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Abstract. We prove that extended resolution—a well-known proof sys-
tem introduced by Tseitin—polynomially simulates DRAT, the standard
proof system in modern SAT solving. Our simulation procedure takes as
input a DRAT proof and transforms it into an extended-resolution proof
whose size is only polynomial with respect to the original proof. Based on
our simulation, we implemented a tool that transforms DRAT proofs into
extended-resolution proofs. We ran our tool on several benchmark formu-
las to estimate the increase in size caused by our simulation in practice.
Finally, as a side note, we show how blocked-clause addition—a gener-
alization of the extension rule from extended resolution—can be used
to replace the addition of resolution asymmetric tautologies in DRAT
without introducing new variables.

1 Introduction

Propositional logic presents us with an intricate problem: Does there exist a
polynomially-bounded proof system for the unsatisfiable propositional formulas?
In other words, can the unsatisfiability of formulas be certified in a compact way?
Although we still don’t know the answer, the attempts to solve this problem
have led to a variety of interesting results in the area of proof complexity (for
an excellent survey, see [18]). Many of these results had, and continue to have,
a direct impact on automated reasoning.

Already in 1985, Haken [6] proved that the resolution proof system, which
is well-suited for mechanization, does not admit polynomial-size proofs for all
unsatisfiable formulas. However, by adding a simple rule that allows the intro-
duction of definitions over new variables, Tseitin [17] turned resolution into an
exponentially stronger proof system known as extended resolution. Up to this day,
there are no known exponential lower-bounds on the size of extended-resolution
proofs and so it is seen as one of the most powerful proof systems.

While this might convince a theoretician, it seemingly hasn’t impressed the
practitioners in SAT solving. These practitioners aim at developing tools that
can decide the satisfiability of propositional formulas as efficiently as possible,
and for this, they need proof systems that succinctly express the techniques used
by their tools. Skeptical that extended resolution could meet their needs, they
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came up with several proof systems of which DRAT [21] has become their de-
facto standard. For instance, participants in the annual SAT competition must
produce DRAT proofs and also recent proofs of open mathematical problems,
including the Erdős Discrepancy Conjecture [12], were provided in DRAT.

The DRAT proof system generalizes extended resolution insofar as every
extended-resolution proof can be seen as a DRAT proof, but beyond that, DRAT
allows additional techniques. While in extended resolution we show the unsat-
isfiability of a formula by successively deriving more and more consequences, in
DRAT we iteratively modify a formula in satisfiability-preserving ways. To keep
proof checking practical, DRAT allows only the derivation of specific facts that
fulfill an efficiently-checkable syntactic criterion—so-called resolution asymmet-
ric tautologies [10] (see Definition 4 on page 5).

Although its additional features make DRAT suitable for SAT solving, it
remained unclear whether these features can indeed cause exponential gains in
expressivity. In this paper, we show that they do not. To this end, we prove in
a constructive way that extended resolution simulates DRAT polynomially, i.e.,
we show how every DRAT proof can be feasibly transformed into an extended-
resolution proof. This confirms the expected proof-complexity landscape where
all top-tier proof systems—including extended resolution, DRAT, and extended
Frege systems [18]—are essentially equivalent.

Rounding off the picture, we show how blocked-clause addition [13]—a gener-
alization of the extension rule from extended resolution—can be used to replace
the addition of resolution asymmetric tautologies in DRAT without introducing
new variables. In combination with recent simulation results regarding DRAT
and newer proof systems [7,8], our paper thus bridges the gap between proof
systems from the present and from the past.

The main contributions of this paper are as follows: (1) We prove that ex-
tended resolution simulates DRAT polynomially. (2) We implemented our sim-
ulation as a tool that transforms DRAT proofs into extended-resolution proofs.
(3) We present an empirical evaluation of our simulation tool. (4) We show how
blocked-clause addition can be used as an alternative for resolution-asymmetric-
tautology addition in DRAT.

2 Preliminaries

Here we present the background required for understanding this paper. We con-
sider propositional formulas in conjunctive normal form (CNF), which are de-
fined as follows. A literal is either a variable x (a positive literal) or the negation
x̄ of a variable x (a negative literal). The complementary literal ā of a literal
a is defined as ā = x̄ if a = x and ā = x if a = x̄. For a literal l, we denote
the variable of l by var(l). A clause is a disjunction of literals; we assume that
clauses do not contain repeated literals. A unit clause is a clause that contains
exactly one literal; a tautology contains complementary literals. A formula is a
conjunction of clauses. We view clauses as sets of literals and formulas as sets of
clauses. A clause C subsumes a clause D if C ⊆ D.
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An assignment is a function from a set of variables to the truth values 1 (true)
and 0 (false). An assignment is total with respect to a formula if it assigns a
truth value to every variable occurring in the formula, otherwise it is partial. We
often denote assignments by the sequences of literals they satisfy. For instance,
x ȳ denotes the assignment that assigns 1 to x and 0 to y. A literal l is satisfied
by an assignment α if l is positive and α(var(l)) = 1 or if it is negative and
α(var(l)) = 0. A literal is falsified by an assignment if its complement is satisfied
by the assignment. A clause is satisfied by an assignment α if it contains a literal
that is satisfied by α. Finally, a formula is satisfied by an assignment α if all its
clauses are satisfied by α. A formula is satisfiable if there exists an assignment
that satisfies it. Two formulas are logically equivalent if they are satisfied by
the same total assignments. Two formulas are satisfiability-equivalent if they are
either both satisfiable or both unsatisfiable.

Given a clause C and an assignment α, we define C |α as the clause obtained
from C by removing all literals that are falsified by α. If F is a formula, we define
F |α = {C |α | C ∈ F and α does not satisfy C}. The result of applying the
unit-clause rule to a formula F is the formula F |a with (a) being a unit clause
in F . We also refer to applications of the unit-clause rule as unit-propagation
steps. The iterated application of the unit-clause rule to a formula, until no
unit clauses are left, is called unit propagation. If unit propagation on F yields
the empty clause ⊥, we say that it derives a conflict on F . For example, unit
propagation derives a conflict on F = (ā ∨ b) ∧ (b̄) ∧ (a) since F |a = (b) ∧ (b̄)
and F |ab = ⊥.

We define proof systems and polynomial simulations following Cook and
Reckhow [5]:

Definition 1. A proof system for propositional formulas in CNF is a surjective
polynomial-time-computable function f : Σ∗ → F where Σ is some alphabet and
F is the set of all unsatisfiable formulas.

A proof system can thus be seen as a proof-checking function f that takes a proof
candidate P (which is a string over Σ) together with an unsatisfiable formula
F and checks in polynomial time if P is a correct proof of F . The requirement
that f is surjective means that there must exist a proof for every unsatisfiable
formula. We sometimes use the word proof system in a more colloquial way to
denote the rules that define what constitutes a correct proof of a certain type.
The size of a proof is the number of symbols occurring in it.

Definition 2. A proof system f1 : Σ∗1 → F polynomially simulates a proof
system f2 : Σ∗2 → F if there exists a polynomial-time-computable function
g : Σ∗2 → Σ∗1 such that f1(g(x)) = f2(x).

In other words, f1 polynomially simulates f2 if there exists a polynomial-time-
computable function that transforms f2-proofs into f1-proofs. We next present
the proof systems extended resolution and DRAT.
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3 Extended Resolution (ER) and DRAT

An extended-resolution proof as well as a DRAT proof of a formula F are se-
quences of the form C1, . . . , Cm, Im+1, . . . , In where C1, . . . , Cm are clauses of F
and Im+1, . . . , In are instructions as defined in the following. There are three
different kinds of instructions: addition, deletion, and extension. An addition is
a pair 〈a, C〉 where C is a clause; a deletion is a pair 〈d, C〉 where C is a clause;
and an extension (also called a definition introduction) is a pair 〈e, ϕ〉 where ϕ is
a propositional definition of the form x↔ p∨ (c1∧· · ·∧ ck) where x is a variable
not occurring in any earlier instructions of the proof and p, c1, . . . , ck are liter-
als where var(x), var(p), var(c1), . . . , var(ck) are pairwise distinct. Converting
such a definition to CNF yields the clause set cnf(ϕ) = {x∨ p̄, x∨ c̄1 ∨ · · · ∨ c̄k,
x̄∨p∨c1, . . . , x̄∨p∨ck}; in the particular case k = 0 we have cnf(ϕ) = {x∨p̄, x}.
The sequence C1, . . . , Cm, Im+1, . . . , In gives rise to formulas F0, F1, . . . , Fn as
follows:

Fi =


{C1, . . . , Ci} if i ≤ m
Fi−1 ∪ {C} if i > m and Ii = 〈a, C〉
Fi−1 \ {C} if i > m and Ii = 〈d, C〉
Fi−1 ∪ cnf(ϕ) if i > m and Ii = 〈e, ϕ〉

We call Fi the accumulated formula corresponding to the i-th instruction. Based
on this, we can now define the details of extended resolution and DRAT. In both
proof systems, a correct proof of a formula F must derive the empty clause ⊥,
i.e., ⊥ ∈ Fn. They differ only in the instructions they permit.

3.1 Extended Resolution

Extended resolution combines resolution with the extension rule: A sequence
C1, . . . , Cm, Im+1, . . . , In is a correct extended-resolution proof of a formula F
if every instruction Ii ∈ Im+1, . . . , In is either (1) an addition 〈a, C ∨D〉 where
C ∨ D is the resolvent (C ∨ p) ⊗p (D ∨ p̄) of two clauses C ∨ p and D ∨ p̄
occurring in Fi−1, or (2) an extension 〈e, ϕ〉. When Tseitin originally introduced
the extension rule [17], he only allowed definitions of the form x↔ ā ∨ b̄ where
a and b are variables. These definitions correspond to the clauses x ∨ a, x ∨ b,
and x̄∨ ā∨ b̄. However, more general definitions can be derived from these basic
definitions in a simple but tedious way. Because of this, more general extension
rules are common in the literature, some even allowing definitions x↔ ψ where
ψ is an arbitrary propositional formula over previous variables (cf. [4,6,16]).

3.2 DRAT

A sequence C1, . . . , Cm, Im+1, . . . , In is a correct DRAT proof of a formula F if
every instruction Ii ∈ Im+1, . . . , In is either (1) a deletion 〈d, C〉 where C is an
arbitrary clause, or (2) an addition 〈a, C〉 where C is a RAT or a RUP in Fi−1;
we now proceed to introduce these notions. We start by defining RUPs (short
for reverse unit propagation) [20]:
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Definition 3. A clause C = c1 ∨ · · · ∨ ck is a RUP in a formula F if unit
propagation derives a conflict on F ∧ (c̄1) ∧ · · · ∧ (c̄k). If C is a RUP in F , we
say that F implies C via unit propagation.

As an example, F = (ā∨c)∧(b̄∨ c̄) implies (ā∨ b̄) via unit propagation since unit
propagation on F ∧ (a) ∧ (b) derives both (c) and (c̄), which leads to a conflict.
Observe that if C is a resolvent of two clauses in a formula F , or if F contains
a clause D that subsumes C, then C is a RUP in F . Now, a RAT is a clause for
which all resolvents upon one of its literals are RUPs [10]:

Definition 4. A clause C ∨ p is a resolution asymmetric tautology (RAT) on p
in a formula F if for every clause D ∨ p̄ ∈ F , the resolvent C ∨D is implied by
F via unit propagation.

Example 1. Consider the formula F = (p̄ ∨ ā) ∧ (p̄ ∨ b) ∧ (b ∨ c) ∧ (c̄ ∨ a) and
the clause C = a ∨ p. There are two resolvents of C upon p: The resolvent a ∨ ā
(obtained by resolving with p̄ ∨ ā) is a tautology and thus trivially a RUP in F ;
the resolvent a ∨ b (obtained by resolving with p̄ ∨ b) is a RUP in F since unit
propagation derives a conflict on F ∧ (ā) ∧ (b̄). It follows that C is a RAT on p
in F . ut

Observe that if C is a non-empty RUP in F , it is a RAT in F on any literal p ∈ C
(the empty clause ⊥ cannot be a RAT as it contains no literals). In the rest of
the paper, we thus call a clause a proper RAT if it is a RAT on some literal p
but not a RUP. The addition of definition clauses, as with the extension rule,
is a special case of blocked-clause addition [9] (see Section 6), which itself is a
particular case of RAT addition. We thus regard DRAT as a generalization of
extended resolution.

4 Simulating DRAT with Extended Resolution

We perform the transformation of a DRAT proof into an extended-resolution
proof in four stages. In the first stage, we use the extension rule together with
RUP addition and clause deletion to eliminate all additions of proper RATs.
In the second stage, we get rid of all clause deletions. In the third stage, we
then replace all RUP additions by resolution inferences and subsumed-clause
additions. Finally, in the fourth stage, we also eliminate the subsumed-clause
additions to obtain a correct extended-resolution proof.

4.1 Eliminating Additions of Proper RATs

Given a DRAT proof C1, . . . , Cm, Im+1, . . . , In, we iterate over the instructions
Im+1, . . . , In and replace every addition Ii = 〈a, p ∨ C〉 of a clause p ∨ C that
is a proper RAT on p in the accumulated formula Fi−1 by a sequence πi of
instructions. As illustrated in Fig. 1, such a sequence πi consists of a single
definition introduction followed first by several RUP additions and then by
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. . . RAT . . .

. . . Def RUP . . . RUP Del . . . Del . . .

Fig. 1. We transform a RAT addition into a definition introduction (Def), fol-
lowed by RUP additions and clause deletions (Del).

several clause deletions. In the case where Ii is not the addition of a proper
RAT, we simply let πi be Ii. At the end of this iterative process, we obtain
a sequence C1, . . . , Cm, πm+1, . . . , πn, where every πi is a sequence of instruc-
tions corresponding to the instruction Ii from the original proof. The sequence
C1, . . . , Cm, πm+1, . . . , πn contains no additions of proper RATs, but instead con-
tains definition introductions.

Each iteration of this process performs the following transformation, where
Ii is an addition instruction of a clause C = p ∨ c1 ∨ · · · ∨ ck which is a RAT on
literal p in the accumulated formula Fi−1 before Ii.

C1, . . . , Cm, πm+1, . . . , πi−1,Ii , Ii+1, . . . , In 

C1, . . . , Cm, πm+1, . . . , πi−1,πi, I
′
i+1, . . . , I

′
n

We first use the extension rule to introduce a clause x ∨ c1 ∨ · · · ∨ ck as well as
some other definition clauses, where x is a new variable in the sense that it is
not used anywhere else in the proof. Note that x∨c1∨· · ·∨ck differs from C only
on the literal p, which is replaced by the variable x. We then use RUP additions
and clause deletions to replace all occurrences of p in Fi−1 by x. Our procedure
guarantees that the formula accumulated after πi in the resulting sequence is
exactly Fi[x/p], obtained from Fi = Fi−1 ∪ {C} (the accumulated formula after
Ii in the original proof) by simultaneously replacing occurrences of p by x and
occurrences of p̄ by x̄.

As a consequence, the correctness of the whole proof is preserved by simply
renaming p to x, and p̄ to x̄, in all later instructions, resulting in the instructions
I ′i+1, . . . , I

′
n. It is thus clear that the size of the accumulated formula after πi in

the new proof is the same as that of Fi in the original proof; this property will be
crucial for the complexity analysis in Section 4.5. We now explain in detail how
the sequence πi is obtained, and provide an example to illustrate the procedure.

(1) Use the extension rule to introduce the definition x↔ p ∨ (c̄1 ∧ · · · ∧ c̄k).
This adds the clause set {x∨c1∨· · ·∨ck, x∨p̄, x̄∨p∨c̄1, . . . , x̄∨p∨c̄k}. The
first clause will be our replacement of the RAT p∨ c1∨· · ·∨ ck. Intuitively,
this definition follows the correctness proof of RAT clause addition from
[10]: given any interpretation satisfying Fi−1, we can construct another
interpretation satisfying Fi by conditionally changing the truth value of
p, precisely as given by the definition of x. The rest of the transformation
simply replaces occurrences of p by x.
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(2) Replace the literal p in all clauses of Fi−1 by the new variable x:

(a) Add for every clause D ∨ p ∈ Fi−1 the clause D ∨ x. This is a correct
RUP addition since D ∨ x is a resolvent of D ∨ p and x ∨ p̄.

(b) Add for every clause D∨ p̄ ∈ Fi−1 the clause D∨ x̄. To show that this
is a correct RUP addition, we show that unit propagation derives a
conflict on Fi−1 ∧ D̄ ∧ (x), where D̄ is the conjunction of the negated
literals of D. As C is a RAT on p in Fi−1, we know that the resol-
vent c1 ∨ · · · ∨ ck ∨ D of C and D ∨ p̄ is a RUP in Fi−1. Now, by
propagating the unit clauses of D̄, we derive (p̄) because the clause
D ∨ p̄ is in Fi−1. After this, we propagate x and p̄ to derive all the
unit clauses (c̄1), . . . , (c̄k) from the clauses x̄∨p∨ c̄j with j ∈ 1, . . . , k.
But then we have derived the negations of all literals in the resol-
vent c1 ∨ · · · ∨ ck ∨D, and since this resolvent is a RUP in Fi−1, unit
propagation must eventually derive a conflict.

(c) Delete all clauses containing p or p̄, including those added in step 1.
Note that this does not delete the clause x ∨ c1 ∨ · · · ∨ ck.

Example 2. Suppose we are given a proof C1, . . . , Cm, Im+1, . . . , Ii, . . . , In and
we want to eliminate the addition Ii = 〈a, C〉 where C = p∨a is a proper RAT on
p in the accumulated formula Fi−1 = {p̄∨ b, a∨ b∨ c, c̄∨ d, d̄, ā∨ p}. Observe
that C is a RAT on p because the resolvent a ∨ b, obtained by resolving C with
p̄ ∨ b upon p, is a RUP in Fi−1.

We first use the extension rule to add the definition x ↔ p ∨ ā. This adds
the clauses x ∨ a, x ∨ p̄, and x̄ ∨ p ∨ ā. Next, we need to replace the literal p in
Fi−1 by x. To do so, we first resolve x ∨ p̄ with ā ∨ p to derive ā ∨ x. Then, we
introduce the RUP x̄ ∨ b for the existing clause p̄ ∨ b. (It can be easily seen that
x̄∨ b is a RUP in Fi−1 ∪ {x̄∨ p∨ ā, x∨ p̄, x∨ a}: By propagating b̄, we derive p̄
from p̄ ∨ b. After this, the propagation of x and p̄ derives ā from x̄ ∨ p ∨ ā. But
then further propagation will eventually lead to a conflict because a∨ b, which is
the resolvent of p ∨ a and p̄ ∨ b, is a RUP in Fi−1.) Finally, we delete all clauses
containing p or p̄. We thus obtain the proof C1, . . . , Cm, Im+1, . . . , Ii−1, πi, . . . , In
where πi is the sequence 〈e, x↔ p∨ ā〉, 〈a, ā∨x〉, 〈a, x̄∨b〉, 〈d, p̄∨b〉, 〈d, ā∨p〉,
〈d, x̄∨ p∨ ā〉, 〈d, x∨ p̄〉. After the last instruction of πi, we get the accumulated
formula {x̄∨ b, a∨ b∨ c, c̄∨ d, d̄, ā∨ x, x∨ a}, which is precisely Fi[x/p]. We
then just need to replace p by x and p̄ by x̄ in Ii+1, . . . , In to obtain a correct
proof C1, . . . , Cm, Im+1, . . . , Ii−1, πi, I

′
i+1, . . . , I

′
n. ut

4.2 Eliminating Clause Deletions

At this point, our proof is a sequence of (1) clauses from the original formula,
(2) definition introductions, (3) RUP additions, and (4) clause deletions. Since
no additions of proper RATs remain in the proof, the elimination of a deletion
instruction does not affect the correctness of other proof instructions: The addi-
tion of RUPs depends only on the existence of clauses in the accumulated formula
but not on their non-existence (if C is a RUP in F , it is also a RUP in every
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. . . RUP . . .

. . . Res . . . Res Sub . . .

Fig. 2. We transform a RUP addition into a sequence of resolution steps (Res)
followed by a single subsumed-clause addition (Sub).

superset of F ). Likewise, the extension rule is not affected by additional clauses.
By simply eliminating all deletions, we thus end up with a correct proof. Note
that this would not work if proper RAT additions were still present, because they
depend on the non-existence of certain clauses (a clause C is a RAT in a formula
F only if F contains no resolvents with C that are not RUPs).

4.3 Eliminating RUP Additions

Similar to the first stage of our simulation, we again iterate over the proof from
the beginning. In this stage, we now replace all additions of RUPs that are neither
resolvents nor subsumed clauses. In the following, we show how the addition of
such a RUP can be transformed into a sequence of resolution steps followed by a
single subsumed-clause addition. This is illustrated in Fig. 2. We note that this
has already been explained on a high level in the literature [19,15].

Let us first observe that, given a correct proof containing only RUP additions
and definition introductions, the RUP additions of tautological clauses can be
directly eliminated. To see this, simply observe that definition introductions are
never affected by the presence of tautologies. Furthermore, if a clause C is a
RUP in F , and F contains a tautology a∨ ā∨D, the latter never becomes a unit
clause in F |α under any assignment α; therefore, C is also a RUP in the formula
resulting from removing tautologies from F . In the following, we thus consider
only proofs without tautological clauses.

If a non-tautological clause C is a RUP in a formula F , we know that unit
propagation derives a conflict on F ∧C̄ where C̄ is the conjunction of the negated
literals in C. This is equivalent to saying that unit propagation derives a con-
flict on F |C̄, viewing C̄ as the assignment that satisfies C̄. Hence, there exists
a (possibly empty) sequence of literals a1, . . . , an such that the unit clause (ai)
occurs in F |C̄a1 . . . ai−1 for each 1 ≤ i ≤ n, and the empty clause ⊥ occurs in
F |C̄a1 . . . an. Intuitively, (ai) is the unit clause propagated at the i-th propaga-
tion step after all unit clauses in C̄ have been propagated. These unit clauses
and the empty clause stem from clauses D1, . . . , Dn+1 ∈ F with the following
properties: (I) the clause Di |C̄a1 . . . ai−1 is the unit clause (ai) for 1 ≤ i ≤ n,
(II) Di is not satisfied by C̄a1 . . . ai−1 for 1 ≤ i ≤ n + 1, and (III) the clause
Dn+1 |C̄a1 . . . an is the empty clause.

Algorithm 1 uses the clauses D1, . . . , Dn+1 as follows: It starts with the last
clause, Dn+1, and step-by-step resolves it with the clauses Dn, . . . , D1 until it
obtains a clause C1 that subsumes C. Using C1, we can then derive C with a
subsumed-clause addition. Example 3 illustrates the execution of the algorithm.
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1 Cn+1 ← Dn+1

2 for i = n, . . . , 1 do

3 if āi ∈ Ci+1 then Ci ← Di ⊗ai
Ci+1

4 else Ci ← Ci+1

Algorithm 1. Given a RUP C, the algorithm derives a clause C1 ⊆ C.

Example 3. Consider the clause C = a ∨ b and F = D1 ∧D2 ∧D3 ∧D4 where:

D1 = a ∨ c D2 = a ∨ c̄ ∨ d D3 = d̄ ∨ e D4 = d̄ ∨ ē

The clause C is a RUP in F because unit propagation derives a conflict on
F ∧ (ā) ∧ (b̄), or equivalently, it derives a conflict on F |āb̄. To illustrate this, we
perform the unit propagation:

D1 |āb̄ = (c) D2 |āb̄c = (d) D3 |āb̄cd = (e) D4 |āb̄cde = ⊥

Our algorithm now performs resolution steps as follows (∗ marks unit literals):

D1︷ ︸︸ ︷
a ∨ c∗

D2︷ ︸︸ ︷
a ∨ c̄ ∨ d∗

D3︷ ︸︸ ︷
d̄ ∨ e∗

D4︷ ︸︸ ︷
d̄ ∨ ē

d̄
a ∨ c̄

a︸︷︷︸
C1

As we can see, the resulting clause C1 = (a) subsumes C = a ∨ b. ut

Lemma 1. If a formula F implies a non-tautological clause C via unit propa-
gation, then the clause C1, computed by Algorithm 1, subsumes C.

Proof. We show by induction that, for every 1 ≤ i ≤ n + 1, the clause Ci

computed by Algorithm 1 satisfies Ci |C̄a1 . . . ai−1 = ⊥. The claim then follows
from C1 |C̄ = ⊥, which is equivalent to C1 ⊆ C.

Base case (i = n+ 1): Follows from Cn+1 = Dn+1 and property (III).

Induction step (1 ≤ i ≤ n): Assume the claim holds for i+ 1. Then, we have
Ci+1 |C̄a1 . . . ai = ⊥, and from property (I) we know Di |C̄a1 . . . ai−1 = (ai).
Now, if Ci+1 does not contain āi, then Ci+1 |C̄a1 . . . ai−1 = ⊥. In this case,
the algorithm sets Ci = Ci+1 and so the claim holds for i. In contrast, if Ci+1

contains āi, then the algorithm sets Ci = Di ⊗ai Ci+1. But then, as Ci contains
only literals of Di and Ci+1 except for ai and āi, the claim also follows for i. ut

The following statement, which is a variant of Theorem 2 in [15] as well as of
the Theorem of Lee [14], is a consequence of Lemma 1; it allows us to repeatedly
eliminate all additions of RUPs that are not resolvents or subsumed clauses.

Theorem 2. If a formula F implies a non-tautological clause C via unit prop-
agation using n propagation steps, we can derive C from F via at most n reso-
lution steps followed by one subsumed-clause addition.
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4.4 Eliminating Subsumed-Clause Additions

At this point, every instruction is either a definition introduction or it adds
a resolvent or a subsumed clause. Since the extension rule does not depend on
previous clauses, we can reorder the instructions of our proof so that all definition
introductions occur before all addition instructions.

Now, by a well-known method (e.g., [1]) we can eliminate all subsumed-clause
additions from the latter part of our proof. The procedure works by recursively
labeling every clause in the proof with a subclause. These labels give a resolution
proof, possibly with unnecessary inferences. The labeling proceeds as follows:

1. We label every leaf clause by itself.
2. For each resolvent of two clauses C1 ∨ x and C2 ∨ x̄, which are labeled by
D1 and D2 respectively, we label the resolvent by D1 if x /∈ D1; by D2 if
x̄ /∈ D2; and by D1 ∨D2 if x ∈ D1 and x̄ ∈ D2.

3. For each subsumption inference from a clause C that is labeled by D, we
label the subsumed clause by D.

It is straightforward to check that the labels define a resolution derivation with-
out subsumed-clause additions; in fact, a refutation, as the only subclause of ⊥
is ⊥ itself. This is polynomial, and can only reduce the size of the input. The
resulting derivation may contain redundant parts such as unused subderivations,
but these do not affect our analysis and can be easily removed. After eliminating
all subsumed-clause additions, we finally obtain an extended-resolution proof.

Example 4. The following proof tree includes the subsumed-clause additions 1
and 2. A subclause labeling as above is given in brackets; it can be read off as
a resolution proof. Clauses in red are redundant and can be skipped from the
resulting proof.

a ∨ b [a ∨ b]
b̄ [b̄]

1
a ∨ b̄ [b̄]∗

a [a]

ā ∨ c [ā ∨ c]∗
d [d]

2
c̄ ∨ d [d]∗

ā ∨ d [d]∗ ā ∨ d̄ [ā ∨ d̄]

ā [ā]

⊥ [⊥]

After dropping the marked (∗) clauses, the result is the following proof:

a ∨ b b̄
a

d ā ∨ d̄
ā

⊥

4.5 Complexity of the Simulation

We show now that our simulation only involves a polynomial blow-up. To sim-
plify the presentation, we use the number of literals (with repetitions) in a proof
P as the measure for its size, denoted by ‖P‖. After we have shown that the size
of the resulting extended-resolution proof is polynomial compared to the original
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DRAT proof, it should be clear that the computation of the simulation is also
polynomial, given the simplicity of the used techniques. Let the original DRAT
proof be P = C1, . . . , Cm, Im+1, . . . , In. Note first that for every m+ 1 ≤ i ≤ n,
the size ‖Ii‖ of the instruction Ii, and the size ‖Fi‖ of the accumulated formula
Fi are both bounded by O(‖P‖). Note also that the elimination of clause dele-
tions and subsumed-clause additions shrinks the proof. Hence, out of the four
stages in the simulation, we only need to consider the first stage (elimination of
RAT additions) and the third stage (elimination of RUP additions) to obtain an
upper bound on the proof size.

Elimination of RATadditions. For the following, remark that for i ∈ m+1, . . . , n,
the size of the accumulated formula after the i-th proof fragment πi (obtained
by transforming the instruction Ii) in the new proof is the same as that of Fi

in the original DRAT proof (we explained this on page 6). For the elimination
of a single RAT addition of a clause p ∨ c1 ∨ · · · ∨ ck, we first add the definition
x↔ p ∨ (c̄1 ∧ · · · ∧ c̄k). This step is clearly O(‖P‖). After this, we add for each
clause D∨p ∈ Fi−1 the clause D∨x, and we add for each clause D∨ p̄ ∈ Fi−1 the
clause D ∨ x̄. This leads to at most O(‖Fi−1‖) = O(‖P‖) new literals. Finally,
we delete all clauses containing p or p̄. These deletions together are again of
size at most O(‖Fi−1‖) = O(‖P‖). Overall, the size of the proof generated by
eliminating a single RAT addition is thus bounded by 3 × O(‖P‖) = O(‖P‖).
Finally, as we perform at most n such RAT eliminations and since n = O(‖P‖),
the size of the resulting proof after eliminating all RATs is bounded by O(‖P‖2).

Elimination of RUP additions. Before we eliminate RUPs, we have a proof whose
size isO(‖P‖2). We thus eliminate at mostO(‖P‖2) RUP additions. It remains to
determine a bound for the size of the proof instructions obtained by eliminating a
single RUP addition. Theorem 2 tells us that if C is a RUP that is implied via unit
propagation using k propagation steps, we can derive C with at most k resolution
steps followed by a single subsumed-clause addition. Clearly, the number of unit-
propagation steps is bounded by the number of variables occurring in the proof
(every variable can be propagated at most once). Now, the number of variables
in the original proof P is clearly bounded by ‖P‖ and since the elimination of
RAT additions has introduced at most one new variable for every RAT, we have
O(‖P‖) variables. Hence, a single RUP elimination leads to at most O(‖P‖)
instructions. As the size of a single instruction is bounded by O(‖P‖) (a clause
can contain at most two literals per variable), every RUP elimination results in
a proof of size O(‖P‖2). We conclude that the size of the resulting extended-
resolution proof is O(‖P‖4).

Note that our analysis is very conservative. For instance, representing resolvents
implicitly (just pointing to their two parent clauses) instead of representing them
explicitly shrinks the resulting extended-resolution proof significantly. As we will
see in Section 5, the increase in size on practical DRAT proofs is way smaller
than the theoretical bound we obtain here. Combining our result with the recent
result that DRAT polynomially simulates DPR (a generalization of DRAT) [7],
we obtain the complexity landscape depicted in Fig. 3.
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DPR [8] DRAT [21,10] ER [17]

[7]

Fig. 3. A dashed line from X to Y means that X simulates Y polynomially. A
solid line from X to Y means that every Y proof can be regarded as an X proof.

5 Experimental Evaluation

We implemented our simulation procedure as an extension of the proof checker
DRAT-trim.3 We then evaluated the simulation tool on existing DRAT proofs
for the pigeon-hole formulas, two-pigeons-per-hole formulas [2], and Tseitin for-
mulas [17,3]. The pigeon-hole formulas (hole*) ask whether n + 1 pigeons can
be placed into n holes such that each hole contains at most one pigeon. Simi-
larly, the two-pigeons-per-hole formulas (tph*) ask whether 2n+ 1 pigeons can
be placed into n holes with at most two pigeons per hole. Finally, the Tseitin
formulas (Urquhart*) encode a parity problem on graphs.

We selected the DRAT proofs of these formulas for three reasons. First, out of
all DRAT proofs we are aware of, they have the highest ratio of proper-RAT-to-
RUP-instructions and so the transformation from DRAT to extended resolution
can offer insight into a worst-case scenario regarding existing proofs. Second, the
proofs originate from a transformation of DPR proofs to DRAT proofs [7]. We
thus also see what happens when we transform the more general DPR proofs, and
not only DRAT proofs, to extended resolution. Third, all three formula families
are hard for resolution, meaning that they admit only resolution proofs whose
size is exponential with respect to the formula [6,18].

Table 1 shows the results of our experiments. Although the extended-resolu-
tion proofs are clearly larger than the corresponding DRAT proofs, the blow-up
is far from the theoretical worst case. As we already selected proofs with many
proper RAT instructions, we imagine that the growth is even smaller on proofs
with a modest number of RAT instructions. For a pigeon-hole formula holeX, the
increase in size is roughly the factor X. For the two-pigeons-per-hole formulas,
the growth is larger. This can be explained by the high clauses-to-variables ratio.
Finally, for the Tseitin formulas, the growth lies between a factor of 20 and 30.

As a comparison, Table 2 shows the smallest extended-resolution proofs of
the pigeon-hole formulas and of the Tseitin formulas known to us. The proofs
of the pigeon-hole formulas were manually constructed by Cook [4] whereas the
proofs of the Tseitin formulas were produced using the tool EBDDRES 1.2 [11].
To the best of our knowledge, there is only one tool supporting extended reso-
lution that was able to solve one of the selected two-pigeons-per-hole formulas:
EBDDRES 1.1 [16]. It generated an extended-resolution proof with 2 638 385
definitions and 18 848 004 resolution steps for the formula tph8.

3 The simulation tool, checkers, formulas, and proofs discussed in this section are
available on http://www.cs.utexas.edu/~marijn/drat2er.
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Table 1. A size comparison of DPR, DRAT, and ER proofs of formulas that are
hard for resolution. We generated the ER proofs from existing DRAT proofs [7].
Column headers refer to the numbers of variables (#var), clauses (#cls), clause
additions (#add), added definitions (#def), and resolution steps (#res).

input DPR DRAT ER
formula #var #cls #add #add #def #res

hole20 420 4221 2870 26 547 18 162 282 471
hole30 930 13 981 9455 89 827 61 962 1 393 411
hole40 1640 32 841 22 140 213 107 147 562 4 344 126
hole50 2550 63 801 42 925 416 387 288 962 10 517 116
tph8 136 5457 1156 25 204 13 931 1 093 959
tph12 300 27 625 3950 127 296 68 645 11 688 956
tph16 528 87 329 9416 401 004 212 847 63 391 635
tph20 820 213 241 18 450 976 376 512 841 236 415 141
Urquhart-s5-b1 106 714 620 28 189 8320 102 293
Urquhart-s5-b2 107 742 606 32 574 9020 123 943
Urquhart-s5-b3 121 1116 692 41 230 11 404 188 875
Urquhart-s5-b4 114 888 636 37 978 10 497 171 576

Table 2. Small existing ER proofs of pigeon-hole formulas and Tseitin formulas.

ER by Cook [4]
formula #def #res
hole20 2660 160 151
hole30 8990 810 161
hole40 21 320 2 560 171
hole50 41 650 6 250 181

ER by EBDDRES [11]
formula #def #res

Urquhart-s5-b1 11 054 39 702
Urquhart-s5-b2 12 684 45 389
Urquhart-s5-b3 28 358 100 585
Urquhart-s5-b4 16 295 58 552

6 Replacing RAT Addition With Blocked-Clause Addition

In our polynomial simulation, we needed to introduce a new variable for ev-
ery proper RAT addition. This cannot be avoided because extended resolution
without new variables is just ordinary resolution, and ordinary resolution is ex-
ponentially weaker than both DRAT and extended resolution [6]. We now show
how blocked-clause addition, introduced by Kullmann [13] as a generalization of
the extension rule from extended resolution, can be used to replace RAT addition
without introducing new variables. This shows that a simple generalization of
the extension rule is essentially as powerful as RAT addition, even when no new
variables are introduced. Informally, a clause is blocked if all resolvents upon one
of its literals are tautologies [13]:

Definition 5. A clause C is blocked by a literal p ∈ C in a formula F if all
resolvents of C upon p with clauses in F are tautologies.
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Example 5. Consider the formula F = (p̄∨ b̄)∧ (p̄∨ ā)∧ (p∨ c)∧ (a∨ c) and the
clause a∨ b∨ p. There are two resolvents of a∨ b∨ p upon p: The clause a∨ b∨ b̄,
obtained by resolving with p̄ ∨ b̄, and the clause a ∨ b ∨ ā, obtained by resolving
with p̄∨ ā. As both resolvents are tautologies, a∨ b∨ p is blocked by p in F . ut

Blocked clauses are thus more restricted than RATs: While the RAT property
only requires all the resolvents to be implied via unit propagation, blocked clauses
require them to be tautologies, which are trivially implied via unit propagation.
Hence, every blocked clause is also a RAT but not vice versa.

We follow an iterative procedure similar to the one presented in Section 4.
Suppose C = c1 ∨ · · · ∨ ck ∨ p is a proper RAT on p in a formula F . To re-
place the addition of C to F , we first turn C into a blocked clause by replacing
the resolution partners that do not lead to tautological resolvents. We then add
the clause with blocked-clause addition and afterwards derive all the original
resolution partners again. As illustrated in Fig. 4, this leads to a sequence con-
sisting of RUP additions, clause deletions, and a single blocked-clause addition.
Specifically, we perform the following steps:

(1) For every clause D∨ p̄ ∈ Fi−1 such that the resolvent R = c1∨· · ·∨ ck∨D
with C upon p is not a tautology, add R with RUP addition. The resolvent
R is guaranteed to be a RUP because C is a RAT on p in Fi−1.

(2) For every clause D∨ p̄ ∈ Fi−1 such that the resolvent with C upon p is not
a tautology, replace D∨p̄ by the clause set Dp = {(c̄j∨D∨p̄) | 1 ≤ j ≤ k}.
Since all the clauses in Dp are subsumed by D∨ p̄, this replacement results
in a sequence of deletions and RUP additions. Note that in case C is a
unit clause, the set Dp is empty and so all resolution partners are deleted.

(3) Add C with blocked-clause addition. This is a correct addition because
after step 2, every clause that contains p̄ contains a literal c̄j with cj ∈ C.
Hence, by resolving such a clause with C we obtain a tautology.

(4) Use RUP addition to add all the clauses D∨ p̄, which we replaced in step 2,
again. The addition of such a clause D∨ p̄ is a correct RUP addition: If C
is a unit clause, we have added R = D (which subsumes D ∨ p̄) in step 1.
If C is not a unit clause, then Dp∪{R} implies D∨ p̄ via unit propagation:
By propagating p and the negated literals of D, we derive the unit clauses
(c̄1), . . . , (c̄k) from the clauses in Dp = {(c̄j ∨ D ∨ p̄) | 1 ≤ j ≤ k}. But

. . . RAT . . .

. . . RUP . . . RUP Del . . . Del BC RUP . . . RUP Del . . . Del . . .

Fig. 4. We transform a RAT addition into a sequence consisting of RUP addi-
tions, clause deletions (Del), and a single blocked-clause addition (BC).
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these unit clauses lead to a conflict with the clause c1 ∨ · · · ∨ ck, which we
derive by propagating the negated literals of D on R = c1 ∨ · · · ∨ ck ∨D.

(5) Delete all the RUPs added in step 1 and the clause sets Dp added in step 2.

Example 6. Consider the formula F = {p̄, a∨ b∨ c, c̄∨ d, d̄, ā∨ e, b̄∨ e} and
the clause C = a ∨ b ∨ p. The clause C is not blocked but it is a RAT on p in F ,
meaning that F implies the resolvent a ∨ b of C and p̄ via unit propagation. To
turn C into a blocked clause, we first add a ∨ b with RUP addition. We next
replace p̄ by the clauses p̄ ∨ ā and p̄ ∨ b̄ (both clauses are subsumed by p̄ and
thus they are RUPs). Now p̄ ∨ ā and p̄ ∨ b̄ contain literals whose complements
occur in C. We can thus add C with blocked-clause addition.

After this, we use RUP addition to add the original resolution partner p̄ again:
This is a correct RUP addition because a∨b, p̄∨ ā, and p̄∨ b̄ together imply p̄ via
unit propagation (to see this, observe that making p true forces ā and b̄ to be
true which leads to a conflict with a∨b). This step is actually the reason why we
derived a ∨ b in the beginning. Finally, we delete the intermediate clauses a ∨ b,
p̄ ∨ ā, and p̄ ∨ b̄ to obtain the formula F ∪ {C}. ut

7 Conclusion

We showed how every DRAT proof can be feasibly transformed into an extended-
resolution proof. To evaluate the increase in size caused by our simulation, we
implemented it and performed experiments on existing DRAT proofs for hard
formulas. The experiments revealed that the obtained proofs are far smaller than
the theoretical worst case and that they are also not much larger than existing
extended-resolution proofs of the same formulas. We imagine that the size of
the proofs could be reduced even further by performing additional compression
steps, which is a direction for future work.

In addition, we showed how blocked-clause addition can be used to simulate
the addition of resolution asymmetric tautologies (RATs) without the introduc-
tion of new variables. Our results provide us with a better understanding of
both DRAT and extended resolution. We now know how extended resolution can
mimic the reasoning steps of DRAT. Moreover, our transformations illustrate
that the addition of RATs in DRAT combines in an elegant way the benefits
of resolution, subsumption, and blocked-clause addition. We thus believe that
DRAT is still the preferable proof system for practical SAT solving, even though
it offers no exponential gains in expressivity compared to extended resolution.
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