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Abstract. We present a mechanically-verified proof checker developed with the

ACL2 theorem-proving system that is general enough to support the growing

variety of increasingly complex satisfiability (SAT) solver techniques, including

those based on extended resolution. A common approach to assure the correct-

ness of SAT solvers is to emit a proof of unsatisfiability when no solution is

reported to exist. Contemporary proof checkers only check logical equivalence

using resolution-style inference. However, some state-of-the-art, conflict-driven

clause-learning SAT solvers use preprocessing, inprocessing, and learning tech-

niques, that cannot be checked solely by resolution-style inference. We have de-

veloped a mechanically-verified proof checker that assures refutation clauses pre-

serve satisfiability. We believe our approach is sufficiently expressive to validate

all known SAT-solver techniques.

1 Introduction

Satisfiability (SAT) solvers are becoming commonplace for a variety of applications,

including model checking [1], equivalence checking, hardware verification, software

verification, and debugging. These tools are often used not only to find a solution for

a Boolean formula, but also to make the claim that no solution exists. If a solution

is reported for a given formula, one can check the solution linearly in the size of the

formula. But when no solution is reported to exist, we want to be confident that a SAT

solver has fully exhausted the search space. This is complicated by the fact that state-

of-the-art solvers employ a large array of complex techniques to maximize efficiency.

Errors may be introduced at a conceptual level as well as a implementation level. Formal

verification, then, is a reasonable approach to detect errors or to assure that results

produced by SAT solvers are correct.

One method of assurance is to apply formal verification to the SAT solver itself. This

involves modeling a SAT solver, specifying the desired behavior, and using a tool—such

as a theorem prover—to show that the model meets its specification. The benefit of such

a direct approach is that the solver would only need to run once for a given input. There

are many problems with this approach, however. SAT solvers are constantly evolving,

and each new implementation would require a new proof. Furthermore, it is hard to

balance verification requirements with efficiency. Lescuyer and Conchon [2] formal-

ized and verified the basic Davis-Putnam-Logemann-Loveland (DPLL) [3,4] algorithm
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using Coq [5]. Shankar and Vaucher [6] verified a DPLL solver using PVS. Marić [7,8]

verified pseudocode fragments of a conflict-driven clause-learning (CDCL) [9] solver

in 2009 and verified a CDCL-style solver using Isabelle/HOL [10] in 2010. Oe et al.

[11] provided an verified CDCL-style solver in Guru. Several key techniques, such as

clause minimization during conflict analysis, have yet to be mechanically verified.

Another approach is to validate the output of a SAT solver. A proof trace is a se-

quence of clauses that are claimed to be redundant with respect to a given formula. If

a SAT solver reports that a given formula is unsatisfiable, it can provide a proof trace

that can be checked by a smaller, trusted program called a proof checker. A refuta-

tion is a verified proof trace containing the empty clause. Ideally, a proof trace should

be compact, easy to obtain, efficient to verify, and should facilitate a simple checker

implementation. Moreover, we “only” need to formally verify the proof checker. By

focusing verification efforts on a proof checker, we gain assurance while avoiding the

need to verify a variety of solvers with differing implementations.

Proof traces have traditionally established redundancy in the form of resolution

chains [12,13,14]. In resolution-style proofs, clauses are iteratively added to a formula

provided that they can be derived from a sequence of applications of the resolution rule.

Resolution proof traces are simple to express and can be efficiently validated, but they

tend to be enormous and difficult to obtain from a solver. Weber [15,16] demonstrated

the first mechanically-verified resolution-based proof checker using Isabelle/HOL. Dar-

bari et al. [17] verified a resolution-based proof checker in Coq which is able to exe-

cute outside of the theorem-prover environment. Armand et al. [18] extended a SAT

resolution-based proof checker to include SMT proofs using Coq.

Alternatively, one can use unit propagation, one of the basic SAT simplification

techniques, to check proof traces. Each proof clause is shown to be redundant by adding

the complement of the clause as unit clauses, performing unit propagation with respect

to the conjunction of the original formula and all verified proof clauses so far, and

then checking for a conflict. This process is known as reverse unit propagation (RUP)

[13,19]. RUP proofs are compact and easy to obtain; however, RUP checkers are some-

what inefficient and more complicated than their resolution-based counterparts. Oe and

Stump [20] implemented a non-verified RUP proof checker in C++ and proposed a

verified RUP proof checker in Guru.

However, both resolution and RUP proof formats lack the expressivity to capture a

growing number of techniques used in state-of-the-art SAT solvers. SAT solvers often

use preprocessing and inprocessing in addition to (CDCL-style) learning, and some of

these techniques cannot be expressed by resolution-style inference such as bounded-

variable addition [21], blocked-clause addition [22], and extended learning [23]. These

techniques can be expressed, however, by extended resolution (ER) [24] or a generaliza-

tion of ER [22]. Järvisalo et al. [25] demonstrated a hierarchy of redundancy properties,

the most expressive of which is Resolution Asymmetric Tautology (RAT), which is a

generalization of RUP. All preprocessing, inprocessing, and learning techniques used

in contemporary solvers can be expressed by the addition and removal of RAT clauses.

One key difference, however, between RAT and RUP (or resolution) is that RAT checks

satisfiability equivalence instead of logical equivalence.
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In [26], we proposed a new proof format based on the RAT redundancy property and

described a fast implementation of a proof checker for this format written in C. In this

paper, we present a mechanically-verified SAT proof checker using ACL2 [27] based

on the RAT redundancy property. This includes a mechanical proof of the redundancy

(via satisfiability equivalence) of RAT clauses. Our implemented proof checker is the

most expressive proof checker to date and it is mechanically verified.

In Section 2 we will introduce ACL2 and formalize key SAT concepts including unit

propagation and resolution. We will also discuss a redundancy hierarchy and provide

our implementation of RAT and our RAT proof checker. We will give a specification for

our RAT proof checker in Section 3, and present our mechanical proof of correctness in

Section 4. Finally, we conclude in Section 5.

2 Formalization

2.1 ACL2

We used the ACL2 system [27] to develop our formalization, specification, and proof.

ACL2 is a freely-available system that provides a theorem prover and a programming

language, both of which are based on a first-order logic of recursive functions. The logic

is compatible with Common Lisp—indeed, “ACL2” is an acronym that might be written

as “ACL2” and stands for “A Computational Logic for Applicative Common Lisp”—

and an executable image can be built on a number of Common Lisp implementations.

ACL2 provides efficient execution by way of Common Lisp compilers.

The initial theory for ACL2 contains axioms for primitive functions such as cons

(the constructor for an ordered pair), car (the head of a list or first component of a pair),

and cdr (the tail of a list or second component of a pair). It also contains axioms for

Common Lisp functions, such as member, and it introduces axioms for user-supplied def-

initions. ACL2 provides a top-level read-eval-print loop. Arbitrary ACL2 expressions

may be submitted for evaluation. Of special interest are events, including definitions

and theorems; these modify the the theorem prover’s logical database for subsequent

proof and evaluation. Function definitions are typically expressed using the defun event

and theorems using the defthm event. We call an ACL2 function a predicate if it returns

a Boolean value.

As is the case for Lisp, the syntax of ACL2 is generally case-insensitive and is based

on prefix notation: (function argument1 ... argumentk). For example, the term de-

noting the sum of x and y is (+ x y). A semicolon “;” starts a comment. ACL2 also

supports the functions let and and let* for parallel and sequential bindings, respec-

tively. Functions may return mulitple values using the constructor mv which stands for

“multiple value”. Elements of mv may be accessed with the function mv-nth which ac-

cesses the nth value of an mv. The function mv-let takes three arguments: a list of

bindings, a function that returns an mv (with the same number of values as the bind-

ings), and a body. For example, suppose that a function f returns two values and we

wish to compute their sum. We can compute this with the following term:

(mv-let (x y)

(f ...)

(+ x y))
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ACL2 does not have native support for quantification in the logic; however, ACL2

allows a user to define Skolemized functions using the defun-sk event. This event in-

troduces a witness function that will return a witness object if such an object exists. For

example, if we wanted to express the mathematical statement, “there exists an x such

that x < y”, we could do so with the event:

(defun-sk exists-x-<-y (y) (exists x (< x y)))

This event defines a non-executable, one-argument function exists-x-<-y-witness

that will return an x if one exists. The non-executable function exists-x-<-y returns

true if exists-x-<-y-witness finds such an object.

Links to papers that apply ACL2, as well as detailed hypertext documentation and

installation instructions, may be found on the ACL2 home page.1

2.2 Satisfiability Basics

We will now begin introducing some SAT concepts. We will forego providing the tradi-

tional SAT notation and will instead use ACL2 notation. In this way, we can define key

SAT terminology while describing our formalization.

We model Boolean variables with positive integers. For a Boolean variable v, there

are two literals, the positive literal l and the negative literal computed by (negate l).

We represent positive and negative literals as positive and negative integers, and we rec-

ognize them with the predicate literalp. A clause is a finite disjunction of literals, and

a clause is a tautology if it contains the conflicting literals l and (negate l) for some l.

We introduce the predicate no-conflicting-literalsp to recognize non-tautological

lists, and we define the predicate clausep to recognize non-tautological ACL2 lists of

unique literals.2 A conjunctive normal form (CNF) formula, recognized by predicate

formulap, is a finite conjunction of clauses which we represent as an ACL2 list of non-

tautological clauses. We do not require clauses to be unique within a formula. In the rest

of this paper, we will assume all formulas to be in CNF. The set of literals occurring in

a formula f is computed by the function all-literals.

A truth assignment for a formula f is a partial function that maps literals l in

(all-literals f) to Boolean values. We model an assignment, with predicate

assignmentp, as a ACL2 list of unique non-conflicting literals (note that the imple-

mentations of assignmentp and a clausep are the same). In our ACL2 representation,

we define special values true, false, and undef with corresponding predicates truep,

falsep, undefp. The evaluation of literal l with respect to assignment ta is computed by

the function evaluate-literal which returns true if (member l ta), false if (member

(negate l) ta), and undef otherwise. The evaluation of a clause c with respect to

assignment ta is computed by the function evaluate-clause which returns true if

(evaluate-literal l ta) is true for some literal l in c, false if (evaluate-literal

l ta) is false for all literals l in c, and undef otherwise. The evaluation of a for-

mula f with respect to assignment ta is computed by the function evaluate-formula

which returns true if (evaluate-clause c ta) is true for all clauses c in f, false if

(evaluate-clause c ta) is false for some clause c in f, and undef otherwise.

1 www.cs.utexas.edu/users/moore/acl2/
2 This is the same representation as the SAT competition DIMACS format.

www.cs.utexas.edu/users/moore/acl2/
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We say a clause c, or a formula f, is satisfied by an assignment ta if evaluation of

c, or f, with respect to ta is true. An assignment that satisfies a formula is called a

solution. We say a clause c, or a formula f, is falsified by an assignment ta if evaluation

of c, or f, with respect to ta is false. A formula f is satisfiable if there exists a solution

for f and unsatisfiable if there does not exist a solution for f. Two formulas are logically

equivalent if and only if they have the same set of satisfying assignments. Two formulas

are satisfiability equivalent if and only if they are both satisfiable or both unsatisfiable.

The negation of a clause is an assignment computed by negate-clause. For exam-

ple, (negate-clause ’(1 -2 3)) returns the assignment (-1 2 -3). The negation of

an assignment is a clause computed by negate-assignment. Both functions share the

same implementation and are complements of each other.

2.3 Proof Traces

Conflict-driven clause learning (CDCL) [9] is the leading paradigm of modern SAT

solvers. A core aspect of CDCL solvers is the addition and removal of clauses. The main

form of CDCL reasoning is known as conflict analysis, which adds conflict clauses en-

countered during search. Additionally, state-of-the-art CDCL solvers use preprocessing

and inprocessing techniques that both add and remove clauses.

A clause c is redundant with respect to a formula f if (cons c f) is satisfiability

equivalent to f. A formula is a set of clauses, and we write (cons c f) to extend a

formula. We say the addition of a redundant clause c to f preserves satisfiability.

A proof trace is a sequence of clauses that are redundant with respect to an input

formula. Note that a proof trace is a sequence because the order of the clauses in a proof

trace is essential. As an example, two clauses c1 and c2 may both be redundant with

respect to a formula f, but c2 may not be redundant with respect to the extended formula

(cons c1 f). A proof trace can be validated by a proof checker tool that iteratively

(or recursively) removes the first clause c from a proof trace, checks the clause c for

redundancy with respect to the current formula f, and then extends the set f with c. A

validated proof trace that contains the empty clause, which cannot be satisfied, is called

a refutation.

2.4 Resolution and Resolution Proofs

The early approaches to verify proof traces were based on resolution [12]. The resolu-

tion rule states that given a clause c1 containing literal l and a clause c2 containing lit-

eral (negate l) that the resolvent is the union of c1 without l and c2 without (negate

l). The resolvent is logically implied by c1 and c2. We compute resolvents with the

function (resolution l c1 c2). Note that one can compute resolution without the use

of a resolving literal, i.e. l. We chose this form in our model because it is more explicit

and eases proof burdens.

Example 1. The clauses (1 -2) and (2 -3) contain a conflicting literal, i.e, one clause

contains l and the other contains (negate l). Therefore, we can apply resolution on

them. (resolution -2 ’(1 -2) ’(2 -3)) results in (1 -3).
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Resolution proof traces are a sequence of clauses whose redundancy can be estab-

lished by a sequence of resolutions on clauses from an input formula. Clauses added by

CDCL solvers can be simulated by a sequence of resolutions [28]. Because resolution is

such an elementary operation, simple and fast checking algorithms exist [12] that assure

that a trace of resolution applications is correct. However, resolution proofs tend to be

very large, and it may be hard to modify a SAT solver to emit a resolution refutation; for

instance, one must determine the clauses on which to apply resolution, and specifying

the order of resolutions can be difficult.

2.5 Extended Resolution

For a given formula f, the extension rule [24] allows one to iteratively add clauses to

f encoding the logical AND of two existing literals as a new Boolean variable. More

specifically, given variables 1, 2 that appear in f and a variable 3 which does not appear

in f, the clauses ((3 -1 -2) (-3 1) (-3 2)) can be added to f. Extended Resolution

(ER) [24] is a proof system in which the extension rule is repeatedly applied to a formula

f, followed by applications of the resolution rule. This proof system surpasses what can

be expressed using only resolution.

ER [24] is the basis for some techniques used during learning [23] and prepro-

cessing [21] in state-of-the-art SAT solvers. Refutations using ER can be exponentially

smaller than refutations based solely on resolution. Examples include the pigeon-hole

problems where Haken [29] showed that all resolution proofs are exponential in size,

while Cook [30] demonstrated that some ER proofs can be polynomial in size. Our

proof checker supports techniques that are based on ER.

2.6 Unit Propagation and Clausal Proofs

Goldberg and Novikov [19] proposed an alternative to resolution-based proofs. They

observed that each clause added by CDCL conflict analysis can be checked using unit

propagation, also known as Boolean constraint propagation. This technique simplifies

a formula f based on unit clauses. A clause of any length is unit if all literals in the

clause c evaluate to false under an assignment ta except for one, which evaluates to

undef; this literal is called a unit literal and is added to ta. Adding the unassigned

literal to ta makes c evaluate to true under the extended assignment. This procedure

continues until a unit clause cannot be found.

Unit propagation can be used to check if a clause c is logically implied by a formula

f. Start with the assignment (negate-clause c). Apply unit propagation until a conflict

arises, i.e., some clause in f is falsified. If a conflict occurs, then adding c to f preserves

logical equivalence [19]. Clauses that can be checked using this procedure are also

known as reverse unit propagation (RUP) clauses [13].

Example 2. Consider the formula f = ((-1 2) (-2 -3) (3 4)) and the assignment

ta = (1 -4). Formula f under ta contains two unit clauses: (-1 2) with unit literal

2 and (3 4) with unit literal 3. Extending ta with the unit literals results in the ex-

tended assignment (1 2 3 -4). The extended assignment falsifies clause (-2 -3), so

unit propagation results in a conflict. Unit propagation on f under (1 -4) results in a

conflict, which shows that clause (-1 4) is redundant with respect to f.
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Because unit propagation will play a key role in our proof checker, we formalize

this technique below. The function (is-unit-clause c ta) returns the unit literal if

one exists or nil if c is not unit. The function (find-unit-clause f ta) recursively

checks if each clause in f is unit, returns the multiple-value pair containing the unit

literal and unit clause if a unit clause exists, and returns the multiple-value pair (mv

nil nil) otherwise. Unit propagation for a formula f with respect to assignment ta is

defined as follows:

(defun unit-propagation (f ta) ;; Formula f, assignment ta

(declare (xargs :measure (num-undef f ta))) ;; Termination measure

(mv-let (ul uc) ;; Unit literal, unit clause

(find-unit-clause f ta) ;; Found by find-unit-clause

(declare (ignorable uc)) ;; Unit clause not needed

(if (not ul) ;; No unit literal?

ta ;; Then, return assignment

(unit-propagation f (cons ul ta))))) ;; Recur with new ta

The mv-let (Section 2.1) calls find-unit-clause, binds the results to ul and uc,

declares that uc will be ignored, and executes the body which tests for a unit literal and

recurs with an extended assignment if a unit literal is found.

ACL2 proves the termination of each function admitted to the logic. In most in-

stances, ACL2 will be able to prove the termination of a function without additional

help, but sometimes one might need to explicitly provide a measure. A measure is a

function which computes a value that must decrease (with respect to a well-defined re-

lation) during every recursive call. We provide a measure for unit-propagation in the

definition above called num-undef that computes the number of clauses in f that evalu-

ate to undef under ta. While ta is recursively extended during unit-propagation, the

measure will decrease because each unit literal added to ta will make one undef clause

become true.

2.7 Redundancy Hierarchy

There are many properties that can establish the redundancy of a clause. Järvisalo et

al. [25] offers a hierarchy of fifteen redundancy properties that can be computed in

polynomial time with respect to a formula. If a clause has one of those fifteen prop-

erties with respect to a given formula, then adding the clause to the formula preserves

satisfiability. A discussion of all fifteen properties goes beyond the scope of this paper,

so we will focus on the four properties that are related to our proof checker. A reduced

hierarchy is shown in Fig 1.

We have already presented two redundancy properties. A clause has T (tautology) if

and only if it contains the literals l and (negate l) for some l. A clause has AT (asym-

metric tautology) if and only if reverse unit propagation results in a conflict. Note that

any clause with property T trivially has the property AT. Many techniques used in SAT

solvers can be expressed as a trace of clauses with AT including CDCL learning [31],

variable elimination (DP resolution) [3,32] and subsumption. Adding clauses with T or

AT to a formula preserves logical equivalence.
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The other two redundancy properties are related to resolution. For a given literal

l and a formula f, let f-neg-l denote the subset of clauses in f that contain the lit-

eral (negate l). First, a clause c has RT (resolution tautology) if and only if c has

T or it contains a literal l such that all resolvents between c and a clause in f-neg-l

have T. Second, a clause c has RAT (resolution asymmetric tautology) if and only if

c has AT or it contains a literal l such that all resolvents between c and a clause in

f-neg-l have AT. If a clause has any redundancy property in the hierarchy, then it also

has RAT [25]. Techniques that can be expressed using RAT but not with AT include

blocked clause addition [22], bound variable addition [21], extended resolution [24],

and extended learning [23].

Example 3. Let formula f be ((1 2) (2 3) (-2 -3)).

– The clause (1 -1) is a tautology (has T) because it contains 1 and (negate 1).
– The clause (1 -3) does not have T. However, it has RT (and RAT) with respect to f

and literal 1, because f contains no clauses with literal -1. Furthermore, it also has

AT because unit propagation with the assignment (-1 3) results in a conflict.
– The clause (-1 3) has RAT, but not T, AT, or RT. Unit propagation under the as-

signment (1 -3) does not result in a conflict, so (-1 3) does not have AT. Also,

(-1 3) does not have RT, because there are non-tautological resolvents with (1 2)

and (-2 -3). Finally, the only resolvent on literal -1 is computed by resolving (-1

3) with (1 2) to obtain (2 3), which is already in f. So, unit propagation on the

negation of the resolvent, (-2 -3), results in a conflict. Hence, (-1 3) has RAT.

T

AT

CDCL learning

DP resolution

subsumption

RAT

extended learning

bounded variable addition

RT

extended resolution

blocked clauses
preserve

logical equivalence
preserve

satisfiability

Fig. 1. Relationships between clause redundancy properties that can be computed in polynomial

time with respect to the size of a formula. Techniques, shown in italics, are positioned based

on the most efficient check to verify that technique. All techniques used in state-of-the-art SAT

solvers can expressed as a sequence of RAT clauses [25]. The dashed line separates techniques

that preserve logical equivalence and techniques that preserve satisfiability.

2.8 RAT

RAT is the strongest redundancy property in the hierarchy of [25] that preserves satisfi-

ability. All preprocessing, inprocessing, and solving techniques in state-of-the-art SAT
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solvers can be expressed in terms of addition and removal of RAT clauses [25]. Re-

call that a clause c has RAT if and only if c has AT or it contains a literal l such that

all resolvents between c and a clause in f-neg-l have AT. A clause c has AT if unit

propagation on the assignment (negate c) results in a conflict.

We define resolution asymmetric tautology (RAT) as follows:

(defun ATp (f c) ;; Given formula f, clause c

(falsep (evaluate-formula f

(unit-propagation f (negate-clause c)))))

;; Given clause list cl, formula f, clause c, and literal l

(defun RATp1 (cl f c l)

(if (atom cl) ;; End of clause list?

t ;; Then, success

(if (not (member (negate l) (car cl))) ;; No resolution?

(RATp1 (cdr cl) f c l) ;; Then, continue

(let ((r (resolution l c (car cl)))) ;; Make resolvent

(if (tautologyp r)) ;; Resolvent has T?

(RATp1 (cdr cl) f c l) ;; Then, continue

(and (ATp f r) ;; Resolvent has AT?

(RATp1 (cdr cl) f c l))))))) ;; Then recur, else fail

(defun RATp (f c l) ;; Given formula f, clause c, and literal l

(RATp1 f f c l)) ;; Copy f for recursion in helper function

The function RATp destructively recurs over a formula but needs a copy of the formula

to compute asymmetric tautologies. Therefore, we begin by calling a helper function

RATp1 which has two copies of formula f. The first copy will be used for recursion

and bound as cl while the second copy will remain untouched. If we have checked all

clauses in cl, then we return t because c has RAT. If (negate l) is not a member of the

current clause (car cl), then we recur. We next perform the resolution of c and (car

cl) on l and bind the result to r. Finally, we check if r is a tautology or if r has AT. If

either of these is true, we recur, and we return nil otherwise.

2.9 Proof Checker

We now present the implemenation of our proof checker. Our checker works by ensur-

ing that each clause c in a proof trace pt has ATp with respect to formula f or RATp with

respect to formula f on the first literal of the clause. If c can be verified, then c is added

to f before recurring.

(defun verify-clause (c f) ;; Given clause c, formula f

(or (ATp f c) ;; Verify by AT, OR

(and (not (atom c)) ;; Check for non-empty clause, AND

(RATp f c (car c))))) ;; Verify by RAT w.r.t. 1st literal

(defun verify-proof (pt f) ;; Proof trace pt, formula f

(if (atom pt) ;; End of proof trace?

t ;; Then, success
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(if (verify-clause (car pt) f) ;; First clause in pt verified?

(verify-proof (cdr pt) ;; Then, recur with

(cons (car pt) f)) ;; extended formula

nil))) ;; Else, fail

To be clear, we assume that the first literal of the clause (car c) is the literal on

which to perform resolution during the RATp check. This is a design choice and the

efficiency of this method is described in [26]. Note that the empty clause () will fail

the (not (atom c)) case in verify-clause. We do this because () does not have an

explicit resolution literal.

One can simply redefine verify-clause to only check clauses for ATp, removing

the call to RATp. This creates a traditional RUP proof checker.

Example 4. Let formula f = ((1 2 -3) (-1 -2 3) (2 3 -4) (-2 -3 4) (-1 -3 -4)

(1 3 4) (-1 2 4) (1 -2 -4)). A refutation for f is ((1) (2) ()).

3 Specification

We will introduce a few new concepts and then state our main theorem. The func-

tion clause-listp recognizes lists of clauses, similar to formulap. We define a proofp

object to be a clause list that has been checked by our proof checker. A proof is a

refutationp object if it also contains the empty clause. The predicate solutionp rec-

ognizes assignments that satisfy a given formula.

(defun proofp (pt f) ;; A proof is a clause sequence

(and (clause-listp pt) ;; that has been verified with

(verify-proof pt f))) ;; respect to a formula

(defconst *empty-clause* nil) ;; The empty clause

(defun refutationp (p f) ;; A refutation is a proof that

(and (proofp p f) ;; contains the empty clause

(member *empty-clause* p)))

(defun solutionp (ta f) ;; A solution is an assignment

(and (assignmentp ta) ;; that satisfies a formula

(truep (evaluate-formula f ta))))

We use the defun-sk event (Section 2.1) to define the notion that there exists a

solution for a formula.

(defun-sk exists-solution (f)

(exists ta (solutionp ta f)))

With those definitions, we can state our main theorem.

(defthm main-theorem

(implies (and (formulap f) ;; Given a formula f

(refutationp r f)) ;; And refutation r

(not (exists-solution f)))) ;; Then f is unsatisfiable
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This theorem reads that if given a refutation r and a formula f, then there does not

exist a solution for f. In other words, a refutation that has been verified by our RAT

checker implies that a formula is unsatisfiable. Note that this is only a specification for

correctness of our proof checker as defined above.

4 Proof

We will now describe the mechanical proof of main-theorem. ACL2-style proofs are

generally a sequence of defthm and defun events. While ACL2 processes events in a

bottom-up fashion, we provide a top-down description of our ACL2 proof. We want to

prove that a refutation r for a formula f implies that the formula is unsatisfiable. An

outline of the proof is as follows:

1. We will prove the contrapositive—if there exists a solution s for f, then we should

not be able to verify the refutation.

2. We prove that the empty clause cannot be redundant with respect to f provided s is

a solution for f.

3. We show that every clause c in r is redundant. This contradicts (2) because the

empty clause is a member of r. We use structural induction on r to prove this.

(a) We show that clauses with ATp are redundant.

(b) We show that clauses with RATp are redundant. We case split based on the result

of (evaluate-clause c s).

i. If (evaluate-clause c s) is true, then s is a solution for c.

ii. If (evaluate-clause c s) is undef, then we construct a new solution s+

that consists of s with an undef literal in c.

iii. If (evaluate-clause c s) is false, then we construct a new solution s*

that is s with the exception that one literal in s has been negated.

In order to prove main-theorem, we first expand the definition of refutationp and

contrapose the call of verify-proof with exists-solution. We will now use structural

induction on the proof trace pt.

(defthm verify-proof-induction

(implies (and (clause-listp pt)

(formulap f)

(exists-solution f)

(member *empty-clause* pt))

(not (verify-proof pt f))))

Recall that at each step verify-proof adds a clause from the proof trace pt to

the formula. In our induction step, we will show that clauses in the proof with ATp or

RATp are redundant. This allows us to derive a contradiction because *empty-clause*

is a member of the refutation, does not have ATp or RATp with respect to a satisfiable

formula, and is therefore not satisfiability equivalent.

(defthm *empty-clause*-lemma

(implies (solutionp s f)

(not (ATp f *empty-clause*))))
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We prove this lemma with set reasoning. Specifically, if an assignment falsifies a

formula, then a superset of that assignment will falsify a formula. Any solution must be

a superset of the assignment constructed by performing unit propagation on the empty

clause. Furthermore, the empty clause does not have RATp because there is no literal

with which to perform resolution. We exclude this case by performing a (not (atom

c)) check in verify-clause.

We now return to the induction step of verify-proof-induction. This is a rather

odd induction step because it needs to be expressed in terms of existentials. We will

prove that if there exists a solution for the formula, then there exists a solution for the

formula extended with a clause from the proof trace. In other words, we want to show

that the extended formula is satisfiability equivalent to the original formula.

Here the proof diverges based on whether a proof clause has ATp or RATp. We con-

sider the ATp case in Section 4.1 and the RATp case in Section 4.2.

4.1 ATp

If a clause c has ATp with respect to a formula f, then we will show that (cons c f) is

logically equivalent to f (and therefore satisfiability equivalent to f).

(defthm ATp-lemma

(implies (and (ATp f c)

(exists-solution f)

(formulap f)

(clausep c))

(exists-solution (cons c f))))

We expand (exists-solution f) to obtain a witness solution s. We will use s as

a witness for the term (exists-solution (cons c f)) in the conclusion. We know

that s satisfies every clause in the original formula, so it is sufficient to show that s

satisfies the ATp clause. Recall the definition of ATp. We replace the clause c with an

abstraction (negate-assignment ta). As previously stated, negate-assignment and

negate-clause are complements of each other; (negate-clause (negate-assignment

ta)) simplifies to ta. We are then left with the following theorem.

(defthm ATp-lemma-induction

(implies (and (falsep (evaluate-formula f (unit-propagation f ta)))

(truep (evaluate-formula f s))

(formulap f)

(assignmentp ta)

(assignmentp s))

(truep (evaluate-clause (negate-assignment ta) s))))

We want to show that there is an l such that l is a member of s and (negate l)

is a member of ta. Let assignment up-ta be the result of (unit-propagation f ta).

Because up-ta falsifies f, there must be a clause c* that is falsified by up-ta. Since s

satisfies f, s also satisfies c*. Let l* be the literal that is a member of c* and s. Notice

that (negate l*) is a member of up-ta.

We will induct on the extended assignment up-ta. In the base case, up-ta is equal

to ta. Thus, (negate l*) is a member of ta and l* is a member of s. In the induction
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step, up-ta is (cons ul ta) for some unit clause uc with unit literal ul. Again, there

must be a clause c* that is falsified by up-ta but satisfied by s. Let l* be the literal that

is a member of c* and s. Either (negate l*) is equal to ul or (negate l*) is in ta.

If (negate l*) is in ta, then we are done. Otherwise, ul is equal to (negate l*), i.e.

(negate ul) is in s. Consquently, uc was not satisfied by ul. All literals in uc not equal

to ul are falsified by ta from the definition of unit clause. Let l** be the literal in s that

satisfies uc. Since l** cannot be ul, (negate l**) is in ta and l** is in s.

Commentary. The induction for ATp-lemma-induction is the most difficult part of the

proof of ATp-lemma. First, the induction is blocked by (negate-clause c). We tried

several abstractions, all of which affected the goal (truep (evaluate-clause c s)),

before settling on the use of negate-assignment. This abstraction lets us perform the

correct induction without significantly changing the goal. Second, the induction itself is

subtle because of the custom measure provided to unit-propagation. The assignment

continues to grow during every recursive call of unit-propagation, but the number of

undef clauses decreases.

4.2 RATp

We wish to show that if there exists a solution s for formula f and a clause c has RATp

with respect to f and literal l in c, then there is a solution for the set (cons c f).

(defthm RATp-lemma

(implies (and (formulap f)

(clausep c)

(member l c)

(exists-solution f)

(RATp f c l))

(exists-solution (cons c f))))

Let assignment s satisfy f. Consider the cases for (evaluate-clause c s).

– true: There exists a solution for (cons c f), namely s.

– undef: Choose literal l+ in c such that (evaluate-literal l+ s) returns undef.

Let assignment s+ be the result of (cons l+ s+). (evaluate-clause c s+) returns

true because (evaluate-literal l+ s+) returns true. Consider any clause c1 in

f. We know (evaluate-clause c1 s+) returns true, because (evaluate-clause

c1 s) returns true. Therefore, f is satisfied by s+ and there exists a solution for

(cons c f), namely s+.

– false: Make a new assignment s* such that (evaluate-literal l s*) is true by

removing (negate l) from s and then adding l to s. By construction, we have

that (evaluate-clause c s*) is true. We now need to show (evaluate-clause

c1 s*) is true for all c1 in f.

Consider a clause c1 in f. If literal (negate l) is not a member of c1, then we know

that (evaluate-clause c1 s*) is still true (because l is the only literal that changed

in s). Recall c has RATp so the resolvent r computed by (resolution l c c1) has ATp

with respect to f. By ATp-lemma, r is also satisfied by s. Therfore, there exists a literal
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lr in r such that (evaluate-literal lr s) is true. Now, lr cannot be in c because

(evaluate-clause c s) is false. Because lr is in r and not in c, we know lr is in c1.

Furthermore, lr cannot be equal to (negate l) because (negate l) is not in r by the

definition of resolution. Therefore, (evaluate-clause c1 s*) is true, and there exists

a solution for (cons c f), namely s*.

Commentary. One key observation during the proof of RATp-lemma was the need for

a case split on (evaluate-clause c s). We previously tried to use an induction on

clause list from RATp1 with (not (truep (evaluate-clause c s))) as a hypothesis,

which was insufficient. Feedback from ACL2 led us to a full three-way case split, which

strengthened the condition to (falsep (evaluate-clause c s)).

Another subtle part of the proof was the case of tautologyp for the resolvent during

an induction of the clause list in RATp1. In this proof, we needed to find a conflicting

literal in the resolvent and then show that the existence of a conflicting literal implies

that a clause from the formula is satisfied by the modified solution.

4.3 Statistics

Our RAT proof checker formalization, specification, and mechanical proof of correct-

ness3 contain 93 ACL2 defun events and 282 ACL2 defthm events and certifies in

approximately 45 seconds. Of those, 32 defun and 140 defthm events are specific to

the RAT proof checker while the other 61 defun and 142 defthm events are part of our

“library” of SAT concepts. This library includes code about sets, literals, clauses, eval-

uation, unit propagation, and parsing. The RAT proof checker contains 1088 lines of

uncommented non-blank lines of ACL2 source and 2080 lines total; the associated SAT

library contains 1121 uncommented non-blank lines of ACL2 and 1836 lines total. We

can extract only the definitions that are necessary to create an executable version of the

RAT proof checker; this can be expressed in just 26 defun events. ACL2 allows the user

to supply custom hints for conjectures that are not proved automatically; hints are used

to guide the theorem prover towards a proof. We had to provide custom hints for 33

of the 140 defthm events that are specific to the RAT proof checker and 12 of the 142

defthm events in the SAT library.

5 Conclusion

We presented the formalization, specification, and proof of correctness for a SAT proof

checker in ACL2. Our proof checker is based the strong redundancy property RAT

that preserves satisfiability. This allows us to validate refutations generated by state-

of-the-art SAT solvers that make use of techniques based on extended resolution. We

describe the first mechanically-verified proof checker to be complete with respect to all

contemporary SAT-solving techniques.

We are developing a faster checker that will employ watched-literal data structures.

Our current checker, although proven to be correct, is still too slow to use to check large

3 The implementation and proof presented in this paper are available at the address

http://cs.utexas.edu/~nwetzler/itp13/.

http://cs.utexas.edu/~nwetzler/itp13/
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proofs. We do not expect it to be too difficult to map clauses from list data structures to

memory arrays represented in a heap since the ACL2 formalization of arrays is actually

given with a list-based semantics. The inclusion of pointers to implement watched-

literals will require that we prove an invariant assuring that the watched-literal data

structure is always properly maintained. A fast, verified RAT proof checker could be

used improve ACL2 by way of a verified clause processor. In other words, ACL2 could

construct a SAT encoding for a given subgoal and then call any off-the-shelf SAT solver

that produces a solution or a proof trace, that could then be checked by our tool to

admit a theorem of unsatisfiablity into the logic. A framework for this proof strategy is

explored by Davis et al. in [33].

We submit that all SAT solvers should be able to emit UNSAT proofs that can be

checked. Experimentation has shown us that UNSAT proofs can generally be checked

using a C-based program with watched literals in a time similar to that required by

contemporary solvers. In the future, we encourage all SAT-solver developers to make

provisions for emitting RAT proof traces that can be verified using a checker, like the

one presented here. Furthermore, it should be the focus of future research to devise

elegant and efficient ways of producing RAT proof traces.
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7. Marić, F.: Formalization and implementation of modern SAT solvers. Journal of Automated

Reasoning 43(1) (April 2009) 81–119
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