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Avoiding triples in arithmetic progression∗

Marijn J. H. Heule

Some patterns cannot be avoided ad infinitum. A well-known ex-
ample of such a pattern is an arithmetic progression in partitions
of natural numbers. We observed that in order to avoid arithmetic
progressions, other patterns emerge. A visualization is presented
that reveals these patterns. We capitalize on the observed patterns
by constructing techniques to avoid arithmetic progressions.

More formally, van der Waerden numbers W (k, l) express the
smallest n such that partitioning {1, . . . , n} into k sets yields at
least one set containing an arithmetic progression of length at least
l. Computing these numbers for l > 2 is a very hard combinatorial
problem. We focus on avoiding triples (l = 3) in arithmetic pro-
gressions. We guide the search procedure by transforming observed
symmetries in best known lower bounds into additional constraints.
Using our method, several lower bounds for van der Waerden num-
bers have been improved. As a consequence, a new pattern also
emerges between the best known lower bounds. We conclude with
open problems regarding van der Waerden numbers as well as some
bold conjectures that challenges existing work on the subject.

AMS 2000 subject classifications: Primary 05D10; secondary 68R05.
Keywords and phrases: Van der Waerden numbers, SAT, symmetries.

1. Introduction

Ramsey Theory offers several patterns that cannot be avoided ad infinitum.
One such pattern is arithmetic progression while partitioning the natural
numbers. More formally, for every k, l there exists a smallest n such that any
partition of {1, . . . , n} into k color classes, at-least-one color class contains an
arithmetic progression of length l. In 1927, Bartel Leendert van der Waerden
proved this theorem [23]. For a given k and l the smallest n is known as the
van der Waerden number W (k, l).

After almost a century, only seven van der Waerden numbers are known
with k ≥ 2, l ≥ 3. All of them, as well as the largest known lower bounds,
have been determined by computation. The smallest ones have been es-
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tablished in the 1970’s: W (2, 3) = 9, W (2, 4) = 35, and W (3, 3) = 27 by
Chvátal [6];W (2, 5) = 178 by Stevens and Shantaram [21]; andW (4, 3) = 76
by Beeler and O’Neil [4]. Around the same time, a lower bound generator was
developed by Rabung [18]. More recent progress regarding van der Waerden
numbers was achieved by encoding the problem as a Boolean satisfiability
problem (SAT) and using the power of SAT solvers to obtain solutions of
the resulting propositional formulas [7]. Using years of computational effort,
Kouril was able to establish W (2, 6) = 1132 [16] and W (3, 4) = 293 [14].
We generalized the method of Rabung to improve several lower bounds [10].
Rabung and Lotts, in turn, generalized our method [19].

Solving math problems using SAT technology has been successful in
Ramsey Theory and beyond. Apart from the results mentioned above, SAT
has been used for off-diagonal van der Waerden numbers (i.e., a variant
such that the arithmetic progression restriction differs per color class) [1,
2] and Green-Tao numbers [17]. Successes outside Ramsey theory include
solving the Erdős discrepancy problem [13] and Boolean Pythagorean triples
problem [11].

Considerable effort has also been invested into establishing upper bounds
of the van der Waerden numbers. The original proof by van der Waerden
bounded the numbers above by an Ackermann function in l. Such a func-
tion grows faster than any primitive recursive function. Since the proof of
Shelah [20] in 1986, the van der Waerden numbers are known to be bound
above by a primitive recursive function. Gowers [9] has tightened these up-
per bounds even more by providing an alternative proof of the Szemerédi
theorem [22] on arithmetic progressions. A stronger upper bound for l = 3
was found by Bourgain [5].

Currently there exists a great gap between methods that determine when
arithmetic progression is inevitable (upper bounds) and those that try to
avoid it (lower bounds). Only when a lower bound meets the corresponding
upper bound, a new van der Waerden number is established. This paper
contributes to existing work by introducing novel techniques to improve
lower bounds.

On the bright side, it appears that while avoiding one pattern —in this
case arithmetic progression— other patterns emerge. A van der Waerden
certificate W (k, l, n) is a partition of {1, . . . , n} into k color classes such that
no color class contains an arithmetic progression of length l. We refer to a
largest possible certificate W (k, l,W (k, l)− 1) as an extreme certificate. For
all known W (k, l), there exists an extreme certificate showing clear patterns.
In this paper, we capitalized on observed patterns to improve lower bounds
for several unknown W (k, l) – in particular those with l = 3.
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We focus on exploiting patterns called internal symmetries [12] and the
novel pattern pre-partitioning. An internal symmetry maps a set of assign-
ments onto itself. In the context of van der Waerden numbers, the set of
assignments represents a certificate. Many patterns observed in extreme
certificates can be expressed as internal symmetries. In earlier work [12],
we constructed two improved lower bounds by forcing internal symmetries.
Here, we show that this concept can be used to further push forward the cur-
rent state of the art. Pre-partitioning, which groups elements based on the
primitive root of the length of patterns, is also effective in improving lower
bounds. As most recent works, we translate the problem into SAT together
with constraints enforcing internal symmetries. This translation is small,
quite natural and very effective. After adding these constraints, the compu-
tational costs to find certificates is reduced by several orders of magnitude.

The remainder of this paper is structured as follows: Section 2 describes
the known van der Waerden numbers, the largest known lower bounds and
a technique to visualize van der Waerden certificates. Section 3 presents
the current methods to construct lower bounds based on certificates. The
concept of pre-partitioning and internal symmetries and how to apply these
patterns in the context of van der Waerden numbers is explained in Section 4.
The experimental results are presented in Section 5. Finally, we post several
open problems in Section 6 and draw some conclusions in Section 7.

2. Preliminaries

2.1. Lower bounds of van der Waerden numbers

Van der Waerden numbers, first introduced by van der Waerden [23], arise
from the following theorem:

Theorem 2.1 (van der Waerden). Given two positive integers k and l, there
exists a smallest number W (k, l) with the following property:

For each partition {1, 2, . . . , n0} = C1 ∪ C2 ∪ . . . ∪ Ck (with n0 ≥ W (k, l))
there is at-least-one color class Cs with s ∈ {1, . . . , k} which contains an
arithmetic progression of length at least l.

An arithmetic progression of length l is a progression of numbers a, a+d, a+
2d, . . . , a+ (l − 1)d for some d > 0.

Definition 2.1. A van der Waerden certificate W (k, l, n) is a partition of
the elements {1, 2, . . . , n} into k color classes Cs with s ∈ {1, . . . , k}, such
that no color class contains an arithmetic progression of length ≥ l.
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The latter is equivalent to stating that W (k, l) > n. A certificate W (k, l, n)
therefore provides a lower bound n for the van der Waerden number W (k, l).
We refer to an extreme certificate W (k, l, n) if n = W (k, l)− 1.

Only seven small van der Waerden numbers have been established. These
van der Waerden numbers, as well as the best known lower bounds and their
sources, are summarized in Table 1.

Table 1: Known van der Waerden numbers and the best known lower bounds.
A ∗ after some citations indicate that the lower bound can be computed
using the method described in the referenced article, but that the article
does not mention the bound. These omissions are likely the result of the
computational costs to determine these bounds

l\k 2 3 4 5 6
3 9 [6] 27 [6] 76 [4] > 125 [7] > 207 [18]
4 35 [6] 293 [14] > 1048 [18] > 2254 [18] > 9778 [18]
5 178 [21] > 965 [18] > 17705 [10] > 24045 [18] > 63473 [10]
6 1132 [16] > 8886 [18] > 91331 [10] > 246956 [18]∗ > 816981 [10]∗

7 > 3703 [18] > 43855 [18]∗ > 420216 [10]∗

8 > 11495 [10] > 238400 [18]∗

9 > 41265 [10]

2.2. Visualization of certificates

Most of the ideas presented in this paper are motivated by patterns that were
observed in the extreme and largest known certificates of van der Waerden
numbers. As these patterns are hard to discover in the plain certificates, we
developed a visualization technique [10] to make the patterns easier to spot.
A similar visualization technique was used by John Venn to show that the
decimals of the number π are random [24]. In contrast, we will show that
the extreme and largest known certificates of van der Waerden numbers are
not random.

The visualization can be used for certificates W (k, l, n) for k ≥ 3. Each
color class Cs with s ∈ {1, . . . , k} is assigned an oriented edge. Color class C1

is assigned the horizontal edge . The other color classes Cs are assigned
an oriented edge rotated by 360(s − 1)/k degrees clockwise. We start
drawing from an arbitrary starting point and loop through the elements in
the certificate in increasing order. For each element we draw the oriented
edge of the color class it occurs in. Each next edge is drawn starting from
the point where its predecessor ended. An example certificate is visualized
in Figure 1.
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Figure 1: Example of the visualization of a certificate. For each element an
oriented edge is drawn depending on the color class it occurs in. The colors
represent the value of each element.

Additionally, the edges are colored to provide some intuition about the
corresponding element. The edge representing the first element is colored
red. The color of each next edge is gradually changed compared to the color
of its predecessor. The colors change from red to blue to green and back
to red. In Figure 1, each element has the same color as the corresponding
edge. Because the arrowheads are useful for explanation, but confusing in
practice, they are omitted in the actual visualizations.

3. Generators and satisfiability

The most common pattern that can be observed in extreme and largest
known van der Waerden certificates is repetition. For a certificate W (k, l, n)
this pattern is as follows. Let m = � n

l−1�. For each element 1 ≤ i ≤ m(l−1),
it holds that the elements i and i+m occur in the same color class. So given
a certificate W (k, l,m), we can construct a certificate W ∗(k, l,m(l − 1)) by
applying (with Cs ∈ W (k, l,m) and C∗

s ∈ W ∗(k, l,m(l − 1)):

(1) i ∈ Cs ⇒ i+ jm ∈ C∗
s i ∈ C, j ∈ {0, . . . , l − 2}.

Throughout the paper, certificates W (k, l, n) will be constructed and
computed that contain this repetition. Also, m will denote the size of the
base certificate and equals � n

l−1�. For all k ≥ 2, l ≥ 3 —except k ∈ {2, 3, 5}
and l = 31— there exists an extreme or largest known certificate of size
m(l − 1) + 1. We will use 0 for the additional element which usually can
be placed in color class C1. By using 0 instead of n + 1, the techniques
below are more natural to explain. Notice that an arithmetic-free partition

1In Section 4.2, we present an improved lower bound for k = 5, l = 3 and also
the new bound has the exception that element 0 cannot be added to C1.



396 Marijn J. H. Heule

Figure 2: Visualizations of some extreme or largest known certificates.
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of {0, . . . , n} can be easily transformed to an arithmetic-free partition of
{1, . . . , n+ 1} by replacing each element i by i+ 1.

Below we present three techniques to search for certificates. First, the
method by Rabung [18], presented in Section 3.1, constructs certificates
W (k, l, p(l − 1) + 1) with p prime. Second, the Zipping method [10], pre-
sented in Section 3.2, generalizes the first method to use it for non-prime
numbers. Third, we show in Section 3.3 how certificates can be computed
by translating the problem into SAT [7].

3.1. Power residue coloring

Rabung [18] proposed a method called power residue coloring to construct
certificates of the form W (k, l, p(l − 1) + 1) with p prime. In the first step
of this method the primitive root of unity rn of n is computed. Throughout
the paper, we denote with pn the largest prime factor of n. Furthermore, rn
is the smallest integer for which it holds that

(2) rpn
n ≡ rn(mod n) and rin �= rn(mod n) i ∈ {2, . . . , pn−1}.

Although Rabung [18] only considers primitive roots for prime numbers, the
general case is presented, because it will be used later on. Notice that our
definition of the primitive root differs from the conventional definition for
non-prime numbers. Based on rn, a sequence Sn with p− 1 elements can be
constructed as follows:

(3) Sn(i) = rin(mod n) 1 ≤ i ≤ pn−1.

Finally, the elements are partitioned into k color classes such that

(4) Sp(i) ∈ Ci(mod k)+1 and pn ∈ Ck.

Example 1. Consider the extreme certificateW (4, 3, 75), so p = 37, r37 = 2,
k = 4.

S37 = (2, 4,8, 16 , 32, 27,17, 34 , 31, 25,13, 26 , 15, 30,23, 9 , 18, 36,

35, 33 , 29, 21,5, 10 , 20, 3,6, 12 , 24, 11,22, 7 , 14, 28,19, 1 )

Notice that the elements in S37 are shown in four different fonts. Ele-
ments with the same font have the same position in S37 (mod 4). First, we
partition these elements according to (4), while placing element 37 in C3

(it could have been placed in any set Cs with s > 1). Second, we duplicate
the certificate according to (1) and place element 0 in C1. This results in
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the certificate shown in Figure 3. The elements 1 to 36 are shown using the
same fonts as in S37.

C1 = {0, 1 , 7 , 9 , 10 , 12 , 16 , 26 , 33 , 34 , 38, 44, 46, 47, 49, 53, 63, 70, 71}
C2 = {2, 14, 15, 18, 20, 24, 29, 31, 32, 39, 51, 52, 55, 57, 61, 66, 68, 69}
C3 = {3, 4, 11, 21, 25, 27, 28, 30, 36, 37, 40, 41, 48, 58, 62, 64, 65, 67, 73, 74}
C4 = {5,6,8,13,17,19,22,23,35, 42, 43, 45, 50, 54, 56, 59, 60, 72}

Figure 3: An extreme certificate W (4, 3, 75) using power residue coloring.

3.2. Zipping

We proposed a method to generate certificates W (k, l, pq(l − 1) + 1) with
p prime and q > 1 [10]. The first step consists of computing a certificate
W (k, l, p) using power residue coloring. In the case q is prime, we construct
a certificate W (k, l, pq) by applying the zipping rule:
(5)
i∈Cs⇒ iq+jp−1(mod pq)+1∈C∗

s−1+j� k

2
�(mod k)+1 i∈C, j ∈{0, . . . , q−1}.

A certificate of size pq(l− 1) + 1 can be obtained by repeating the resulting
W (k, l, pq) a total of l − 1 times and adding a last element.

In the case q is not prime, the zipping rule must be applied for each of
the factors of q. For instance, if q = 4 then we apply the rule for the first
factor q1 = 2. The resulting certificate is extended by second factor q2 = 2.

Example 2. Consider the extreme certificate W (2, 5, 177) with p = 11,
rp = 2, q1 = 2, q2 = 2, and k = 2. First we compute sequence S11 with fonts:

S11 = (2,4, 8,5, 10,9, 7,3, 6,1).

The elements on odd positions are placed in C1, while the elements on even
positions and 0 are placed in C2. The first zip uses C as input and constructs
a certificate C∗ of double size with q1=2. Afterwards the double certificate
C∗ is used as input to create a quadruple certificate C∗∗ by zipping with
q2=2. The result is shown below.

In early 2007, David Mitchell and Nhan Nguyen informed us2 that they
constructed a certificate W (3, 5, 2172). Recall that the old lower bound was

2E-mail correspondence February 2007.
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C1 = {2, 6, 7, 8, 10} C∗
1 = {4, 7, 12, 13, 14, 16, 17, 19, 20, 21}

C2 = {1,3,4,5,9, 11} C∗
2 = {1,2, 3, 5,6,8, 9,10, 11, 15,18, 22}

C∗∗
1 = {0, 3, 8, 13, 14, 15, 17, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 40, 41, 42}

C∗∗
2 = {1, 2,4, 5, 6, 7, 9, 10, 11,12,16, 18, 19,20, 22, 25, 30, 35,36, 37, 39, 43, 44}

965. While analyzing this certificate, many similarities were observed with
the zipped certificates obtained by our generator. In fact, we were able to
construct the same certificate by replacing (5) with
(6)
i∈Cs⇒ iq+jp−1(mod pq)+1∈C∗

s−1+j� k

q
�(mod k)+1 i∈C, j ∈{0, . . . , q−1}.

Notice that (5) and (6) are equivalent if q = 2, which was the case
for all improved lower bounds using the Zipper method [10]. Hence these
results are not affected by this modification. Besides improving the lower
bound of W (3, 5), the new generator also improved the bounds of W (3, 6)
(from 8886 to 11191) and W (5, 5) (from 24045 to 29621). Figure 2 shows the
visualizations of the new bounds of W (3, 5) and W (3, 6). Notice the rotation
symmetry of 120◦ in both images.

3.3. Satisfiability

Most lower bounds to van der Waerden numbers were established using
the generators described in the previous subsections. Dransfield et al. [7]
proposed to translate the search for a certificate W (k, l, n) as a Boolean
satisfiability (SAT) problem. They showed that W (5, 3) > 125 using this
method. Figure 4 (left) offers the visualization of the corresponding certifi-
cate. Notice that no clear pattern is observable in this image, in contrast to
the visualizations of the extreme and largest known lower bound certificates
(see Figure 2).

Kouril and Franco [15] improved on these results by adding clauses to
the formula that are not logically implied. These additional clauses are used
to guide the search. They improved the lower bound of W (2, 6) from 695 to
1132. In 2008, Kouril and Paul proved that W (2, 6) = 1132 [16].

Existence of a certificateW (k, l, n) can be naturally translated into SAT.
The encoding requires kn Boolean variables xi,s which are true if and only
if element i ∈ Cs. Two types of clauses are used. The first type ensures
that each element is in at-least-one color class. These clauses consist only
of positive literals. The second type forbids an arithmetic progression of
length l in any of the color classes. These clauses consist of only negative
literals. We refer to this encoding as the minimal encoding, which is shown in
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Table 2. The formula corresponding to the existence problem of a certificate
W (k, l, n) is denoted by Fk,l,n.

Any satisfying assignment of formula Fk,l,n would prove that W (k, l) >
n. On the other hand, if a formula Fk,l,n is unsatisfiable then W (k, l) ≤ n.
So, these formulae can be used to determine van der Waerden numbers. To
prove that W (k, l) = n, one needs to shows that Fk,l,n−1 is satisfiable, while
Fk,l,n is unsatisfiable.

Table 2: Minimal encoding of van der Waerden certificates into SAT

Variables Range Meaning

xi,s
i ∈ {1, . . . , n}
s ∈ {1, . . . , k} xi,s ≡ 1 iff i ∈ Cs

Clauses Range Meaning
(xi,1 ∨ xi,1 ∨ · · · ∨ xi,k) i ∈ {1, . . . , n} i is in at-least-one color class

(xi′,s ∨ xi′+d,s ∨ . . .
· · · ∨ xi′+d(l−1),s)

i′ ∈ {1, . . . , n−l}
d ∈ {1, . . . , �n−i′

l−1 �}
s ∈ {1, . . . , k}

no color class contains
an arithmetic progression
of length l (or larger)

Besides the clauses in Table 2, one could optionally add the binary
clauses (xi,s ∨ xi,s′) for 1 ≤ i ≤ n and 1 ≤ s < s′ ≤ k [7]. These clauses
express that each element i is in at-most-one color class. These clauses are
redundant: if an element occurs in multiple color classes, then all but one
of the occurrences can be removed. Notice that removing elements cannot
create an arithmetic progression of length l.

Two alternative encodings have been proposed by Oliver Kullmann [17]:
the logarithmic translation and the weak nested translation. Both encodings
use less variables and slightly less clauses, but many more literals. In prac-
tice, the alternative encodings are faster compared to the minimal encoding.
However, we will focus on the minimal encoding for the following reasons.
First, after adding many auxiliary constraints (discussed in the next sec-
tion) the impact on the performance is less pronounced. Second, the new
techniques presented here are more naturally explained using the minimal
encoding.

4. Symmetry and satisfiability

Although SAT can be used to determine van der Waerden numbers, the
current state-of-the-art SAT solvers are not strong enough to find several
new numbers. Therefore, some recent studies [10, 15] focus on improving
lower bounds by adding constraints to the minimal encoding Fk,l,n. These
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Figure 4: Visualizations of two certificates W (5, 3, n). Left the old lower
bound W (5, 3) > 125, right the improved lower bound W (5, 3) > 170.

constraints force or forbid certain patterns/symmetries in the certificates.
The corresponding clauses can significantly reduce the computation cost to
find a certificate. Yet, since these clauses are not implied by Fk,l,n, they can
only be used to establish lower bounds for the van der Waerden numbers.

First, we demonstrate how to exploit the observed rotation symmetry
in the visualizations to establish improved lower bounds for W (5, 3) and
W (6, 3) in Section 4.1. In Section 4.2, we analyze these initial results. This
inspired us to develop two new techniques: pre-partitioning (Section 4.3) and
internal symmetries (Section 4.4).

4.1. Repetition, reflection, and rotation

A common approach to boost performance on hard combinatorial problem
adds auxiliary constraints to guide (also known as streamline) the search [8,
15, 10, 12]. We present three types of auxiliary constraints to improve the
performance of finding van der Waerden certificates.

The first type originates from the observation that most extreme cer-
tificates and the best known lower bounds of W (k, l) show a repetition of
l − 1 times the same pattern. We refer to this symmetry as the repetition
symmetry. It can be forced by adding the constraints xi,s ↔ xi+m,s with
i ∈ {1, . . . ,m(l − 2)} and s ∈ {1, . . . , k}. Addition of these constraints has
been studied in the past [10]. However, the addition was not sufficient to
improve some lower bounds.
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Recall the extreme certificate of W (4, 3, 75) in Figure 3 that was pro-
duced using power residue coloring. Notice that if element i occurs in color
class Cs then element m− i occurs in color class Cs+1(mod 4)+1. By swapping
the color classes C3 and C4, this relation becomes: i ∈ Cs implies m− i oc-
curs in color class Ck+1−s. This pattern results in the reflection symmetry in
the visualization of certificates in Figure 2. We therefore refer to this pattern
and the second type of auxiliary constraints as the reflection symmetry.

The third type was inspired by the visualizations of certificates. Re-
call the improved lower bounds of W (3, 5), W (3, 6), and W (5, 5) that were
found by the new generator. Figure 2 shows certificates W (3, 5, 2173) and
W (3, 6, 11191). All these visualizations show a clear rotation by 360

k

◦
— a

symmetry that was not observed before. It appeared that this rotation was
the result of zipping with q = k. All these improved bounds are of the form
W (k, l, pk(l − 1) + 1) with p prime. This rotation symmetry can be forced
by adding the constraints xi,s ↔ xi+p,s+1(mod k) for i ∈ {1, . . . , pk} and
s ∈ {1, . . . , k}. Table 3 shows both constraints as clauses.

Table 3: Encoding of repetition, reflection, rotation and root symmetries

Clauses Range Meaning

(xi,s ∨ xi+m,s) ∧
(xi,s ∨ xi+m,s)

i ∈ {1, . . . ,ml −m}
s ∈ {1, . . . , k} repetition symmetry σ→→

k,m

(xi,s ∨ xm−i,k+1−s) ∧
(xi,s ∨ xm−i,k+1−s)

i ∈ {1, . . . , m
2 }

s ∈ {1, . . . , k} reflection symmetry σ�
k,m

(xi,s ∨ xi+pm,s(mod k)+1) ∧
(xi,s ∨ xi+pm,s(mod k)+1)

i ∈ {1, . . . ,m− pm}
s ∈ {1, . . . , k} rotation symmetry σ�

k,m

(xrim(mod m),s ∨ xri+a
m (mod m),s) ∧

(xrim(mod m),s ∨ xri+a
m (mod m),s)

i ∈ {1, . . . , pm}
s ∈ {1, . . . , k} root symmetry σroot

a,k,m

4.2. Initial results and analysis

Our first goal was to improve W (5, 3) > 125 reported by Dransfield et al. [7].
We generated the formulas F5,3,n with 125 ≤ n ≤ 200 and added the sym-

metries σ→→
k,m , σ�

k,m and σ�
k,m. We found no solution for any of the formulas

that had all symmetries enforced. As a consequence we experimented with
enforcing some, but not all observed symmetries. We found a solution for
F5,3,170 by discarding the forced symmetry σ�

k,m, thereby improving the lower
bound significantly. The corresponding certificate of the solution is shown
in Figure 6 and visualized in Figure 4 (right).
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Figure 5: Visualizations of two certificates W (6, 3, n). Left the old lower
bound W (6, 3) > 207, right the improved lower bound W (6, 3) > 223.

Encouraged by the improvement for W (5, 3), we did similar experiments
for W (6, 3). This lower bound was 207 and is visualized in Figure 5 (left).
For none of the formulas F6,3,n with 206 ≤ n ≤ 300, did we found a so-
lution by forcing the symmetries as presented in Table 3. However, after
slightly modifying the rotation symmetry to (xi,s ∨ xi+pm,s+1(mod k)+1) ∧
(xi,s ∨xi+pm,s+1(mod k)+1), a solution of F6,3,233 was found. The correspond-
ing certificate of this solution is shown in Figure 7 and visualized in Figure 5
(right).

Why are the generator techniques not able to find these certificates,
which contain the observed (and forced) symmetries? Can we find new sym-
metries in the certificates of the improved lower bounds?

Consider how using the zipping method would construct a certificate
W (k, l, pq(l−1)) orW (k, l, pq(l−1)+1). First Sp would be computed and the
sets Cj would be populated with the elements q·Sp(i) if j ≡ i(mod k)+1 with
i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. Concretely for W (5, 3, 170), thus p = 17
and q = 5, this would mean 5 · S17(i) ∈ Cj if j ≡ i(mod 5) + 1. There are
no such certificates. However, there exists a slightly different pattern in the
certificate W (5, 3, 170) computed by enforced symmetries: 5 · S17(i) ∈ Cj

if j ≡ i(mod 4) + 1. To observe this pattern, consider S17 in which each
element uses a font based on its position (mod 4).

S17 = (3, 9,10, 13 , 5, 15,11, 16 , 14, 8,7, 4 , 12, 2,6, 1 )
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Figure 6 shows the first m = 85 elements of the certificate W (5, 3, 170)
found by enforcing symmetries. Notice that if two elements x and y have
the same font in S17 shown above, then 5 · x and 5 · y occur in the same set
of the certificate.

C1 = {14, 15, 23, 25, 28, 29, 39, 47, 51, 52, 54, 58, 60, 67, 70, 72, 78}
C2 = {2, 4, 10, 31, 32, 40, 42, 45, 46, 56, 64, 68, 69, 71, 75, 77, 84}
C3 = {6, 8, 11, 12, 22,30, 34,35, 37, 41, 43,50, 53,55, 61, 82, 83}
C4 = {5 , 13, 17, 18, 20 , 24, 26, 33, 36, 38, 44, 65 , 66, 74, 76, 79, 80}
C5 = {1, 3, 7, 9, 16, 19, 21, 27, 48, 49, 57, 59, 62, 63, 73, 81, 85}

Figure 6: The first m = 85 elements of a certificate W (5, 3, 170) which was
obtained by enforcing repetition and rotation symmetries. This certificate is
visualized in Figure 4 (right).

The found certificate W (6, 3, 223) differs in a similar way. Here we have
p = 37 and q = 3, so we would expect 3 · S37(i) ∈ Cj if j ≡ i(mod 6) + 1.
Again no certificates of this type exist. However, in the found certificate
3 · S37(i) ∈ Cj if j ≡ i(mod 4) + 1 can be observed. Recall S37 for which
elements that occur in the same position (mod 4) have the same font:

S37 = (2, 4,8, 16 , 32, 27,17, 34 , 31, 25,13, 26 , 15, 30,23, 9 , 18, 36,

35, 33 , 29, 21,5, 10 , 20, 3,6, 12 , 24, 11,22, 7 , 14, 28,19, 1 )

Notice that if two elements x and y have the same font in S37 shown above,
then 3 · x and 3 · y occur in the same set of the certificate.

C1 = {4, 6, 25, 28, 40, 42, 45, 54, 58, 60, 64, 67, 72, 73, 85, 87, 93, 96, 111}
C2 = {9, 12, 31, 33, 52, 55, 61, 63, 75, 76, 81, 84, 88, 90, 94, 103, 106, 108}
C3 = {15,18,24, 26, 38,39, 44, 47,51, 53,57,66,69, 71, 83, 86,105, 107}
C4 = {3 , 5, 8, 17, 21 , 23, 27 , 30 , 35, 36 , 48 , 50, 56, 59, 78 , 80, 99 , 102}
C5 = {1, 2, 7, 10, 14, 16, 20, 29, 32, 34, 37, 46, 49, 68, 70, 89, 92, 98, 100}
C6 = {11, 13, 19, 22, 41, 43, 62, 65, 74, 77, 79, 82, 91, 95, 97, 101, 104, 109, 110}

Figure 7: The first m = 111 elements of a certificate W (6, 3, 223) which was
obtained by enforcing repetition and reflection symmetries. This certificate
is visualized in Figure 5 (right).
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4.3. Pre-partitioning

We were able to improve the lower bounds of W (5, 3) and W (6, 3) by re-
stricting the search to certificates with observed symmetries. However, this
method appeared not suitable to improve lower bounds of W (k, 3) for k > 6.
This section introduces a technique —that emerged from analyzing improved
bounds— which works for larger values of k as well. A careful look at the
certificate W (5, 3, 85) reveals that the following relationship holds for all
elementst: i ∈ Cj ⇒ 81 · i (mod 85) ∈ Cj . A similar pattern can be
found in W (6, 3, 111). In this certificate, the following relationship holds
for all elements: i ∈ Cj ⇒ 16i (mod 111) ∈ Cj . Recall that p85 = 17
and p111 = 37. Moreover, the multiplication factor 81 (for W (5, 3, 85)) and
16 (for W (6, 3, 111)) are related to the primitive root: r485 = 34 = 81 and
r4111 = 24 = 16.

These observations are the motivation for the concept pre-partitioning.
A pre-partition of {1, . . . ,m} using parameter t, creates a partition, denoted
by PP (m, rt), that groups elements x and y if and only if there exists an i
such that y = x · ri·t(mod m). For example, with m = 44 (thus r = 3) and
t = 2, the elements 1 and 5 are grouped, because 5 = 1 · 34·2(mod 44). The
full pre-partition using m = 44 and t = 2 is shown below.

PP (44, 32) = {{1, 5, 9, 25, 37}, {2, 6, 10, 18, 30}, {3, 15, 23, 27, 31},
{4, 12, 16, 20, 36}, {7, 19, 35, 39, 43}, {8, 24, 28, 32, 40}, {11},
{13, 17, 21, 29, 41}, {14, 26, 34, 38, 42}, {22}, {33}, {44}}

Using this pre-partition, it is possible to construct the first cycle of an
extreme certificate of W (2, 5):

C1={{1,5,9,25,37},{7,19,35,39,43},{8,24,28,32,40},{13,17,21,29,41},{22},{33}}
C2={{2,6,10,18,30},{3,15,23,27,31},{4,12,16,20,36},{11},{14,26,34,38,42},{44}}.

Notice that the search space to find such a certificate is much smaller:
instead of requiring 44 Boolean variables, we only need 12 Boolean vari-
ables (i.e., one for each group of elements). In a similar way, certificates
W (5, 3, 170) and W (6, 3, 223) can be found using pre-partitions PP (85, 34)
(Figure 8) and PP (111, 24) (Figure 9), respectively.

4.4. Internal symmetry

A solution symmetry maps any solution (certificate) onto another solution.
The problem of whether there exists a certificate W (k, l, n) has two solution
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C1 = {{1, 16, 21, 81}, {3, 48, 63, 73}, {7, 27, 57, 62}, {9, 19, 49, 59}, {85}}
C2 = {{5, 20, 65, 80}, {13, 18, 33, 38}, {17}, {24, 44, 74, 79}, {26, 36, 66, 76}}
C3 = {{6, 11, 41, 61}, {8, 43, 53, 83}, {12, 22, 37, 82}, {30, 35, 50, 55}, {34}}
C4 = {{14, 29, 39, 54}, {15, 25, 60, 70}, {23, 28, 58, 78}, {47, 52, 67, 72}, {51}}
C5 = {{2, 32, 42, 77}, {4, 64, 69, 84}, {10, 40, 45, 75}, {31, 46, 56, 71}, {68}}

Figure 8: The first cycle of a certificate for W (5, 3) based on PP (85, 34).

C1 = {{1, 7, 10, 16, 34, 46, 49, 70, 100}, {2, 14, 20, 29, 32, 68, 89, 92, 98}, {37}}
C2 = {{3, 21, 27, 30, 36, 48, 78, 99, 102}, {5, 8, 17, 23, 35, 50, 56, 59, 80}}
C3 = {{4, 25, 28, 40, 58, 64, 67, 73, 85}, {6, 42, 45, 54, 60, 72, 87, 93, 96}, {111}}
C4 = {{9, 12, 33, 63, 75, 81, 84, 90, 108}, {31, 52, 55, 61, 76, 88, 94, 103, 106}}
C5 = {{11, 41, 62, 65, 77, 95, 101, 104, 110}, {13, 19, 22, 43, 79, 82, 91, 97, 109}, {74}}
C6 = {{15, 18, 24, 39, 51, 57, 66, 69, 105}, {26, 38, 44, 47, 53, 71, 83, 86, 107}}

Figure 9: The first cycle of a certificate for W (6, 3) based on PP (111, 24).

symmetries. First, for any certificate with no arithmetic progression length
l, it holds that any permutation of the color classes results in a certificate
which has also no arithmetic progression of length l. We refer to this so-
lution symmetry as σcolor which represents a possible permutation of the
color classes. Second, for any certificate W (k, l, n) we can construct another
certificate by replacing each element i by n+1− i. We refer to this solution
symmetry as σinvert because all elements are inverted within the domain
{1, . . . , n}.

In the case a problem contains solution symmetries it is good practice to
break them: add constraints that focus the search on a particular solution of
a symmetry group. These constraints, called symmetry breaking predicates,
reduce that search space and thereby reduce that cost to solve a problem
(especially if the problem has no solutions). An example of symmetry break-
ing predicates for σcolor in Fk,l,n are clauses the force the first element to be
in the first color class (x1,1), the second element to be in the first two color
classes (x2,1∨x2,2) till the k−1 elements to be in the first k−1 color classes
(xk−1,1 ∨ · · · ∨ xk−1,k−1). Although these clauses are useful, in practice the
reduction of the search space is too small to find larger lower bounds.

An alternative technique that exploits symmetries is the concept of in-
ternal symmetries [12]. An internal symmetry σinternal is a (non-trivial) map-
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18 20 24 26 33 36 38 44 65 66 74 76 79 80 5 13 17
22 30 34 35 37 41 43 50 53 55 61 82 83 6 8 11 12
23 25 28 29 39 47 51 52 54 58 60 67 70 72 78 14 15
31 32 40 42 45 46 56 64 68 69 71 75 77 84 2 4 10
19 21 27 48 49 57 59 62 63 73 81 85 1 3 7 9 16

σ+pm ⇑ ⇓ σcolor

1 3 7 9 16 19 21 27 48 49 57 59 62 63 73 81 85
5 13 17 18 20 24 26 33 36 38 44 65 66 74 76 79 80
6 8 11 12 22 30 34 35 37 41 43 50 53 55 61 82 83
14 15 23 25 28 29 39 47 51 52 54 58 60 67 70 72 78
2 4 10 31 32 40 42 45 46 56 64 68 69 71 75 77 84

σ×rm ⇓ ⇑ σcolor

3 9 21 27 48 57 63 81 59 62 1 7 16 19 49 73 85
15 39 51 54 60 72 78 14 23 29 47 25 28 52 58 67 70
18 24 33 36 66 5 17 20 26 38 44 65 74 80 13 76 79
42 45 69 75 84 2 32 56 68 71 77 4 10 31 40 46 64
6 12 30 8 11 35 41 50 53 83 22 34 37 43 55 61 82

Figure 10: Diagram showing that certificate W (5, 3, 170) in Figure 6 (m =
85) has internal symmetries σ+pm ◦ color and σ×r ◦ color. Applying σ+pm

(p85 =
17), the certificate in the middle is transformed to the top certificate. Sorting
the elements in the top certificate and permuting the rows (σcolor) maps it
back. A similar scheme is observed using σ×rm (r85 = 3).

ping of a solution (certificate) onto itself. Let an observed symmetry σobserved
be a mapping of a (specific) solution onto another solution. Internal sym-

metries can frequently be decomposed into an observed symmetry and a

solution symmetry: σinternal = σobserved ◦ σsolution. Figure 10 shows two ex-

amples of internal symmetries of the certificate improving the lower bound

of W (5, 3).

We experimented with three types of internal symmetries. The first

is a generalization of the rotation symmetry. Recall that there exists a

certificate W (5, 3, 170) containing the symmetry xi,s ↔ xi=pm,s(mod k)+1,

while there exists a certificate W (6, 3, 111) containing the symmetry xi,s ↔
xi=pm,s+1(mod k)+1 for i ∈ {1, . . . ,m − pm} and s ∈ {1, . . . , k}. We refer to

this internal symmetry as σ+pm ◦ color. The clauses that enforce this symme-

try are shown in Table 4. The clauses (y+pm,i,j ∨ y+pm,i,j′) enforce that for

each i at-most-one y+pm,i,j can be assigned to true. During the experiments
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Table 4: Additional constraints that force internal symmetry σ+pm ◦ color

Clauses Range
(xi,h∨ xj,h+pm(mod n) ∨ y+pm,i,j) i, j ∈ {1, . . . , l}, h ∈ {1, . . . , n}, h �≡ 0 (mod pm)

(y+pm,i,j ∨ y+pm,i,j′) i, j ∈ {1, . . . , l}, j′ ∈ {j + 1, . . . , l}
(y+pm,i,j ∨ y+pm,i′,j) i, j ∈ {1, . . . , l}, i′ ∈ {i+ 1, . . . , l}

Table 5: Additional constraints that force internal symmetry σ×r ◦ color
Clauses Range

(xi,h ∨ xj,h×rm(mod n) ∨ y×rm,i,j) i, j ∈ {1, . . . , l}, h ∈ {1, . . . , n}, h �≡ 0 (mod pm)
(y×rm,i,j ∨ y×rm,i,j′) i, j ∈ {1, . . . , l}, j′ ∈ {j + 1, . . . , l}
(y×rm,i,j ∨ y×rm,i′,j) i, j ∈ {1, . . . , l}, i′ ∈ {i+ 1, . . . , l}

Table 6: Additional constraints that force internal symmetry σinv ◦ color
Clauses Range

(xi,h ∨ xj,n−h ∨ yinv,i,j) i, j ∈ {1, . . . , l}, i ≤ j, h ∈ {1, . . . , n}, h �≡ 0 (mod pm)
(yinv,i,j ∨ yinv,i,j′) i, j ∈ {1, . . . , l}, j′ ∈ {j + 1, . . . , l}
(yinv,i,j ∨ yinv,i′,j) i, j ∈ {1, . . . , l}, i′ ∈ {i+ 1, . . . , l}

we noticed that his constraint was sometimes too strong. The constraint

can be weakened by enforcing that for each i at-most-two y+pm,i,j can be

assigned to true. In case the weakened version is used, we refer to it as

σ+pm ◦ color∗ .

The second internal symmetry is closely related to pre-partitioning. Pre-

partitioning forces elements to be in the same set based on the primitive

root rm. Internal σ×rm ◦ color generalizes this pattern by relating the elements

occurring in different sets based on rm. Table 5 shows the clauses expressing

this internal symmetry.

The third internal symmetry is a generalization of the reflection sym-

metry σ�
k,m. Recall that for most van der Waerden numbers there exists an

extreme or largest known certificate with the reflection symmetry. However,

σ�
k,m does not cover a slightly different pattern that can be observed in some

extreme certificates of W (3, 3, 26). These certificates contain the symmetry

xi,s ↔ xn+1−i,k+1−s for i ∈ {1, . . . , n} and s ∈ {1, . . . , k}. In this variant,

each color class reflects onto itself. The internal symmetry σinv ◦ color covers
both variants: each color class either reflects onto itself or onto another color

class. The clauses representing σinv ◦ color are shown in Table 6.

Notice that the number of additional clauses for each of these inter-

nal symmetries is O(k2n), hence much smaller than the number of original

clauses.
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5. Results

This section offers improved lower bounds of van der Waerden numbers
that were obtained using the pre-partitioning and internal symmetry tech-
niques discussed above. First, we describe the experimental setup. Second,
we present improved lower bounds of W (7, 3), W (8, 3), and W (9, 3) together
with visualizations of the new bounds. At the end, we present some results
for improved lower bounds of some other van der Waerden numbers.

5.1. Experimental setup

The experiments were performed on the Lonestar 5 cluster of the Texas
Advanced Computing Center (TACC). Each computing node has a Xeon E5-
2690 v3 with two 12 core chips. We ran 48 settings in parallel for eachW (k, l)
lower bound computation with a five minute timeout for each SAT call. The
SAT solver glucose 3.0 [3] was used during all experiments. We implemented
a tool that generates the SAT formula that encodes the existence of a lower
bound for a given W (k, l) and given enforced patterns. The tool is available
at https://github.com/marijnheule/vdWaerden as well as the certificates
discussed in this paper.

Over the last couple of years, we experimented using a large variety of
enforced patterns to improve lower bounds. The useful patterns were gen-
eralized into internal symmetries and pre-partitioning. In the following sub-
sections, we briefly describe how we improved the lower bounds for W (7, 3),
W (8, 3), and W (9, 3).

5.2. Tree Frog

Although W (7, 3) is the smallest van der Waerden number considered in
this section, improving its lower bound substantially was hard compared
to the other results. With existing methods we constructed a certificate
W (7, 3, 267), but many attempts to find a larger one failed. The rotation
symmetry which was helpful to improve the lower bounds of W (5, 3) and
W (6, 3), was not useful for W (7, 3). After many days of search, we found a
certificate W (7, 3, 342) which is shown in Figure 11 and visualized in Fig-
ure 12. We named the certificate Tree Frog due to its resemblance of the
visualization with the amphibian in both shape and color (blue-green body
and red feet).

Figure 11 also shows how to obtain the certificate using the presented
methods: use pre-partition PP (171, 26) and enforcing a reflection symmetry.
Later on, after developing the concept of internal symmetries, the same

https://github.com/marijnheule/vdWaerden
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C1 = {{2, 128, 155}, {3, 21, 147}, {6, 42, 123}, {15, 51, 105},
{45, 144, 153}, {50, 113, 122}, {68, 77, 140}, {74, 92, 119}, {76}}

C2 = {{8, 107, 170}, {9, 63, 99}, {12, 75, 84}, {26, 125, 134},
{29, 110, 146}, {30, 39, 102}, {33, 60, 78}, {47, 101, 137}, {133}}

C3 = {{4, 85, 139}, {11, 20, 83}, {13, 67, 148}, {14, 41, 59}, {19},
{44, 80, 161}, {55, 73, 100}, {56, 65, 164}, {109, 136, 154}, {171}}

C4 = {{5, 131, 149}, {22, 40, 166}, {28, 82, 118}, {36, 54, 81},
{53, 89, 143}, {57}, {90, 117, 135}, {114}}

C5 = {{0}, {7, 106, 115}, {10, 91, 127}, {17, 35, 62}, {23, 104, 158},
{32, 86, 167}, {71, 98, 116}, {88, 151, 160}, {112, 130, 157}, {152}}

C6 = {{1, 64, 163}, {25, 61, 142}, {34, 70, 124}, {37, 46, 145}, {38},
{69, 132, 141}, {72, 108, 162}, {87, 96, 159}, {93, 111, 138}}

C7 = {{16, 43, 169}, {18, 27, 126}, {24, 150, 168}, {31, 94, 103},
{48, 129, 165}, {49, 58, 121}, {52, 79, 97}, {66, 120, 156}, {95}}

Figure 11: The first cycle of a reflective certificate W (7, 3, 342) with elements
grouped based on PP (171, 26).

certificate was obtained by enforcing σr3 ◦ color with r = 2. Notice that the
certificate has no rotation symmetry in contrast to the other certificates.

5.3. Dying Tulip

Pre-partitioning was very effective to establish a decent lower bound for
W (8, 3). Using PP (255, 74), we found a certificate W (8, 3, 511) which is
shown in Figure 13. The visualization of this certificate, shown in Figure 14,
we named Dying Tulip because of the similarity of the image and the flower
that bends and opens the leaves while dying.

Notice that there is a large resemblance between the construction of the
largest found certificates for W (6, 3) and W (8, 3). The former is constructed
by 3-zipping the largest possible certificate for W (4, 3), while the latter can
be obtained by 3-zipping the largest known certificate for W (5, 3). After
zipping, both certificates can be extended with one additional element.

5.4. Spiky Rose

Improving the lower bound of W (9, 3) was relatively easy compared to the
other two improvements (W (7, 3) and W (8, 3)). By analyzing the improved
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Figure 12: Visualization of “Tree Frog” showing that W (7, 3) > 342.

bound ofW (6, 3), several patterns could be observed, which can be described
as internal symmetries σ+m, σ+p ◦ color, and σ×r2 ◦ color. We first created a
generator that searched for certificates with these patterns. That genera-
tor found a certificate W (9, 3, 763), but was unable to improve the bounds
for W (7, 3) and W (8, 3). The same certificate was later produced via SAT
using pre-partition PP (381, 76). Figure 15 shows that certificate and Fig-
ure 16 shows a visualization which we named “Spiky Rose”. Notice that
this certificate shows that W (9, 3) is substantially larger than 93 = 726. In
contrast, the improved bounds for W (7, 3) and W (8, 3) are equal to 73 and
83, respectively.

5.5. Overview

During our initial experiments to compute lower bounds for W (k, 3) with
k ≥ 5, we observed that all improved lower bounds had the σm+ internal
symmetry and could be computed using a pre-partition PP (m, rtm) for some
t ∈ {2, . . . , 25}. We decided to enforce both patterns during all runs. Addi-
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C1={{11,41,146,176},{17},{27,57,147,177},{30,120,135,225},{36,66,111,246},
{39,54,99,114},{89,149,239,254},{110,155,185,230},{158,173,218,233},{153}}

C2={{1,16,106,166},{8, 53, 83, 128},{28,58,163,193},{34},{44,74,164,194},
{47,137,152,242},{56,71,116,131},{127,172,202,247},{175,190,235,250},{170}}

C3={{4,64,154,169},{9,144,189,219},{12,192,207,252},{18,33,123,183},{51},
{25,70,100,145},{45,75,180,210},{61,91,181,211},{73,88,133,148},{187}}

C4={{14,29,209,224},{21,81,171,186},{26,161,206,236},{35,50,140,200},{68},
{42,87,117,162},{62,92,197,227},{78,108,198,228},{90,105,150,165},{204}}

C5={{31,46,226,241},{38,98,188,203},{43,178,223,253},{52,67,157,217},{85},
{59,104,134,179},{79,109,214,244},{95,125,215,245},{107,122,167,182},{221}}

C6={{3,48,63,243},{6,96,126,231},{7,112,142,232},{15,60,195,240},{102},
{55,115,205,220},{69,84,174,234},{76,121,151,196},{124,139,184,199},{238}}

C7={{2,32,77,212},{5,20,65,80},{23,113,143,248},{24,129,159,249},{119},
{24,129,159,249},{72,132,222,237},{93,138,168,213},{141,156,201,216},{255}}

C8={{10,40,130,160},{13,103,118,208},{19,49,94,229},{22,37,82,97},{136}}

Figure 13: The first cycle of W (8, 3, 511) which was obtained using
PP (255, 74).

Figure 14: Visualization of “Dying Tulip” showing that W (8, 3) > 511.
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tionally, we used internal symmetry σp+ ◦ color∗ or σm−◦ color. The algorithm
below shows the pseudo-code of our final experiments.

Algorithm 1 SearchLowerBound (k, l)

1: for LowerBound(k,l)
l−1 ≤ m ≤ LowerBound(k+1,l)

l−1 do
2: n := m(l − 1)
3: for t ∈ {2, . . . , 25} do
4: if solve (Fk,l,n ∪ σm+ ∪ PP (m, rtm) ∪ σp+ ◦ color∗) = satisfiable then
5: LowerBound (k, l) := n
6: end if
7: if solve (Fk,l,n ∪ σm+ ∪ PP (m, rtm) ∪ σm−◦ color) = satisfiable then
8: LowerBound (k, l) := n
9: end if
10: end for
11: end for

The results of those experiments are shown in Table 7 (pre-partition)
and Table 8 (internal symmetries). The bold numbers in Table 7 show the
improved lower bounds. Notice that for all lower bounds of W (k, l) that
have not been improved it holds that there exists largest known certificates
that can be obtained with a pre-partition PP (k, rkm). This property does
not hold for any of the improved lower bounds. This is probably the most
clear difference between the presented SAT approach and existing methods
such as power residue coloring [18] and zipping [10, 19]. The question arises
whether these methods can be generalized such that they can produce these
improved lower bounds.

6. Open problems

Using the presented methods, we were able to improve several lower bounds
of van der Waerden numbers. These methods can also be used to produce
extreme certificates of known van der Waerden numbers. This section offers
some open problems that are inspired by the presented results.

6.1. Avoiding patterns yields patterns

One of the main open questions is whether there exists extreme certificates
with internal symmetries for all van der Waerden numbers. In other words,
avoiding the pattern of arithmetic progressions yields other patterns which
can be expressed using internal symmetries. For all known van der Waerden
numbers there exists an extreme certificate with an internal symmetry. That
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C1 = {{0}, {11, 17, 41, 44, 68, 74, 98, 149, 161, 164, 176, 209, 215, 263,
272, 275, 290, 296, 323, 326, 338}, {13, 31, 52, 70, 79, 103, 115, 121,
124, 142, 157, 187, 208, 226, 247, 280, 289, 316, 325, 358, 367}}

C2 = {{10, 40, 154, 160, 178, 181, 190, 193, 229, 235, 238, 250, 253, 259,
274, 331, 334, 343, 349, 373, 379}, {87, 117, 129, 135, 159, 165, 174,
177, 234, 249, 255, 258, 270, 273, 279, 315, 318, 327, 330, 348, 354}}

C3 = {{3, 6, 12, 24, 48, 57, 75, 96, 114, 141, 150, 183, 192, 219, 228, 261,
282, 300, 321, 351, 366}, {29, 53, 59, 83, 86, 110, 116, 170, 182,
185, 212, 218, 233, 236, 245, 293, 299, 332, 344, 347, 359}, {127}}

C4 = {{9, 18, 21, 36, 42, 69, 72, 84, 138, 144, 168, 171, 195, 201, 225, 276,
288, 291, 303, 336, 342}, {26, 35, 62, 71, 104, 113, 140, 158, 179,
197, 206, 230, 242, 248, 251, 269, 284, 314, 335, 353, 374}}

C5 = {{1, 4, 16, 19, 25, 61, 64, 73, 76, 94, 100, 214, 244, 256, 262, 286,
292, 301, 304, 361, 376}, {5, 20, 77, 80, 89, 95, 119, 125, 137, 167,
281, 287, 305, 308, 317, 320, 356, 362, 365, 377, 380}}

C6 = {{7, 28, 46, 67, 97, 112, 130, 133, 139, 151, 175, 184, 202, 223, 241,
268, 277, 310, 319, 346, 355}, {39, 45, 78, 90, 93, 105, 156, 180, 186,
210, 213, 237, 243, 297, 309, 312, 339, 345, 360, 363, 372}, {254}}

C7 = {{15, 30, 60, 81, 99, 120, 153, 162, 189, 198, 231, 240, 267, 285, 306,
324, 333, 357, 369, 375, 378}, {22, 34, 37, 49, 82, 88, 136, 145, 148,
163, 169, 196, 199, 211, 265, 271, 295, 298, 322, 328, 352}}

C8 = {{2, 8, 32, 38, 47, 50, 107, 122, 128, 131, 143, 146, 152, 188, 191,
200, 203, 221, 227, 341, 371}, {27, 33, 51, 54, 63, 66, 102, 108, 111,
123, 126, 132, 147, 204, 207, 216, 222, 246, 252, 264, 294}}

C9 = {{14, 23, 56, 65, 92, 101, 134, 155, 173, 194, 224, 239, 257, 260, 266,
278, 302, 311, 329, 350, 368}, {43, 55, 58, 85, 91, 106, 109, 118, 166,
172, 205, 217, 220, 232, 283, 307, 313, 337, 340, 364, 370}, {381}}

Figure 15: The first cycle of W (9, 3, 783) which was obtained using
PP (381, 76).

also holds for the largest certificates of unknown van der Waerden numbers.

Apart from W (3, 3), there exists largest known certificates with at least two

internal symmetries. For W (3, 3) there exist only extreme certificates with

a single internal symmetry. We conjecture that apart from the case W (3, 3)

there exists extreme certificates with at least two internal symmetries.
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Figure 16: Visualization of “Spiky Rose” showing that W (9, 3) > 763.

Conjecture 1. For all k ≥ 2, l ≥ 2 —expect for k = 3 and l = 3— there
exists an extreme certificate of W (k, l) which contains the internal symmetry
σ+m.

It seems plausible that all W (k, l) with l > 3 have internal symmetry
σ+m as it allows to duplicate a certificate of length m by l − 1 times.

Conjecture 2. For all k ≥ 2, l ≥ 2 —expect for k = 3 and l ∈ {2, 3}— there
exists an extreme certificate of W (k, l) which contains the internal symmetry
σ+m and σ×ri ◦ color∗ for a i ∈ {1, . . . , k}.

Other internal symmetries are common, but probably not general. For
example, during our experiments, we found some extreme and largest known
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Table 7: Known van der Waerden numbers and the best known lower bounds.
Lower bounds presented in bold are improvements first published in this pa-
per. The number between brackets shows the factor used for pre-partitioning.
We denote with × that the largest known certificate is not based on pre-
partitioning

l\k 2 3 4 5 6
3 9 (×) 27 (×) 76 (24) > 170 (34) > 223 (24)
4 35 (22) 293 (53) > 1048 (24) > 2254 (35) > 9778 (36)
5 178 (32) > 2173 (106) > 17705 (34) > 98741 (34) > 98748 (34)
6 1132 (32) > 11191 (56) > 91331 (74) > 540025 (74) > 816981 (114)
7 > 3703 (32) > 43855 (63) > 420216 (114)
8 > 11495 (32) > 238400 (53)
9 > 41265 (112)

l\k 7 8 9 10 11 12
3 > 342 (26) > 511 (74) > 763 (76) > 889 (56) > 1183 (214) > 2329 (58)

certificates of W (k, 3) with internal symmetry σ+p ◦ color — except for k ∈
{3, 7, 10}.

6.2. Lower bounds for triples in arithmetic progression

Several patterns can be observed in certificates. Moreover, there are patterns
in the size of the largest known certificates as well. In particular, the size of
the largest known certificates of W (k, 3) are close to k3.

Conjecture 3. For all k ≥ 2, it holds that W (k, 3) ≥ k3

The improved lower bounds presented in this paper support the above

lower bound claim for k ≤ 9. Until now this was only known for k ≤ 5. Yet
for k > 9 it remains an open problem.

There is a curious coincidence regarding k3 lower bounds. For W (k, 3)
with k ∈ {3, 7, 8}, the best known/possible lower bound is exactly k3. Fur-

thermore, all certificates of these lower bounds have more in common: the
size of the color classes is not equal. On the other hand, for W (k, 3) with a
lower bound W (k, 3) > k3 (i.e., k ∈ {2, 4, 5, 6, 9, 12}), all color classes of the
largest known/possible certificates have exactly the same size3.

Conjecture 4. For all k ≥ 2, a certificate W (k, 3, n) with n ≥ k3 − 1 can
be constructed in polynomial time.

3If the elements i · pn (mod n) with i ∈ N are neglected.
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Table 8: Internal symmetries in extreme and largest known certificates

k l m n p q r internal symmetry
2 3 4 8 2 2 1 σ+m, σ+p ◦ color, σm−◦ color

3 3 13 26 13 1 2 σn−
4 3 37 75 37 1 2 σ+m, σ×r ◦ color, σm−◦ color

5 3 85 170 17 5 3 σ+m, σ+p ◦ color, σ×r ◦ color

6 3 111 223 37 3 2 σ+m, σ+p ◦ color, σ×r2 ◦ color, σm−◦ color

7 3 171 342 19 9 2 σ+m, σ×r3 ◦ color, σm−◦ color

8 3 255 511 17 15 7 σ+m, σ+p ◦ color∗ , σ×r ◦ color∗

9 3 381 763 127 3 7 σ+m, σ+p ◦ color, σ×r2 ◦ color, σm−◦ color

10 3 444 889 37 12 5 σ+m, σ×r3 ◦ color

11 3 591 1183 197 3 2 σ+m, σ+p ◦ color∗ , σ×r ◦ color∗

12 3 1164 2329 97 12 5 σ+m, σ+p ◦ color, σ×r2 ◦ color

Even in the case that Conjecture 3 holds, a construction method will be
hard to develop. For instance, recall the improved lower bound for W (7, 3).
Although the found certificate shows several symmetries (such as the pre-
partition PP (171, 26) and the reflection symmetry in Figure 12), the current
generalized construction methods are not able to generate a certificate with
the size of the new bound. This is even the case for W (3, 3). Therefore, the
current challenge regarding this conjecture is to develop an elegant method
that generates all existing largest known lower bounds.

6.3. Lower bounds vs upper bounds

Although this paper discussed several patterns occurring in the largest known
certificates for van der Waerden numbers, it appears that there is also a rela-
tion between the sizes of these largest known certificates. Notice that largest
known lower bounds for W (k, l) are close to k2l−3. Table 9 shows a compar-
ison between the numbers. Especially for the lower numbers, k2l−3 seems
to be an accurate approximation of W (k, l). For the largest numbers, the
approximation appears to be larger. That can be explained by the fact that
the lower bound techniques that are used for these numbers are not as ad-
vanced as those used for the lower numbers. Therefore, it is expected that
the lower bounds for the larger numbers can be improved.

As mentioned in the introduction, there exists a vast body of work on
upper bounds of van der Waerden numbers. The best known upper bounds
of W (k, l) are by Gowers [9]:

W (k, l) ≤ 22
k22

l+9
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Table 9: A comparison between the van der Waerden numbers W (k, l) —or
their largest known lower bounds— and the approximation function k2l−3

l\k 2 3 4 5 6

2
3
2

4
3

5
4

6
5

7
6

3
9
8

27
27

75
64

> 170
125

> 233
216

4
35
32

293
243

> 1048
1024

> 2254
3125

> 9778
7776

5
178
128

> 2173
2187

> 17705
16384

> 98740
78125

6
1132
512

> 11191
19683

> 91331
262144

> 540025
1953125

7
> 3703

2048
> 48811
177147

> 420217
4194304

8
> 11495

8192
> 238400
1594323

9
> 41265

32768

Our experiments suggest that there is quite some room for improvement. Our
final conjecture is that all van der Waerden numbers W (k, l) are bounded
from above by k2l.

Conjecture 5. W (k, l) < k2l for all k ≥ 2 and l ≥ 2.

7. Conclusions

We analyzed extreme and largest known certificates of van der Waerden
numbers and observed several symmetries. Especially the rotation symme-
try was useful to improve several lower bounds by enforcing this symmetry to
the SAT encoding of van der Waerden certificates. Afterwards we analyzed
why existing methods were not able to find these lower bounds. Although
many of the patterns of existing methods were observable in the new cer-
tificates, they were slightly more complex. We presented two new patterns,
pre-partitions and internal symmetries, that capture the more complex cer-
tificates. Enforcing pre-partitions and/or internal symmetries allowed us to
improve more lower bounds of van der Waerden numbers — in particular
bounds of W (k, 3) with k ≥ 7.

Apart from patterns in certificates, we observed patterns in the lower
bounds of van der Waerden numbers. The lower bounds of van der Waerden
numbers W (k, 3) are very close to k3 in the experimented domain of k ∈
{2, . . . , 12}: all lower bounds are between 0.85 · k3 and 1.7 · k3. Only the
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Figure 17: Visualization of a certificate showing that W (5, 5) > 98741.

Figure 18: Visualization of a certificate showing that W (5, 6) > 540026.
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lower bounds of W (10, 3) and W (11, 3) are somewhat below k3. We expect
that this is due to the potential limited success of the current methods and
conjecture that W (k, 3) ≥ k3. Similar patterns can be observed for W (k, l)
in general and we conjecture that W (k, l) < k2l.
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