
From Idempotent Generalized Boolean

Assignments to Multi-bit Search

Marijn Heule? and Hans van Maaren

Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Sciences

Delft University of Technology
marijn@heule.nl, h.vanmaaren@tudelft.nl

Abstract. This paper shows that idempotents in finite rings of inte-
gers can act as Generalized Boolean Assignments (GBA’s) by providing
a completeness theorem. We introduce the notion of a generic General-
ized Boolean Assignment. The mere propagation of such an assignment
reveals feasibility (existence of a solution) of a formula in propositional
logic. Then, we demystify this general concept by formulating the process
on the bit-level: It turns out that propagation of a GBA only simulates
bitwise (non-communicating) parallel computing. We capitalize on this
by modifying the state-of-the-art local search Sat solver UnitWalk ac-
cordingly. This modification involves a more complicated parallelism.

1 Introduction

Propositional Logic and Elementary Arithmetic are - in some sense - similar sys-
tems. We provide additional evidence of this by introducing Generalized Boolean
Models (GBM’s) as certain sets of idempotents in finite residue class rings of in-
tegers, and a completeness theorem. We also offer a construction of so-called
generic Generalized Boolean Assignments (generic GBA’s). We show that for-
mula feasibility can be checked by evaluating its “truth” value under one single
generic assignment. These modeling possibilities feature an attractive mathe-
matical simplicity. However, analysis of the proof of the completeness theorem
and the process of constructing generic GBA’s shows that the above modeling
possibility only simulates (non-communicating) parallel computing.

Current Satisfiability (Sat) solvers do not use the opportunity of a k-bit pro-
cessor to simulate parallel 1-bit (Boolean) search on k 1-bit processors. Conven-
tional parallel Sat solving [3,4,9] differs from the proposed method in section 3:
The former realizes performance gain by dividing the workload over multiple
processors and some minor changes to the solving algorithm, while the latter
uses a single processor and requires significant modifications to the algorithm.

Sat solvers that use multi-bit heuristics frequently (counters for instance),
are not very suitable for modification in this respect. However, Sat solvers whose
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computational “center of gravity” consists of propagating truth values (or other
1-bit operations) may profit from this opportunity. One of such is the state-
of-the-art local search Sat solver UnitWalk [6]. We show that UnitWalk can be
upgraded using a single k-bit processor. This results in a considerable speed-up.

2 Idempotents and

Generalized Boolean Assignments

The concepts in this section could have been cast into the format of Boolean
Algebras [5]. As such, we do not claim that the ideas and results are completely
new. However, using a little bit of elementary number theory it is possible to
directly relate the concepts needed to familiar arithmetical operations. We pre-
ferred to do the latter. On the other hand, to understand the essentials of the
next sections, it does not hurt the reader much to continue reading from Back
to Booleans at the end of this section.

An idempotent x in the ring of integers modulo m is an element satisfying
x2 ≡ x (modulo m). For given m, a Generalized Boolean Model (GBM) I is a
set of idempotents modulo m obeying the three closure rules:

– 0, 1 ∈ I;
– If x ∈ I then 1 − x ∈ I. Notice that (1 − x)2 ≡ 1 − x (modulo m).
– If x, y ∈ I then xy ∈ I. Notice that (xy)2 ≡ xy (modulo m).

Given a formula F in Propositional Logic a Generalized Boolean Assignment
(GBA) is a mapping from its set of variables to a GBM I. Evaluating the
“truth” value of F under a GBA simply follows the rule of translating ¬x by
the arithmetic operation 1 - value(x) and conjunction x ∧ y by the operation
value(x)·value(y) (both modulo m), recursively.

Example 1. Consider Z6, the ring of integers modulo 6. Idempotents modulo
6 are 0, 1, 3 and 4. Let F be the formula

¬(x → (y ∨ (x ∧ z))) (1)

which is equivalent to

x ∧ (¬y ∧ ¬(x ∧ z)) (2)

and assigning x := 3, y := 4 and z := 1, we calculate

3 × ((1 − 4) × (1 − (3 × 1))) ≡ 0 (modulo 6) (3)

By assigning x := 3, y := 4 and z := 0 however, F evaluates to the value 3, as
the reader may verify. Following from the above, each evaluation of a formula
under a GBA results in an idempotent in I, due to the closure rules posed on I.
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Example 2. Again consider Z6 and the formula x ∧ y. The reader may check
that there are 16 possible GBA’s of which 7 evaluate to a non-zero idempotent.
Drawing GBA’s randomly, the probability of hitting a non-zero idempotent out-
come is 7

16
, while in the standard Boolean situation this probability is 1

4
.

The above example shows that random sampling GBA’s (or, equivalently,
multi-bit Boolean patterns) may hit solutions earlier, in about the same time.
As such this is done in [7], where Boolean “patterns” (rather than Booleans) are
propagated through a circuit in the order to increase the probability of hitting
a solution - indicating an error in their application.

Although this random sampling can be viewed as a rather straight forward
parallelism, we claim that to perform efficient multi-bit propagation for Sat

solving is not straight forward at all: In [7] at each step, variables are either
unassigned or assigned a full Boolean pattern, while in the proposed propaga-
tion variables can also be assigned a partial Boolean assignment.

Theorem 1 (Completeness Theorem): If F is a formula and I a Generalized
Boolean Model, F is Satisfiable if and only if there exists a GBA under which
F evaluates to a non-zero idempotent.

Proof: If F is Satisfiable, then a {0, 1}-assignment exists under which F evalu-
ates to 1. This evaluation remains valid in each I. If F evaluates to a non-zero
idempotent w modulo m, there must be a prime factor of m, say p, such that
w is non-zero modulo p. Modulo a prime however, the only existing idempotents
are 0 and 1, since x2 ≡ x (modulo p) reduces to x ≡ 0 or x ≡ 1 (modulo p).
Under these circumstances there must be a prime number p which reduces, when
calculating modulo p, the GBA to a simple Boolean assignment that satisfies F .

Construction of generic GBM’s. GBM’s are constructed as follows: Let m

be the product of the first k primes. Let A be the product of a subset of these
primes and B the product of the complementary subset. Since A and B are
relatively prime, integers r and s exists such that

rA + sB = 1 (4)

Set x ≡ rA (modulo m). Then 1 − x ≡ sB (modulo m) and thus x(1 − x) ≡ 0
(modulo m). The above observation shows that precisely 2k different idempotents
modulo m exist.

Generic GBA’s. Let F be a formula on n variables and m be the product of
the first 2n primes. As we have seen above, there are 22n

different idempotents
modulo m. This is the same amount as the number of logically independent
Boolean functions on n variables. In fact, it is not hard to demonstrate that in
the above situation a GBA to the variables exists such that each formula on
n variables evaluates to its associated idempotent modulo m, each idempotent
representing an equivalence class of Boolean functions. For example:
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Example 3. Consider the Boolean functions with n = 2, m = 2 · 3 · 5 · 7 = 210.
The full GBM is {0, 1, 15, 21, 36, 70, 85, 91, 105, 106, 120, 126, 141, 175, 190, 196}.
A generic GBA is for instance x = 15, y = 21. In this case x∧¬y evaluates to 120,
¬(¬x ∧ y) to 85, x ⇔ y to 175 and ¬(x ⇔ y) to 36. In this case, every formula
on 2 variables can be checked on feasibility by propagating the values x = 15
and y = 21, and only the outcome 0 (modulo 210) reflects a contradiction. That
(15, 21) is generic follows from the fact that (15, 21) is (1, 1) modulo 2, (0, 0)
modulo 3, (0, 1) modulo 5 and (1, 0) modulo 7. Notice that - in some sense - we
are just doing ordinary Sat in the exponents of the prime factors involved.

Working with GBA’s could be beneficial in situations when the arithmetic
operations involved can be performed in a small number of clock cycles. More
specifically: If we have a 32-bit processor available, formulas with up to 5 vari-
ables can be resolved in one propagation run using generic GBA’s in about the
same time an ordinary Boolean assignment is propagated.

Back to Booleans. Despite the arithmetic elegance of generic GBM’s in their
capability of representing Boolean functions, it is clear that on the level of im-
plementation integers are not a very welcome ingredient. In fact, the processes
explained above are even easier to understand if we return to the Boolean level.
To see this, consider the case of functions on 3 variables and the following table:

x := 0 1 0 0 1 1 0 1

y := 0 0 1 0 1 0 1 1

z := 0 0 0 1 0 1 1 1

Consider the rows as 8 parallel Boolean assignments to the individual vari-
ables (using 8 1-bit processors). We refer to such an assignment as a multi-bit
assignment (MBA). Notice that the 8 different columns represent the 8 different
Boolean assignments in total. Therefore, the above MBA is a generic MBA -
analogue to generic GBA’s. Having an 8-bit processor at our disposal the eval-
uation of the and-gate x ∧ y results in 01001101 ∧ 00101011 = 00001001, an
operation performed in one clock cycle. Bits 5 and 8 certify feasibility. In general,
any formula on n variables - based on the primitive operations AND (∧) and NOT

(¬) - can be resolved, using a generic MBA of 2n bits (and a k-bit processor with
2n ≤ k), in as many clock cycles as there are logical operators to perform. The
formula is Satisfiable if and only if in the end there is at least one bit equal to
1. In terms of generic GBM’s the above 8-bit example would involve calculating
modulo 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 = 9699690.
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3 Multi-Bit Unit Propagation

This section describes the use of MBA’s to parallelize a Sat solving algorithm.
However, this differs from conventional parallelism: Modifications of MBA’s can
be processed in parallel, while, for instance, operations on counters cannot. In
general, only 1-bit operations can be parallelized. Therefore, algorithms that po-
tentially benefit from MBA’s should have their computational “center of gravity”
on assignment modifications.

A widely used procedure for assignment modifications is unit propagation:
Given a formula F and an assignment ϕ. If ϕ applied to F (denoted by ϕ ◦ F)
contains unit clauses (clauses of size 1) then the remaining literal in each unit
clause is forced to be true - thereby expanding ϕ. This procedure continues until
there are no unit clauses in ϕ ◦ F . This section describes a Sat solving algorithm
that uses unit propagation at its computational “center of gravity”.

The UnitWalk algorithm. For a possible application we focused on local
search (incomplete) Sat solvers. In contrast to complete Sat solvers, they are
less complicated and work with full assignments. A generic structure of local
search Sat solvers is as follows: An assignment ϕ is generated, earmarking a
random Boolean value to all variables. By flipping the truth values of variables,
ϕ can be modified to satisfy as many clauses as possible of the formula at hand.
If after a multitude of flips ϕ still does not satisfy the formula, a new random
assignment is generated.

Most local search Sat solvers use counting heuristics to flip the truth value of
the variables in a turn-based manner. These heuristics appear hard to parallelize
on a single processor. However, the UnitWalk algorithm [6] is an exception.
Instead of counting heuristics, it uses unit propagation to flip variables. The
UnitWalk Sat solver - based on this algorithm - is the fastest local search Sat

solver on many structured instances and won the Sat 2003 competition in the
category All random SAT [2].

The UnitWalk algorithm (see algorithm 1) flips variables in so-called pe-
riods: Each period starts with an initial assignment (referred to as master as-
signment ϕmaster), an empty assignment ϕactive and an ordering of the variables
π. First, unit propagation is executed on the empty assignment. Second, the
first unassigned variable in π is assigned to its value in ϕmaster, followed by unit
propagation of this value. A period ends when all variables are assigned a value
in ϕactive. Notice that conflicts - clauses with all literals assigned to false - are
more or less neglected, depending on the implementation. A new period starts
with the resulting ϕactive as initial ϕmaster and a new ordering of the variables.



6

Algorithm 1 Flip UnitWalk( ϕmaster )

1: for i in 1 to MAX PERIODS do

2: if ϕmaster satisfies F then

3: break

4: end if

5: π := random ordering of the variables
6: ϕactive := ∅
7: for j in 1 to n do

8: while unit clause u ∈ ϕactive ◦ F do

9: ϕactive[ VAR(u) ] := TRUTH(u)
10: end while

11: if π(j) not assigned in ϕactive then

12: ϕactive[ π(j) ] := ϕmaster[ π(j) ]
13: end if

14: end for

15: if ϕactive = ϕmaster then

16: random flip variable in ϕactive

17: end if

18: ϕmaster := ϕactive

19: end for

20: return ϕmaster

Example 4. Consider the example formula and initial settings below. Unas-
signed values in ϕactive are denoted by *.

Fexample := (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

(¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

ϕmaster := {x1 = 0, x2 = 1, x3 = 1, x4 = 0}

ϕactive := {x1 = ∗, x2 = ∗, x3 = ∗, x4 = ∗}

π := (x2, x1, x4, x3)

Since the formula contains no unit clauses, the algorithm starts by selecting
the first variable from the ordering - x2. We assign this variable to true (as in
ϕmaster) and perform unit propagation. Due to ¬x2∨¬x3 this results in one unit
clause ¬x3. Propagation of this unit clause - assigning x3 to false - results in
unit clauses x4, and ¬x4. Because two complementary unit clauses have been
generated we found a conflict. However, the UnitWalk algorithm does not
resolve this conflict.

Instead, it continues by selecting1 one of them, say ¬x4, and assign x4 to
false. After this assignment ϕactive ◦F does not contain unit clauses anymore.
We conclude this period by assigning x1 to its value in ϕmaster. This results in
the full assignment ϕactive = {x1 = 0, x2 = 1, x3 = 0, x4 = 0}. Notice that the
new assignment does not satisfy clause ¬x2 ∨ x3 ∨ x4.

1 In [6] the authors suggest to select the truth value used in ϕmaster. However, this is
not implemented in the latest version of the solver and we consider it as a choice.
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Now, consider the same example, this time using a 4-bit assignment to all the
variables. The reader must keep in mind that by parallelizing the former, we
try to satisfy clauses in each bit position! Hence, variables may be flipped in
multiple bits, and “conflict” means a conflict in some bit position. For the latter
we shall use the term bit-conflict. Further, we keep using the term “truth value”
for its multi-valued analogue. Notice that in the initial settings below, the first
bit in ϕmaster equals the 1-bit example and that the ordering is the same.

ϕmaster := {x1 = 0110, x2 = 1100, x3 = 1010, x4 = 0110}

ϕactive := {x1 = ∗∗∗∗, x2 = ∗∗∗∗, x3 = ∗∗∗∗, x4 = ∗∗∗∗}

π := (x2, x1, x4, x3)

Again, we start by assigning x2 to its value in ϕmaster followed by unit propaga-
tion. This will result in two unit clauses :

(x1 = ∗∗∗∗ ∨ x2 = 1100) ⇒ x1 := ∗∗11

(¬x2 = 0011 ∨ ¬x3 = ∗∗∗∗) ⇒ x3 := 00∗∗

One of them is selected, say x1 and assigned to its value, resulting in:

(¬x1 = ∗∗00 ∨ x2 = 1100 ∨ x3 = 00∗∗) ⇒ x3 := 0011

Now we assign x3 which triggers three clauses:

(¬x2 = 0011 ∨ x3 = 0011 ∨ ¬x4 = ∗∗∗∗) ⇒ x4 := 00∗∗

(¬x2 = 0011∨ x3 = 0011∨ x4 = 00∗∗) ⇒ bit−conflict

(¬x3 = 1100 ∨ ¬x4 = 11∗∗) ⇒ x4 := 0000

When unit propagation stops, only the first two bits of x1 are still undefined.
These bits are set to their value in ϕmaster assigning all variables. The period
ends with ϕactive = {x1 = 0111, x2 = 1100, x3 = 0011, x4 = 0000} - which
satisfies the formula in the third and fourth bit.

The reader may check that: (1) The order in which unit clauses are propa-
gated, as well as the order in which clauses are evaluated is not fixed. The order
influences ϕactive in case of conflicts. For example, evaluating ¬x2∨x3∨x4 before
¬x2 ∨ x3 ∨ ¬x4 results in a different final ϕactive. (2) In the 4-bit example the
third and fourth bit are the same for all variables. This effect could reduce the
parallelism, because the algorithm as such does not intervene here and in fact
maintains this collapse. This effect is not restricted to formulas with few vari-
ables. During our experiments we frequently detected a convergence to identical
assignments over a considerable number of bit positions (sometimes even over all
32 positions, when using a 32-bit processor). We implemented a fast detection
algorithm which replaces a duplicate with a new random assignment. Due to
page limitations we cannot go into detail at this stage. Notice however that by
doing so the first “communication” aspect is introduced.
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4 Implementation UnitMarch

4.1 Unit propagation

The UnitPropagation procedure within the UnitWalk algorithm is not con-
fluent: Different implementations yield different results. In short, two design
decisions have to be made:

– In case of multiple unit clauses: which one to select for propagation;

– In case of a conflict: whether or how to act.

The most recent UnitWalk (version 1.003) implements the following UnitProp-

agation procedure: Unit clauses are stored in a multi-set (a set that can contain
duplicate elements) data-structure. For each iteration a random element from
the multi-set is selected. If the complement of the selected unit clause also occurs
in the multi-set - meaning a conflict - all occurrences of x and ¬x are removed
from the multi-set. The algorithm continues with the next random element - see
algorithm 2. Notice that this is a defensive flip strategy: Because of the removal,
the truth value for x in ϕactive tends to be the one copied from ϕmaster.

Algorithm 2 UnitPropagation MultiSet ( )

1: while UnitMultiSet is not empty do

2: x := random element from UnitMultiSet

3: remove all occurrences of x in UnitMultiSet

4: if unit clause ¬x also occurs in UnitMultiSet then

5: remove all occurrences of ¬x in UnitMultiSet

6: else

7: ϕactive[ VAR(x) ] := TRUTH(x)
8: for all clauses Ci in which ¬x occurs do

9: if Ci becomes a unit clause then

10: add Ci to UnitMultiSet

11: end if

12: end for

13: end if

14: end while

In our implementation we took a slightly different approach, since the above
algorithm was hard to implement efficiently in a multi-bit version. Instead of the
multi-set we used a queue (first in, first out) data-structure - see algorithm 3:
Unit clauses are selected in the order they are added to the queue. In general,
“early” generated unit clauses will have more bits assigned (at time of propa-
gation) compared to “recent” unit clauses. Therefore the queue seems a useful
data-structure since it always propagates the “earliest” unit clause left.

In addition, conflicts are handled differently: The queue is not allowed to
contain complementary or duplicate unit clauses. The truth value of the first
generated unit clause will be used during the further propagation. Notice that
this flip strategy is more offensive: Given a bit-conflict, the truth value of the
variable is flipped in approximately half of the cases. As we will see in the results
(section 5), both implementations yield comparable results.
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Algorithm 3 UnitPropagation Queue ( )

1: while UnitQueue is not empty do

2: x := removed front element from UnitQueue

3: for all clauses Ci in which ¬x occurs do

4: if Ci becomes a unit clause then

5: y := remaining literal in Ci

6: ϕactive[ VAR(y) ] := TRUTH(y)
7: if y not in UnitQueue then append y to UnitQueue

8: end if

9: end for

10: end while

4.2 Detection of Unit Clauses

The UnitWalk algorithm spends most computational time in detecting which
clauses became unit clauses given an expansion of ϕactive. If a variable is assigned
a Boolean value, all clauses in which it occurs with complementary polarity are
potential unit clauses. In a 1-bit implementation, only one unit clause could be
detected in such a potential clause, while in a multi-bit implementation multiple
unit clauses could be detected:

Example 6. Given ϕactive = {x1 = 010∗, x2 = 10∗1, x3 = 101∗, x4 = ∗001} with
x3 as unit clause to be propagated and potential clause x1 ∨ ¬x2 ∨ ¬x3 ∨ x4.

(x1 = 010∗∨¬x2 = 01∗0∨¬x3 = 010∗∨x4 = ∗001) ⇒ x2 := 1001, x4 := 1001

In general, all literals besides the propagation literal are potential unit clauses.

Encoding. Since each bit in ϕactive consists of three possible values (*,0,1),
we used two bits to encode each value: 00 = *, 01 = 0, 10 = 1, and 11 = bit-
conflict2. We used an array ϕ+

− in which both xi and ¬xi have a separate
assignment: The first bit of each value is stored in xi while the second bit is
stored in ¬xi. For example:

ϕactive[x] = 101∗∗0∗1 is stored as

{

ϕ+
−[ x] = 10100001

ϕ+
−[¬x] = 01000100

Using ϕ+
− we can compute the unit clauses as below. Conflicts are ignored by

only allowing unassigned bits - computed by NOT(ϕ+
−[xi] OR ϕ+

−[¬xi]) - to be
assigned. Back to the example:

x1 := ϕ+
−[x3] AND NOT(ϕ+

−[x1] OR ϕ+
−[¬x1]) AND ϕ+

−[x2] AND ϕ+
−[¬x4]

¬x2 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND NOT(ϕ+
−[x2] OR ϕ+

−[¬x2]) AND ϕ+
−[¬x4]

x4 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND ϕ+
−[x2] AND NOT(ϕ+

−[x4] OR ϕ+
−[¬x4])

2 The bit-conflict value is not possible within our implementation
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The above shows a potential disadvantage of the multi-bit propagation: To check
whether a clause of size k becomes a unit clause and to determine the remain-
ing literal is not trivially computed in O(k) steps - as is the case with 1-bit
propagation. However, a O(k) implementation can be realized by splitting the
computation:

– Compute the unit mask - a multi-bit Boolean which is true on all positions
with exactly one not falsified literal (denoted by MNF=1);

– Use the unit mask to quickly determine the newly created unit clauses: All
literals that are unassigned at a true position in the unit mask became unit.

To compute MNF=1, we use two auxiliary masks, MNF≥ 1 and MNF≥ 2. The
masks denote multi-bit Booleans which are true on all positions with at least
one (and two, respectively) falsified literals and false elsewhere. Notice that
MNF=1 := MNF≥ 1 XOR MNF≥ 2. For each literal li in a clause we update MNF≥ 1

and MNF≥ 2 by the following two rules:

MNF≥ 2 := ( MNF≥ 2 OR NOT(ϕ+
−[ ¬li ]) ) AND MNF≥ 1

MNF≥ 1 := MNF≥ 1 OR NOT(ϕ+
−[ ¬li ])

By negating the operations above, the computation becomes more efficient. Al-
gorithm 4 shows the proposed implementation.

Algorithm 4 ComputeUnitMask ( clause Cy )

1: MI := ALL BITS TRUE, MII := ALL BITS TRUE

2: for i in 1 to |Cy| do

3: MII := (MII AND ϕ+
−

[ ¬ly,i ]) OR MI

4: MI := MI AND ϕ+
−

[ ¬ly,i ]
5: end for

6: return MI XOR MII

Once MNF=1 is computed (MNF= 1 = 1010 in the example) we can determine
the newly create unit clauses. For the example we only need the computations:

x1 := MNF= 1 AND NOT(ϕ+
−[x1] OR ϕ+

−[¬x1])

¬x2 := MNF= 1 AND NOT(ϕ+
−[x2] OR ϕ+

−[¬x2])

x4 := MNF= 1 AND NOT(ϕ+
−[x4] OR ϕ+

−[¬x4])

5 Results

We implemented the UnitWalk algorithm as a multi-bit local search solver
using UnitPropagation Queue. The resulting solver, called UnitMarch, can
be used for any number of bits. We added a method which replaces double
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assignments with new random assignments (see section 3). The performance of
UnitMarch is compared with the latest version of UnitWalk3.

The latter is a hybrid solver: If after a number of periods the number of
unsatisfied clauses is not reduced the solver switches to WalkSat [8]. If that
algorithm does not find a solution after a multitude of flips it switches back,
etc. Because we wanted to compare the influence of multi-bit search on the pure
UnitWalk algorithm, the switching was disabled.

Table 1 shows a comparison between UnitWalk, UnitMarch 1-bit and Unit-

March 32-bit on various benchmarks. Besides the dlx2-bugXX family4, all bench-
marks can be found on SATlib5 along with a description. For each solver, we set
MAX PERIODS := ∞. We used 100 random seeds for all benchmarks.

The solvers UnitWalk and UnitMarch 1-bit show comparable performance.
First, the number of periods executed per second is almost equal for all checked
benchmarks. This shows that our implementation, with some overhead for paral-
lelization, is fast enough on the benchmarks at hand. Second, the average number
of periods between the two versions is comparable. Although they differ slightly
between instances, no clear winner shows itself. Hence, the UnitPropaga-

tion Queue procedure shows comparable to the UnitPropagation MultiSet

procedure in terms of performance.
Comparing the 1-bit solvers with UnitMarch 32-bit shows that the latter is

the clear winner on almost all experimented instances. We found few exceptions
(see logistics-d); all having less than 100 periods on the three solvers. Apparently,
multi-bit search as implemented is not effective on these easy instances. Figures 1
and 2 present the effect of using different numbers of bits in more detail. Both
figures use logarithmic axes - thus f(x) = c

x
is represented as a straight line.

Four benchmarks are tested for all bits sizes 1 to 32. Using double logarithmic
scaling, these instances show a linear dependency between the average number
of periods and the number of used bits. The average time is also diminished
on all these instances, although this reduction varies per instance. Notice that
on all these instances the trend is strictly decreasing. It could be expected that
computers with a k-bit architecture with k > 32 will boost performance even
further.

6 Conclusions and future work

Our first observation is that propositional Boolean formulas with n variables
can be mathematically elegantly checked on feasibility with a single assignment
using the idempotents modulo the product of the first 2n primes. Compared
to conventional checking algorithms, the above just exchanges time for space.
However, the architecture of today’s computers is 32- or 64-bit - which enables
execution of 32 (64) 1-bit operations simultaneously. Although many algorithms
do not seem suitable for this kind of parallelism, the UnitWalk algorithm
appears to be a good first candidate, as well as a state-of-the-art Sat solver [2].

3 version 1.003 available from http://logic.pdmi.ras.ru/∼arist/UnitWalk/
4 available from http://www.miroslav-velev.com/sat benchmarks.html
5 http://www.satlib.org

http://logic.pdmi.ras.ru/~arist/UnitWalk/
http://www.miroslav-velev.com/sat_benchmarks.html
http://www.satlib.org
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Table 1. Comparison between the performance - in average number of periods
and average time and standard deviation - of UnitWalk, UnitMarch 1-bit, and
UnitMarch 32-bit on various benchmarks. The presented data averages runs using
100 different random seeds.

UnitWalk 1.003 UnitMarch 1-bit UnitMarch 32-bit
periods time periods time periods time

aim-2-1-1 119336 6.13 (6.36) 37520 1.62 (1.65) 1339 0.32 (0.33)

aim-2-1-2 1395975 73.56 (71.97) 1001609 44.67 (43.37) 45934 11.35 (10.68)

aim-2-1-3 26487 1.40 (1.39) 12147 0.53 (0.60) 646 0.16 (0.15)

aim-2-1-4 57794 3.13 (3.01) 30708 1.38 (1.58) 945 0.23 (0.22)

aim-3-4-1 89923 7.57 (7.05) 62191 3.19 (3.07) 2134 1.40 (1.42)

aim-3-4-2 99744 8.43 (7.98) 181623 9.33 (8.51) 5838 3.81 (3.33)

aim-3-4-3 51898 4.33 (4.07) 20870 1.7 (0.90) 738 0.48 (0.45)

aim-3-4-4 264125 21.96 (17.79) 240856 21.21 (13.43) 6234 4.29 (3.15)

bw-large.b 441 0.32 (0.33) 311 0.18 (0.13) 13 0.05 (0.03)

bw-large.c 13870 47.61 (40.90) 9342 19.85 (22.05) 498 7.63 (7.44)

dlx2-bug17 1102 6.40 (9.53) 432 2.31 (2.80) 7 0.43 (0.41)

dlx2-bug39 2830 6.78 (6.13) 1899 4.38 (3.72) 69 1.33 (1.76)

dlx2-bug40 1632 3.96 (4.02) 988 2.34 (2.20) 26 0.55 (0.55)

flat200-05 19384 3.46 (3.40) 19880 2.19 (2.35) 704 0.81 (0.75)

flat200-24 5247 0.98 (1.02) 5145 0.56 (0.56) 130 0.16 (0.18)

flat200-39 12142 2.16 (2.29) 12048 1.31 (1.21) 391 0.44 (0.45)

flat200-48 2941 0.52 (0.54) 2346 0.26 (0.25) 84 0.10 (0.10)

flat200-64 6406 1.14 (1.03) 6799 0.75 (0.75) 268 0.34 (0.35)

logistics-a 1970338 636.47 (563.21) 863165 369.09 (383.97) 25100 55.97 (43.53)

logistics-b 6313 1.91 (2.24) 11878 5.43 (5.76) 354 0.73 (0.63)

logistics-c 133572 72.16 (69.36) 310450 228.49 (224.92) 9803 34.19 (31.75)

logistics-d 23 0.11 (0.07) 24 0.08 (0.04) 5 0.11 (0.03)

par16-1 14245 4.97 (4.73) 11267 2.65 (2.85) 365 0.21 (0.20)

par16-2 21417 7.43 (8.08) 20601 5.05 (5.18) 702 0.42 (0.34)

par16-3 17913 6.31 (7.04) 16872 3.98 (3.93) 551 0.33 (0.42)

par16-4 16955 5.94 (5.77) 14087 3.33 (3.47) 523 0.34 (0.32)

par16-5 18889 6.60 (6.70) 23028 5.41 (5.00) 640 0.36 (0.36)

qg1-08 101390 424.17 (399.59) 121127 362.74 (377.55) 4229 127.57 (120.87)

qg2-08 803258 3404.49 (3501.46) 1005351 4360.92 (4518.23) 26223 991.23 (967.20)

qg3-08 165 0.08 (0.06) 166 0.10 (0.10) 5 0.03 (0.03)

qg4-09 1344 1.10 (0.96) 2098 1.82 (1.66) 66 0.53 (0.53)

qg5-11 591 1.92 (1.82) 670 2.13 (2.00) 23 0.82 (0.68)

qg7-13 92600 492.66 (465.71) 98172 408.35 (419.56) 2937 171.63 (146.69)

uf250-054 307317 33.69 (35.84) 472970 30.03 (27.82) 14851 10.74 (11.57)

uf250-062 42137 4.60 (4.85) 88670 5.61 (5.44) 2427 1.74 (1.84)

uf250-071 135296 14.49 (12.79) 218375 13.92 (13.70) 6404 4.59 (4.66)

uf250-072 126387 13.91 (13.33) 172789 10.95 (9.81) 5624 4.10 (4.28)

uf250-093 92110 9.78 (9.71) 146132 9.23 (8.37) 4521 3.25 (2.94)
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Fig. 1. Average number of periods by UnitMarch using different number of bits.
Averages are computed using 1000 random seeds. Two logarithmic axes are used.
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Fig. 2. Average time (in seconds) by UnitMarch using different number of bits.
Averages are computed using 1000 random seeds. Two logarithmic axes are used.
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Our multi-bit implementation of this algorithm, called UnitMarch, shows that
this algorithm can be parallelized in such a way that the 1-bit version has com-
parable performance with the UnitWalk solver. Using double logarithmic scaling,
these instances show a linear dependency between the average number of peri-
ods and the number of used bits. Most importantly, the average time to solve
instances is largely reduced by using the 32-bit version.

The implementations of UnitWalk and UnitMarch are currently comparable
(regardless the multi-bit feature) but are far from optimal: For instance, in both
solvers unit clauses in the original CNF are propagated in each period. Another
performance boost is expected by adding (redundant) clauses - for instance as
implemented in the local search solver R+AdaptNovelty+ [1] - because they will
increase the number of unit propagations. Finally, further experiments (not pre-
sented in this paper) showed that by ordering the variables less randomly and
more based on multi-bit heuristics results in improved performance on many
benchmarks. Developing enhancements (like replacement of duplicate assign-
ments) and effective multi-bit heuristics is under current research.
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