFA identification prob-
lem is the evidence driven state-merging (EDSM) algorithm in the red-blue
framework [3]. EDSM is a greedy procedure that uses a simple heuristic to deter-
mine which merge to perform. In grammatical inference, there is a lot of research
into developing advanced and efficient search techniques for ESDM. The idea is
to increase the quality of a solution by searching other paths in addition to the
path determined by the greedy EDSM heuristic. Examples of such advanced tech-
niques are dependency directed backtracking [5], using mutually (in)compatible



70 M.J.H. Heule and S. Verwer

BR

R R

B

B

R

Fig. 2. The red-blue framework. The red states (labeled R) are the identified parts of
the automaton. The blue states (labeled B) are the current candidates for merging.
The uncolored states are pieces of the APTA.

merges [6], and searching most-constrained nodes first [7]. A comparison of dif-
ferent search techniques for EDSM can be found in [8].

Typically, a time bound is set and the algorithm is stopped when its running-
time exceeds this bound. However, it can guarantee that it has found the optimal
solution (a smallest DFA) if all smaller solutions have been visited by its breadth-
first search. In total EDSM tries |V |2 possible merges in every iteration, and
since V can be very large, this can take a very large amount of time. In order
to avoid this, EDSM is often applied within the red-blue framework. The red-
blue framework maintains a core of red states with a fringe of blue states, see
Figure 2. A red-blue state-merging algorithm performs merges only between
blue and red states. If no red-blue merge is possible the algorithm changes the
color of a blue state into red. This framework reduces the amount of possible
merges significantly without reducing the number of possible solutions, i.e., the
algorithm is still complete. Since the algorithm is guaranteed not to change any
of the transitions between red states, the red core of the DFA can be viewed
as a part of the DFA that is already identified. Within the red-blue framework,
EDSM is a polynomial time (greedy) algorithm that converges quickly to a local
optimum. Despite its simplicity, EDSM participated in and won (in a tie) the
Abbadingo DFA learning competition in 1997 [3]. The evidence measure that is
used by EDSM is based on the idea that bad merges can often be avoided by
performing those merges that have passed the most tests for consistency, and are
hence most likely to be correct. Using this evidence measure EDSM participated
in and won (in a tie) the Abbadingo DFA learning competition in 1997 [3]. The
data set in this competition consisted of sparse data-sets. In the competition
EDSM was capable of approximately (with 99% accuracy) learning a DFA with
500 states with a training set consisting of 60.000 strings.

The current state-of-the-art techniques are two simple search strategies called
ed-beam and exbar [7]. The ed-beam procedure calculates one greedy EDSM path
starting from every node in the search tree in breadth-first order. The smallest
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DFA found by these EDSM paths is returned as a solution. This solution then
serves as an upper bound of the DFA size for the breadth-first search. The exbar

procedure iteratively runs EDSM with an increasing upper bound on the number
of DFA states. It continues this procedure until a solution is found. To reduce
the size of the search space, exbar searches the most-constrained nodes first.

3 From DFA Identification to Graph Coloring

The EDSM search techniques are usually based on successful techniques for other
more actively studied problems, such as satisfiability and graph coloring. There
have been many competitions for algorithms that solve these problems and these
solvers are therefore highly optimized. Although the different search techniques
improve the performance of EDSM, and the implementations use efficient data
structures, still a lot of work has to be done before the EDSM implementations
are as efficient and advanced as the solvers for these problems. Since the decision
version of DFA identification is NP-complete, it is also possible to translate the
DFA identification problem into a more actively studied problem, and thus make
use of the optimized search techniques immediately.

In [12], such a translation is introduced from DFA identification into graph
coloring. The main idea of this translation is to use a distinct color for every
state of the identified DFA. Every vertex in the graph of the graph coloring
problem represents a distinct state in the APTA. Two vertices v and w in this
graph are connected by an edge (cannot be assigned the same color), if merging
v and w results in an inconsistency (i.e., an accepting state is merged with a
rejecting state). These edges are called inequality constraints. Figure 1 shows an
example of such a graph.

In addition to these inequality constraints, equality constraints are required: if
the parents p(v) and p(w) of two vertices v and w with the same incoming label
are merged, then v and w must be merged too. With the addition of these con-
straints, some of the inequality constraints become redundant : only the directly
inconsistent edges (between accepting and rejecting states) are actually neces-
sary, the other edges (resulting from the determinization process) are no longer
needed because they logically follow from combining the direct constraints and
the equality constraints. These redundant constraints are kept in our translation
in order to help the search process.

In the graph coloring problem, the equality constraints imply that the two
parent nodes p(v) and p(w) can get the same color only if v and w get the same
color. Such a constraint is difficult to implement in graph coloring. In [12], this
is dealt with by modifying the graph according to the consequences of these
constraints. This implies that a new graph coloring instance has to be solved
every time an equality constraint is used. We propose a different method to
encode these inequality constraints, that is by encoding them using satisfiability.
In addition, using auxiliary variables, we reduce the number of constraints that
are required by the encoding.
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4 Translating DFA Identification into SAT

The satisfiability problem (SAT) deals with the question whether there exists
an assignment to Boolean variables such that a given formula evaluates to true.
Such a formula in conjunctive normal form (CNF) is a conjunction (∧) of clauses,
each clause being a disjunction (∨) of literals. Literals refer either to a Boolean
variables xi or to its negation ¬xi.

In the last decade, SAT solvers have become very powerful. This can be ex-
ploited by translating a problem into CNF and solve it by a SAT solver. Despite
the low level representation, such an approach is very competitive for several
problems. Examples are bounded model checking [9], equivalence checking [10]
and rewriting termination problems [11]. Below we present such an approach to
DFA identification.

4.1 Direct Encoding

Our translation reduces DFA identification into a graph coloring problem [12]
which in turn is translated into SAT. A widely used translation of graph coloring
problems into SAT is known as the direct encoding [15]. Given a graph G = (V, E)
and a set of colors C, the direct encoding uses (Boolean) color variables xv,i with
v ∈ V and i ∈ C. If xv,i is assigned to true, it means that vertex v has color
i. The constraints on these variables are as follows (see Table 1 for details):
For each vertex, at-least-one color clauses make sure that each vertex is colored,
while at-most-one color clauses forbid that a vertex can have multiple colors.
The latter clauses are redundant.

Additionally, we have to translate that adjacent vertices cannot have the same
color. The direct encoding uses the following clauses:

∧

i∈C

∧

(v,w)∈E

(¬xv,i ∨ ¬xw,i)

Finally, let EL be the set consisting of pairs of vertices that have the same
incoming label in the APTA. In case the parents p(v) and p(w) of such a pair
(v, w) ∈ EL have the same color, then v and w must have the same color as
well. This corresponds to the equality constraints in [12]. A straight-forward
translation of these constraints into CNF is:

∧

i∈C

∧

j∈C

∧

(v,w)∈EL

(¬xp(v),i ∨ ¬xp(w),i ∨ ¬xv,j ∨ xw,j) ∧
(¬xp(v),i ∨ ¬xp(w),i ∨ xv,j ∨ ¬xw,j) ∧

This encoding is identical to the CSP-based translation given in [13], and can
be considered as the current state-of-the-art in translations of DFA identification
to SAT. Notice that the size of the direct encoding is O(|C|2|V |2). For interesting
DFA identification problems this will result in a formula which will be too large
for the current state-of-the-art SAT solvers. Therefore we will propose a more
compact encoding below.



Exact DFA Identification Using SAT Solvers 73

4.2 Compact Encoding

The majority of clauses in the direct encoding originate from translating the
equality constraints into SAT. We propose a more efficient encoding based on
auxiliary variables ya,i,j , which we refer to as parent relation variables. If set to
true, ya,i,j means that for any vertex with color i, the child reached by label a
has color j. Let l(v) denote the incoming label of vertex v, and let c(v) denote
the color of vertex v. As soon as both a child vi and its parent p(vi) are col-
ored, we force the corresponding parent relation variable to true by the clause
yl(vi),c(p(vi)),c(vi) ∨ ¬xp(vi),c(p(vi)) ∨ ¬xvi,c(vi). This leads to O(|C|2|V |) clauses.
Additionally, we require at-most-one parent relation clauses to guarantee that
each relation is unique – see Table 1 for details.

This new encoding reduces the number of clauses significantly. To further
reduce this size, we introduce an additional set of auxiliary variables zi with
i ∈ C. If zi is true, color i is only used for accepting vertices. Therefore, we
refer to them as accepting color variables. They are used for the constraint that
requires all accepting vertices to be colored differently from the rejecting states.
Without auxiliary variables, this can be encoded as (¬xv,i ∨ ¬xw,i) for v ∈ V+,
w ∈ V−, i ∈ C, resulting in |V+| · |V−| · |C| clauses. Using the auxiliary variables
zi, the same constraints can be encoded as (¬xv,i ∨ zi)∧ (¬xw,i ∨¬zi), requiring
only (|V+| + |V−|)|C| clauses.

4.3 Symmetry Breaking

In case a graph cannot be colored with k colors, the corresponding (unsatisfiable)
SAT instance will solve the problem k! times: once for each permutation of the
colors. Therefore, when dealing with CNF formulas representing graph coloring
problems, it is good practice to add symmetry breaking predicates (SBPs) [16].
Notice that in any valid coloring of a graph, all vertices in a clique must have
a different color. So, one can fix vertices in a large clique to a color in a pre-
processing step.

Although finding the largest clique in a graph is NP-complete, a large clique
can be computed cheaply using a greedy algorithm. Start with the vertex v0

with the highest degree. In each step i, add the vertex vi that is connected to
all vertices v0 to vi−1, again with the highest degree.

Because the corresponding graph of an APTA can be huge (many edges),
we propose a variant of this algorithm. First, compute the induced subgraph
of accepting vertices (v ∈ V+) and determine a large clique in this subgraph.
Second, in a similar way find a large clique among rejecting vertices (v ∈ V−).
Because all accepting vertices are connected to all rejecting vertices, the union
of both cliques is also a clique. This variant often provides a clique that is larger
than the clique found using the entire APTA. In addition, the computation costs
are very low.

4.4 Adding Redundant Clauses

The compact encoding discussed above can be extended with several types of
redundant clauses. First, we can explicitly state that each vertex must be colored
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Table 1. Encoding of DFA identification into SAT. C = set of colors, L = set of labels
(alphabet), V = vertices, E = conflict edges.

Variables Range Meaning

xv,i v ∈ V ; i ∈ C xv,i ≡ 1 iff vertex v has color i

ya,i,j a ∈ L; i, j ∈ C
ya,i,j ≡ 1 iff parents of vertices with color j

and incoming label a must have color i

zi i ∈ C zi ≡ 1 iff an accepting state has color i

Clauses Range Meaning

(xv,1 ∨ xv,2 ∨ · · · ∨ xv,|C|) v ∈ V each vertex has at least one color

(¬xv,i ∨ zi) ∧ (¬xw,i ∨ ¬zi) v ∈ V+; w ∈ V−; i ∈ C
accepting vertices cannot have

the same color as rejecting vertices

(yl(v),i,j ∨ ¬xp(v),i ∨ ¬xv,j) v ∈ V ; i, j ∈ C
a parent relation is set when a

vertex and its parent are colored

(¬ya,i,h ∨ ¬ya,i,j) a ∈ L; h, i, j ∈ C; h < j
each parent relation can
target at most one color

Redundant Clauses Range Meaning

(¬xv,i ∨ ¬xv,j) v ∈ V ; i, j ∈ C; i < j each vertex has at most one color

(ya,i,1 ∨ ya,i,2 ∨ · · · ∨ ya,i,|C|) a ∈ L; i ∈ C
each parent relation must
target at least one color

(¬yl(v),i,j ∨ ¬xp(v),i ∨ xv,j) v ∈ V ; i, j ∈ C
a parent relation forces a vertex

once the parent is colored

(¬xv,i ∨ ¬xw,i) i ∈ C; (v, w) ∈ E
all determinization conflicts
explicitly added as clauses

with exactly one color by adding the redundant at-most-one color clauses (¬xv,i∨
¬xv,j) with v ∈ V and i < j ∈ C. Similarly, we can explicitly state that for
each combination of a color and a label exactly one parent relation variable
must be true. This is achieved by adding the at-least-one parent relation clauses
(
∧

j∈C ya,i,j) for all a ∈ L and i ∈ C. Also, once a parent relation is set, and
some vertices have the source color, then all child nodes should have the target
color (¬yl(v),i,j ∨ ¬xp(v),i ∨ xv,j) for v ∈ V ; i, j ∈ C.

All three types of clauses are known as blocked clauses [17]. These clauses have at
least one literal that cannot be removed by resolution. Therefore, blocked clauses
cannot be used to derive the empty clause (i.e. show that the formula is unsatis-
fiable). So, formulas with and without blocked clauses are equisatisfiable. We will
show that these blocked clauses improve the performance of DFA identification.
However, for other problems, removal of blocked clauses results in a speed-up [18].

Other types of redundant clauses consists of a second constraint on the parent
relation and adding all edges that are not covered by the accepting color clauses.
Although these clauses are redundant, they provide some additional knowledge
about the problem to the SAT solver. However, since the largest number of
clauses are created by the first parent relation, and since there can be an even
larger number of conflicts, the addition of these clauses could potentially blow
up the size of the encoding.
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4.5 Iterative SAT Solving

The translation of DFA identification into SAT (direct encoding, compact encod-
ing with and without redundant clauses) uses a fixed set of colors. To prove that
the minimal size of a DFA equals k, we have to show that the translation with
k colors is satisfiable and that the translation with k − 1 colors is unsatisfiable.
The following procedure is used to determine the minimal size:
S1: find a large clique L (set of vertices) in the graph representing the APTA.
S2: initialize the set of colors C in such a way that |C| = |L|.
S3: construct a CNF by translating the APTA based on C and SBPs on L.
S4: solve the formula of step S3.
S5: if the formula is unsatisfiable then add a color to C and goto step S3.
S6: return the DFA found in step S4.

5 Translating Partially Identified DFAs

In spite of the efficiency of our translation, there can still be cases where the
above procedure leads to a formula that is too large for the current state-of-the-
art SAT solvers. For instance, the Abbadingo problem set [3] contains some very
difficult problems that require hundreds of colors, resulting in over 100.000.000
clauses. Since the current state-of-the-art SAT solvers are known to work well
up to 5.000.000 clauses, this is much too large.

In such cases another nice feature of our encoding can be used, which is that
it also works when the input is a (partially identified) DFA instead of an APTA.
Thus, a simple method that can be used to reduce the size of the problem is to:

1. apply a few steps of the EDSM algorithm, and then
2. apply our translation to SAT.

Every merge that is performed before applying the translation reduces the size
of V significantly. Therefore also the encoding becomes much smaller. The price
to pay is of course that the solution provided by the SAT solver will no longer be
exact. The first few merges are performed by a greedy procedure, and hence they
can lead to a larger DFA size. These first few merges will however be based on
a lot of evidence. Consequently, they are likely to be correct, i.e., they are likely
to lead to the optimal solution. Intuitively, this approach should therefore work
well in practice, the main problem is to know how many merges to perform. For
more information on the EDSM evidence value and its rationale, the reader is
referred to [3].

An additional benefit of first applying the EDSM algorithm is that we auto-
matically obtain a clique of conflicting states: no red state can be merged with
another red states. Hence, the red states in a partially identified DFA resulting
from a few steps of the EDSM algorithm can be used to construct symmetry
breaking predicates. These predicates can be used instead of the ones resulting
from the greedy max-clique algorithm.
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Fig. 3. Results on the set from [19,7]. The graph shows run-times in seconds of exbar, ed-
beam, our encoding with and without redundant clauses, and the naive direct encoding.
The horizontal axis shows the instances of DFA size 16 or more sorted by run-time.

6 Results

Our experiments are based on a suite of 810 instances1 that were also used to
evaluate exact DFA identification algorithms in [19,7]. The suite is partitioned
into sizes ranging from 4 to 21. Since the larger ones are more difficult, we focus
on the sizes 16 to 21. In addition, we performed tests on some instances from
the challenging Abbadingo problem set [3]. All tests were performed on a Intel
Pentium 4, 3.0 GHz with 1 Gb of memory running on Fedora Core 8.

We compare two implementations of our SAT encoding with the current state-
of-the-art in exact DFA identification: ed-beam and exbar (see Section 2 for a
description). In addition, we include the naive encoding described in Section 4.
This encoding can be considered as the current state-of-the art translation to
SAT. All SAT algorithms follow the iterative SAT solving procedure presented
in Section 4.5. We used picosat [20] to solve the CNF instances. The perfor-
mance is measured by cumulating all computational costs of the unsatisfiable
runs together with the time to solve the smallest satisfiable instance.

Figure 3 shows the run-times of all algorithms. All algorithms except the naive
encoding solved the full suite within 200 seconds per instance. Most problems
require almost no search at all and are solved by all algorithms except the naive
encoding in a few seconds. Some of the larger problems, however, do require
some search-time and there one clearly sees the strength of our approach: it
outperforms the state-of-the-art on these instances. An interesting observation
is the effect of the redundant clauses, without these the SAT solver no longer

1 Available at http://algos.inesc.pt/~aml/tar_files/moore_dfas.tar.gz

http://algos.inesc.pt/~aml/tar_files/moore_dfas.tar.gz
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outperforms the state-of-the-art. The huge difference between the naive and our
encoding clearly shows the benefit of using the auxiliary variables we introduced
in our encoding.

On average the ed-beam and breath-first search implementations are faster.
However, the SAT translation with all redundant clauses performed best on the
hardest problems. These results are promising, since they show that the search
techniques used by SAT can be a lot more efficient than the state-of-the-art
search variants of EDSM.

We also experimented with instances of the Abbadingo challenge [3].2 Initially,
these benchmarks appeared too hard for our exact SAT approach. The small-
est problem has an APTA with 12,796 states, resulting in 77,730,715 clauses.
Therefore, we first ran a few iterations of EDSM and applied our translation as
soon as the size of the partial DFA is small enough. Throughout our experiment,
we observed that a partial DFA of about 5000 states is currently the limit of
what state-of-the-art SAT solvers can manage. This means that for the smallest
problems (#1, #4, and #7) about a dozen merge steps are required. Using this
combined approach we were able to solve the first four challenge problems.

7 Conclusions and Future Work

We presented an efficient translation from DFA identification into satisfiability.
By performing this transformation, we are able to make direct use of the ad-
vanced search techniques that are currently used in satisfiability solving. The
result is simple, efficient, and advanced algorithm for solving the DFA identi-
fication problem. In experimental results, we show that our approach is very
competitive with the current state-of-the-art in DFA identification. It even out-
performed the state-of-the-art on several hard instances. In addition, we show
that the flexibility of our transformation can be used to apply it to very chal-
lenging DFA identification instances.

The use of auxiliary variables by this transformation results in a significant
improvement in the number of required clauses with respect to the current state-
of-the-art in translating DFA identification to SAT [12] and [13]. Our transforma-
tion only requires O(k2|V |) clauses for a DFA identification problem, where k is
the size of the sought DFA and V are the states of the APTA constructed from
the input sample. Using the current state-of-the-art, we would have required
O(k2|V |2) clauses. Since |V | is typically large, this is a big improvement.

We plan to experiment with alternative translations. Most of the graph color
to SAT translations presented in [21] can be used for DFA identification too. In
order to determine the usefulness of these alternatives, we will construct variants
that use auxiliary variables to reduce the size of theses translations as well.

We make use of symmetry breaking predicates in order to prevent overlapping
searches with different colors. These predicates are produced by preprocessing
the result of the transformation with a fast max-clique approximation algorithm.
In the future, we would like to perform this symmetry breaking also dynamically,
2 Available at http://www-bcl.cs.may.ie/data-sets.html
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i.e., during the satisfiability solving. This is a new technique for graph coloring
based satisfiability solving proposed in [22] that shows promising improvements.

In our experiments, the greedy max-clique algorithm often discovered a larger
clique than the one induced by the red states in a partially identified DFA. This
opens up a very interesting path for future work in DFA identification, namely
to replace the red states in EDSM by the states represented by this clique. Since
this clique poses more constraints on the partially identified DFA, we believe
this will improve the performance of the EDSM algorithm.
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