
Solving games

Dependence of applicable solving procedures

M.J.H. Heule1? and L.J.M. Rothkrantz2

1 Department of Software Technology
2 Department of Mediamatica

Faculty of Electrical Engineering,
Mathematics and Computer Sciences

Delft University of Technology

marijn@heule.nl

l.j.m.rothkrantz@tudelft.nl

Abstract. We introduce an alternative concept to determine the solv-
ability of two-player games with perfect information. This concept -
based on games currently solved - claims that the applicable solving
procedures have a significant influence on the solvability of games. This
contrasts with current views that suggest that solvability is related to
state-space and game-tree complexity. Twenty articles on this topic are
discussed, including those that describe the currently obtained solutions.
Results include a description of the available solving procedures as well
as an overview of essential techniques from the past. Besides well-known
classic games, the solvability of popular and recent games zèrtz, dvonn,
and yinsh is analyzed. We conclude that our proposed concept could de-
termine the solvability of games more accurately. Based on our concept,
we expect that new solving techniques are required to obtain solutions
for unsolved games.

1 Introduction

Since the beginning of artificial intelligence, strategic games have captured the
imagination of the professionals in this field. Two separate lines of thinking can
be pointed out: Can artificial intelligence outperform the human masters in the
game? Secondly, can it determine the game-theoretic value of a game when all
participants play optimally? This value indicates whether a game is won or lost
from the perspective of the player who makes the first move. The methods to
reach these goals can differ substantially.
In this paper we will focus predominantly on solved games - those games for
which this game-theoretic value is known - and on the solving procedures used
to obtain these values. Why are some games solved, while others are beyond
our reach? We will show that characteristics of games and the available solving

? Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306



procedures have a profound influence on their solvability. Moreover, we claim
that the extent to which four essential solving techniques are applicable provide
some answers to this question.
In a survey paper by Van den Herik et al. [10] solvability of games is a central
theme. According to this paper, solvability is related to the state-space complex-

ity and game-tree complexity of games. The state-space complexity is defined as
the number of legal game positions obtainable from the initial position of the
game. The game-tree complexity is defined as the number of leaf nodes in the
solution search tree of the initial position of the game. A dichotomy applied to
each dimension roughly yields four categories following from the games’ state-
space complexity being low or high and the games’ game-tree complexity being
low or high. The classification of [10] is shown in Figure 1.

-

6
state-space complexity

game-tree complexity

Category 1

solvable by any method

Category 2

if solvable at all,

then by brute-force methods

Category 3

if solvable at all,

then by knowledge-based methods

Category 4

unsolvable by any method

Fig. 1. A double dichotomy of the game space.

Although the figure above seems plausible, its does not clarify why some two-
player games are currently solved. For instance, let us look at the first solved
game - qubic (1980) [13] - and the most recently solved game - awari (2003) [15].
According to Allis [1], both the state-space and the game-tree complexity of the
latter are smaller than those of the former. These facts could hardly be explained
by figure 1.

Here, we will suggest an alternative classification concept. Let the solution size
refer to the number of positions for which the optimal move / strategy must
be stored in a certificate proving the solvability of a game. This extends the
notion of decision complexity - the number of decisions that is required to store
a solution [3] - in the sense that a single strategy ”covers” multiple desicions
/ moves. So, the solutions size is smaller or equal to the decision complexity.
Solving procedures could be used the reduce the size of such a certificate or
the computational costs to obtain it. This notion is central in this paper: The

solvability of a game depends on whether solving procedures could be applied



to reduce the solution size to a reasonable complexity. With “reasonable” we
mean that the current computer hardware is sufficient to compute certificates of
that complexity. Of course, due to the ongoing evolution of computer hardware
this threshold increases by the years. When no procedures are applicable for a
certain game, it can only be solved when its state-space or game-tree is below a
reasonable complexity, say 1010 and 1020 respectively. Solving such a game can
then be achieved using elementary solving procedures that are applicable to all
games.

This classification concept differs in two ways from the classification concept
based on state-space and game-tree complexity. First, this alternative approach
does not make a distinction between knowledge-based methods and brute-force
methods. Secondly, no game could be labeled as unsolvable by any method. An
alternative view on game space, with this concept in mind, is shown in figure 2.
Notice that the first three categories appear much smaller than in figure 1. This
is done on purpose; the thresholds are much smaller than the borders of the
categories that Van den Herik et al. [10] had in mind.

-

6
state-space complexity

game-tree complexity

solvable by any method

solvable

by any

method

solvability depends on the

applicable solving procedures

Fig. 2. An alternative view on the game space.

Using this classification of dependence on applicable solving procedures, we could
explain past results more in detail. However, it is not ideal: it takes time and
effort to find out which procedures are applicable and to what extent these
procedures could reduce the solution size. Beside this concept, we will provide
an overview of various solving techniques that have been successful in the past
- the proven formulas - and merely touch on some that might (or might not) be
useful, since these are infinite in number and of unknown use. . .



2 Related Work

2.1 Preliminaries

In this paper, we restricted ourselves to zero-sum two-player games with per-
fect information. This excludes games like backgammon, in which chance plays
a major part stratego and implies imperfect information. This restriction also
excludes rubik’s cube - which is only played by one player - and monopoly, which
involves negotiation. Most of these restrictions follow directly from the focus
on the game-theoretic value: The game-theoretic value cannot be computed for
games in which chance, negotiation or imperfect information are an important
factor of the outcome. For example: the game-theoretic value of one-player games
is trivial: It is always a win for the first player! The exclusion of these games is
based on their substantial difference to two-player games.
Games of which the game-theoretic value is known are labeled solved. Three
degrees of solutions have been defined by Allis [1]. Lincke [11] distinguishes
these three solution categories as follows:

ultra-weakly solved A game is called ultra-weakly solved if only the value
of the start position is known. This corresponds to the general definition of a
solved search problem. For example, there is well-known proof (John Nash,
1949) that the game of hex on a n × n board is a win for the first player for any
n. So far, winning strategies are only known for n ≤ 9 [21].

weakly solved A game is called weakly solved if the value of the start po-
sition is known and a strategy is known which guarantees that the first player
can achieve that value. This means that for example if a game is known to be a
draw, then the first player will never lose. If the opponent makes a mistake, the
first player does not necessarily know a strategy which achieves the win.

strongly solved A game is called strongly solved if the best move can be
found (within reasonable time) from every position in the game.

The most interesting part of solving games lies less in obtaining the game-
theoretic value, yet more in determining the winning strategy. Therefore, this
paper considers only those procedures that weakly or strongly solve games.

2.2 Solved Games and their Complexities and Solution Sizes

What determines the solvability of a game? In their latest overview article on
solving games [10], van den Herik et al (2002) make an attempt to answer this
question. As stated in the introduction, this article suggests that state-space
complexity and game-tree complexity provide an answer to this question. Cur-
rently, eight two-player games1 with perfect information have been solved. Ta-

1 This report describes eight games that have been solved. There are also other ones
- often closely related to a solved one. Their removal does not change the general
view.



ble 1 shows the estimated values of the state-space and game-tree complexity by
Allis [1] of these games as well as the solution size of the first certificate prov-
ing the game-theoretic value. This concept of classification by state-space and
game-tree complexity appears logical, but the solutions of games played in the
past do not correspond with this chart. Practically all past solutions show some
friction in determinating solvability by state-space and game-tree complexity.

Table 1. Solved games ordered by year of solving.

Nr. Year Game
Search-space
complexity

Game-tree
complexity

Solution
size

Reference

① 1980 qubic 1030 1034 2.929 [1, 13]
② 1989 connect-four 1014 1021 — 2 [1, 19]
③ 1994 go-moku 10105 1070 138.790 [1, 2]
④ 1996 nine men’s morris 1010 1050 7.76 × 109 [1, 8]
⑤ 1996 pentominoes 1012 1018 — 2 [12]
⑥ 2000 domineering 1015 1027 4.42 × 108 [1, 7]
⑦ 2001 renju 10105 1070 813.674 [1, 20]
⑧ 2003 awari 1012 1032 8.89 × 1011 [1, 15]

Let’s look at two examples in detail:

(1) Qubic is the first non-trivial game that was solved (1980) [13]. Apparently,
this is an easy game to solve. However, classifying the game according to statistics
of state-space and game-tree complexity does not give that impression: Of the
eight games that have been solved, five have a much lower state-space complexity.
Four out of these five also have a lower game-tree complexity.

(2) Awari has a very low game-tree complexity, and holds the lowest state-space
complexity after nine men’s morris. It should therefore be labeled as “solvable by
any method”. However, the game had not been solved in 2002, when Van den
Herik et al wrote their article! Currently, it has been solved, but only by brute
force.

Probably the best illustration of the flaws of this classification concept is a game
space plot (Figure 3). This plot depicts all possible solutions, positioning them
in the sequence of the moments they were solved. To dampen the exponential
nature of both complexities, the measurements along the axes are given in 10log
10log format. The resulting image does not clearly reveal any logical relations.

More in general we see that only games are solved which solution size is less than
1012. Also the first solved game appears to have the smallest certificate proving
solvability, while the latest solved game has by far the largest solution size.
Moreover, there appears no single correlation between the size of the solution
and its search-space or game-tree complexiy.

2 The reference describing the solvability does not provide the solution size.



-

6

1

1.5

2

1 1.5 2

①

②

③

④

⑤

⑥

⑦

⑧

10log 10log

state-space complexity

10log 10log

game-tree complexity

Fig. 3. Approximate positions of games in the game space using their sequence number
of solving date.

3 Solving Procedures

In this section, we will discuss the available solving procedures for two-player
games with perfect information and how these procedures could be used to re-
duce the size of the solution or the computational costs to obtain it. For this
purpose, 20 articles were reviewed. An overview of the solving procedures men-
tioned in these articles is provided in Appendix A. In their article, Van den Herik
et al. [10] explicitly define six procedures to solve games: retrograde analysis,
enhanced transposition table methods, threat-space search and λ-search, proof-

number search, depth-first proof-number search and pattern search. These proce-
dures have been used as the basis to define five categories: retrograde analysis,
transposition tables, game-tree search procedures (this category includes proof-
number search and depth-first proof-number search), winning threat-sequence
procedures (which includes threat-space search and λ-search), and winning pat-

tern procedures (which includes pattern search).

3.1 Retrograde analysis

Retrograde analysis is a method in which for each position of some specific game
or endgame the optimal moves towards the best reachable goal is stored. For in-
stance, in chess, assuming perfect counterplay, the number of moves to be played



by the stronger side up to mate or conversion is stored. Checkers databases some-
times only contain an indication of won, drawn, or lost per position. A database
is constructed by starting in terminal positions and then working backwards.
Once constructed, perfect play is guaranteed: the stronger side chooses a move
with the shortest distance-to-mate (or to conversion) and the weaker side opts
for moves with the longest distance-to-mate (or to conversion). [10]

Retrograde analysis has proven to be a very powerful technique for solving games.
This technique is not really focused to reduce the solution size, but in construc-
tion a certificate piece by piece. This makes it possible to drastically reduce the
computational costs. Important contributions of retrograde analysis are solving
nine mens morris, checkers end-games, chess end-games, draughts end-games and
recently awari. In the near future it is expected that checkers will be weakly solved
from the initial position by use of elaborate end-game databases. The method
will be similar to the method used to solve nine mens morris [8]. The achievements
of retrograde analysis have been made possible by its many enhancements. For
a successful application of retrograde analysis one should consider the following
improvements:

Decomposition of the database: By dividing the database into multiple
smaller sub-databases, the computation cost to obtain the whole database de-
creases drastically. Furthermore, the results can be categorized more effectively
to retrieve a position. Decomposition can be achieved by splitting the database
based on the number of pieces, the different kinds of material and the leading
rank [16].

For instance, using a combination of these concept the whole database of check-

ers (backwards to ten pieces) with a total of 313 entries is reduced to slices with
a maximum of 1.7×1011 entries [16]. However, these kinds of reductions are not
applicable to all games: In games like awari, all material is identical and it is not
possible to identify the positions by leading rank.

Compression of the database: Various articles on retrograde analysis discuss
compression of the database. For instance, multiple positions could be stored in
one byte. A byte can store 28 (= 256) distinct values. For most game positions
only three possible values are needed: win, draw or loss. Storing five positions
(35 < 256) in one byte results in a compression by a factor of five compared to
elementary storage methods. This could even be extended (see [16]).

Compression to this extent is harder to achieve for awari, which requires storage
of the optimal difference in pieces instead of the win, loss or draw values. Yet
it is still possible: the algorithm described in [11] reduces the space needed to
store a position of awari to only two bits.

Parallel retrograde analysis: A successful implementation of parallel retro-
grade analysis is introduced by Romein and Bal [15]. Using this parallel algo-
rithm, they compute all legal positions of awari - solving it strongly. Essential
to this algorithm is that the work is migrated to other processors instead of
shipping data.



Neglecting unlikely positions: Not all legal positions contribute to (weakly)
solving a game. The combination of game-tree search with retrograde analysis
makes it possible to neglect unlikely positions. The game nine mens morris is
solved using this technique [8]: Of all m-n piece end-game databases (m ranging
from 3 to 9, n ranging from 3 to m) only the 9-9, 9-8 and 8-8 databases are used
for determining the game-theoretic value. This is based on the low likeliness
that one player loses two pieces during the opening phase of the game. If such a
situation occurred, the opponent would likely win.

This idea of negligence of unlikely positions is also used to acquire a rough
estimation of the upper bound of state-space needed to weakly solve checkers [16].
This provides a more accurate estimation of the effort to solve checkers than the
state-space or game-tree complexity.

3.2 Transposition tables

While solving of a game, many identical positions will occur within the game-
tree. Figure 4 below shows a connect-four position after four moves that follows
from three different opening sequences. When the game-theoretic value is known
for one of these sequences, this value is also known for the others. Storing this
value could prevent making additional costs. In a solution of a game, one table
entry could be used to cover multiple positions. Therefore, if transposition tables
are applicable, they could significantly reduce the size of a solution.

j j
z

z
j j

z
z

j j
z

z

j j
z

z

3 1

3 1

1 3

2

4

4

2

4

2

HHY

�

���

Fig. 4. Three opening sequences result in an identical position

Due to memory issues, not all positions could be solved in a transposition
table. Therefore, most transposition tables are implemented using a hashing
method [6]. The following enhancements for transposition tables are described
in the articles we review:

Table information: The amount of information that is stored in a transposi-
tion table per entry should be as small as possible. This way more entries can



be stored using the same amount of memory. For chess, at least the five ele-
ments should be in the transposition table [6]. Most other games require fewer
elements for storing in the table: For domineering, only positions of which the
game-theoretic value is known are stored in the table [7]. Therefore, only a single
bit-element is required for each position, describing whether it is won or lost.

Replacement Schemes: Since not all possible positions can be stored in a
transposition table, an effective strategy is needed to replace collisions. These
strategies are called replacement schemes. Two articles [6, 7] offer seven replace-
ment schemes. Both describe experiments to determine the performance of the
various schemes. The first uses chess positions as a testbed, while the other fo-
cuses on their ability to weakly solve the game of domineering. Both articles
conclude that the two-level table replacement schemes - so each entry has two
positions in the table - perform best.

Table size: Two experiments concern the size of the transposition table. The
first one [6] uses chess mid-game positions for the experiment and concludes: As
table size increases, the number of nodes searched tends to stabilize. In other
words, at some point, possibly before 1024K in our case, no significant gains may
be expected by increasing table size.

The second experiment [7], by the same authors, uses domineering positions.
Apparently, they were working towards the same conclusion, because only one
table was larger than 1024K entries. In contrast with chess mid-games this larger
table showed a significant performance gain compared to the 1024K entries table.
It remains a mystery why no larger tables were used in this experiment.

Another article on domineering [4] uses a table with 8192K entries. Under the
assumption that the evaluation function without enhancements in [4] is identical
to the one described in [7], it may be concluded that this elaborate table reduces
nodes up to 60 percent. In conclusion, the optimal table size is likely game de-
pendant.

Generalised positions: Some pieces or squares might not contribute to the
game-theoretic value or the best move – depending on what information is stored
in the transposition table. This could mostly occur in the end phase of a game.
These pieces or squares could be labeled as indifferent [19]. Positions with indif-
ferent pieces are called generalised positions. Multiple positions could be mapped
on the same generalised position. An example is shown in figure 5.

Symmetry: In practically all games symmetric positions occur. The amount
of symmetries varies per game: Awari has only one symmetry (rotation by 180
degrees) [15], while qubic has 192 symmetries [13]. When using these symmetries
in the opening phase of qubic, the possibilities of the first three moves can be
reduced from 64 × 63 × 62 = 249984 to only seven. By converting a position in
such a way that all symmetric positions are mapped on the same position, only
a check is required to see whether this converted one exists in the transposition
table.



j
z
j
z
j
z

z
j
z
j
z
j

z
j
z
j
z
j

j
z
j
z
j
z

Diagram I

z
j
z
j
z
j

z
j
z
j
z
j

z
j
z
j
z
j

z
j
z
j
z
j

j
z
j
z
j
z

Diagram II

Fig. 5. Two connect-four diagrams that could be mapped to the same generalised
position: All pieces in the first two columns of both diagrams could not contribute
to a winning line and therefore not to the game-theoretic value. These pieces could
thus be labelled as indifferent. All other pieces are equal.

3.3 Game-tree search procedures

A game-tree consists of all possible positions that could occur while playing the
game. The initial position is the root of the tree and all terminal positions (where
one of the players has won, or the game has reached a draw) are the leaves. The
size of the game-tree is usually estimated by powering the average number of
moves per position and the average number of turns. For othello these values
have been estimated to be 10 and 58, respectively [1]. The estimated game-tree
size would thus be 1058.

Game-tree search deals with an efficient examination of the tree in order to
achieve a desired outcome. Many procedures have been developed to reach a
goal as efficiently as possible. There are many uncertainties that need to be
handled by heuristics. An example: If the goal is to prove that white could
always win from its initial position, one has to prove that there exits a move for
white, so that for every move of black, there exists another move for white,
and for any possible response from black, there is a move for white by which
white eventually wins.

But how to reach this goal efficiently? First, this procedure will always try to
select a winning move for white. This way, it examines only one branch of the
tree: every position where white is to move. Second, if white can choose from
multiple winning moves, this procedure strives to select the one which will result
in the smallest sub-tree. This will reduce the size of the solution. However, to
fulfill these wishes, an oracle of Delphian proportions is required. Since we don’t
have one at our disposal, even more guesses have to be made to search efficiently:
If a white move would accidentally result in a draw or loss, one would want
to detect this error as soon as possible. Therefore, of all the black moves at
a given position, we need to look for the best black move with the smallest
possible sub-tree. In essence, game-tree search procedures are concerned with
estimations of the best move and the smallest sub-tree.



A large number of game-tree search procedures has been developed. Yet only
three of them have been actually used to solve games: α-β search [1], conspiracy-

number search [1], and proof-number search [17]. The usefulness of most other
game-tree search procedures is yet unknown: If they are applied to games at all,
they are used in chess or go. Since both of these games are far from weakly solved,
their performance at these games is no indication for their solving capabilities.
Two procedures are actually tested on two other games: PN* and PDS [17].
It would be interesting to see the exact reduction of the solution size that could
be realised by the various game-tree search procedures. Moreover, to what extent
do these procedures approximate the minimum size of the game-tree?

3.4 Winning threat-sequence procedures

All games involve threats like sudden death (e.g. check in chess) or the loss
of pieces. Especially sudden death threats can drastically reduce the game-tree
search and the solution size, since the opponent is heavily hampered in his mo-
bility: he is forced to reset his priorities and first counter the threat. We refer to
a winning threat-sequence as a sequence of threats to which the opponent has a
limited - and diminishing - set of replies. This way, a win could be forced. Because
the opponent is limited in his mobility, only a sequence of moves - instead of a
sub-tree - can be stored with a position in a solution certificate. Figure 6 shows
an example of a winning-threat sequence for tic-tac-toe. Procedures which inves-
tigate the existence of such a sequence in a certain position are called winning
threat-sequence procedures.

x
o

x
o

x
oF

B

x

o
F

B

B

I II III

- -

Fig. 6. An example of a winning threat-sequence in tic-tac-toe. Player x’s moves at F
in positions II and III force player o to block at B. However, in position III player o
has to block two squares. Since this is impossible, player o loses.

Three procedures concern winning threat-sequences: threat-sequence search, threat-
space search, and lambda search. The first two terms are used for identical pro-
cedures in some papers, but in this paper, we make a clear distinction. The
following procedures are associated with these terms:

Threat-sequence search: Threat-sequence search is a procedure which ex-
plores all possible combinations of threats until no new threats occur. If there
exists one, this search procedure will always find a winning threat-sequence, al-
though this may be very time-consuming. Threat-sequence search was used to



solve qubic [13].

Threat-space search: The threat-space search procedure is a more human-like
approach of finding a winning threat-sequence. Not all possible combinations of
threats are explored, but only the ones that will probably result in new threats.
The costs of this procedure are significantly less than the threat-sequence search.
However, in some cases a winning threat-sequence is not found. A general de-
scription of this procedure can be found in [1] and a specialized version of this
procedure for go-moku can be found in [2].

Lambda search: Lambda search is a procedure that looks further than a mere
search for a winning threat sequence. It looks for a winning threat sequence if
the opponent passes on the next turn. This search technique is only applicable
when passing is allowed in a game or when zugzwang is not a motive. This does
not mean that the winning threat-sequence only occurs if the opponent passes: A
winning threat sequence will occur whenever the opponent does not counter it.
If no winning threat-sequence exists at the current turn, Lambda search is very
useful to determine a relevant next move and to find a winning threat-sequence
in the next turn [18].

3.5 Winning pattern procedures

Many games become easier to solve during their progress. This makes it possible
to define a strategy for a guaranteed win. Once the existence of such a strategy
becomes evident, further searching in the game-tree becomes superfluous; the
game-theoretic value for that position is already known. Since most of these
strategies are formulised patterns, such a strategy is referred to as a winning

pattern procedure.
An example: Consider the connect-four diagrams in figure 7. It is obvious that
white will lose in Diagram II: white has to play either in column two or six,
while black will win by playing into the same column. Diagram I also shows
a clear win for black. black has an easy strategy which will lead to Diagram
II: black always has to play into the same column as white. This will force
white to move into a column it would rather not use.
These winning pattern procedures could be used to reduce the solution size:
instead of storing a subtree of positions showing that there exist a winning
strategy that guarantees a victory, only the pattern could be stored with a
position in the solution certificate. Six procedures discussed in the reviewed
articles are not mentioned yet. These could be considered - in some sense - as
winning patterns. These procedures are:

① Strategic rules for connect-four [19]
② Both evaluation functions for domineering [4, 7]
③ Decomposition patterns for hex [14, 21]
④ Partition search [9]
⑤ Pattern search (for hex) [14]
⑥ Go patterns generated by retrograde analysis [5]



z
z

j
z
j
j

j
z
j
j
j
z

z
z

Diagram I

z
z
j
z
j
z

j
z
j
j
j
z

j
z
j
j
j
z

z
z
j
z
j
z

j
z
j
z
j
z

Diagram II

Fig. 7. Two connect-four diagrams. white to move loses.

These six procedures are grouped in two categories: hand-made patterns and
computed patterns.

Hand-made patterns: The procedures of this category are ①, ② and ③. All
these patterns are hand-made by human experts, but they also share another
property: They have been essential to weakly solve some games.

– A combination of strategic rules ①, conspiracy-number search and enhanced
transposition tables were sufficient to weakly solve connect-four.

– The development of local patterns for hex ② made it possible to solve it up
to a 9×9 board. Other techniques were only able to weakly solve the game
up to the 7×7 board.

– The substantial reduction of the game-tree (in terms of nodes) by the winning

strategy functions ③, was essential to solve large boards of domineering.

A disadvantage of these hand-made patterns is that they are game-specific. They
could not be easily applied to other games.

Computed patterns: The procedures ④, ⑤ and ⑥ belong to this category. In
contrast with hand-made patterns, none of these procedures made a contribution
to any (weak) solution of a game. However, this does not mean they are not
useful:

– Partition search ④ significantly improved the performance of the game-
tree search in the game of bridge (imperfect information). The procedure
is promising, but it is not clear to which other games it could be successfully
applied.

– Pattern search ⑤ has not been tested in its ability to weakly solve hex. It
would be interesting to see whether it could compete with the local pattern
procedure ③. On larger boards it may not longer be possible to construct all
patterns by hand. An automated generation of patterns is probably required
to solve hex on the large sized boards. This might be realised by either
pattern search or a modification of local patterns.



– The study to the computer-generated patterns for go ⑥ is too small to make
some conclusions. Further experiments are required to indicate the usefulness
of this method.

3.6 Essential solving procedures

In the introduction, we presented a new concept for determining the solvability of
games. This concept ascribes a substantial influence to solving procedureson the
solvability of games - depending on their application to reduce the solution size
or the computational costs to obtain a solution. Besides the solution of pentomi-

noes, essential solving procedures could be appointed for each solution discussed
in the articles. Table 2 shows the essential solving procedures ordered by games.
The exception of pentominoes can be explained by its very low game-tree com-
plexity. Since it is below the estimated game-tree threshold of this concept (see
figure 2), it was solved by elementary procedures. The main reason why this
game was solved quite late (1996) is probably its lack of popularity.

Table 2. Games with their essential solving procedures.

Game Essential solving procedure(s) Reference

awari retrograde analysis [15]
checkers end-games retrograde analysis [16]
connect-four hand-made patterns, transposition tables [19]
domineering hand-made patterns, transposition tables [4, 7]
go-moku threat-space search [2]
hex (9×9) hand-made patterns [22]
nine men’s morris retrograde analysis, transposition tables [8]
pentominoes none [12]
qubic threat-sequence search [13]
renju threat-sequence search [20]

Looking at the essential solving procedures, two large gaps appear:

(1) None of the game-tree search procedures are mentioned in Table 2. This does
not mean that they were not applied to reduce the solution size: Although the
connect-four solution applied conspiracy-number search and the solution of go-

moku used proof-number search, neither of these articles related to the solutions
give the impression that these procedures were essential.

(2) As stated in the previous section, computer generated patterns have not yet
contributed to the solution of any game. This sharply contrasts with hand-made
patterns, which all were crucial to some solutions.



4 Results

The solving procedures discussed above - and thereby the reduction of the solu-
tion size - cannot just be applied to any game. Application depends largely on
the characteristics of a game. Four solving techniques appeared essential to solve
games in the past (see section 3.6). In this section we present four game charac-
teristics analogous to these four essential solving techniques. We conclude with
an overview of these characteristics and how they could be used to determine
solvability.

4.1 Convergent Endgames

Retrograde analysis is designed for games with convergent endgames - endgames
for which the size of the state-space decreases as the game progresses. Since
only nine men’s morris, awari, checkers, and chess have convergent endgames,
this technique is only applicable to them. To strongly solve a game by applying
retrograde analysis, it is required to store the complete legal state-space. Current
computers are only capable to store this data for nine-men’s morris and awari. In
the nearby future, checkers may be added to that list. However, the complete
state-space of chess is far too extensive to be strongly solved by merely applying
this technique.

4.2 Equivalent Positions

Many different opening sequences result in equivalent - identical, symmetric
or generalised - positions. The number of different opening sequences resulting
in the same equivalent position depends on the symmetries and material of a
game. Games as qubic, connect-four, go-moku, domineering, renju, hex and go

have multiple symmetries and consist only of two kinds of material. Therefore,
many equivalent positions occur in the search space. The same holds for awari:
Although it has only one symmetry, many equivalent positions occur, since only
one kind of material is used. Due to the diversity of material in both pentominoes

and chess, equivalent positions will occur relatively less frequent compared to
other games.
Mostly, equivalent positions occur for those positions that result after the same
number of turns. Therefore, the depth of the search-tree influences the usefulness
of transposition tables: a very deep game-tree requires a very large transposition
table. So, since go-moku has a smaller game-tree depth compared to renju, trans-
position tables applied to the former could be smaller than those applied to the
latter. Likewise, the immense game-tree depth of go will require an enormous
transposition table.

4.3 Sudden Death Threats

For many games there is the threat of an instant win by the opponent. We
refer to such a threat as a sudden death threat. Most of the time - except for



many chess positions - the player is forced to make the only move that cancels
this ultimate threat. Using winning threat sequences (see section 3.4) could force
sudden death by eliminating the freedom of the opponent to make his own move.
The number of turns in a game required before one could apply a winning threat
sequence is a profound influence on the effectiveness of this technique to strongly
solve that game. In games like qubic and go-moku, this number is on average very
low, say 1-10. For games like connect-four and renju this number on average is
a bit higher, say 11-20 and for chess it is � 20, rendering this technique barely
applicable.

4.4 Local Endgames

It is not always required to focus on the complete space of the board to deter-
mine a winning strategy in the end phase. We refer to such an endgame - in
which the majority of the board could be neglected in a winning strategy - as a
local endgame. Local endgames are frequently generalisations of a few winning
strategies. The frequency of local endgames (compared to global endgames) is
strongly related to the application of winning pattern strategies: Since only a
subspace - which could be located anywhere - of the playing field is required
for a winning strategy, pattern strategies as described in section 3.5 could be
applied.
In awari, checkers and go, material progress could sometimes be made locally but
winning strategies generally have a global nature. Although chess has sudden
death treats, winning strategies are rarely local.

4.5 Solvability

How could one determine the solvability of games based on their characteristics
and corresponding solving procedures? Table 3 summarizes the extent to which
these characteristics - and hence the analogous solving procedures - are applica-
ble to various games. The games are chronologically ordered by date of solving.
The application degree is in accordance with descriptions above. Looking at this
table, one could notice that the first three solved games have the same scores in
all categories. Apparently, games with these characteristics are easy to solve.
This table shows that the order - based on the solution date - is highly related
to the sum of the black squares - the degree of applications. As stated before,
the exception of pentominoes can be explained by its lack of popularity.
The games checkers and hex will probably be weakly solved within this decade:
both perform relatively well in two categories; with some effort and with the
ongoing growth of computational power in mind, solutions could be expected
relatively soon. However, for chess and go there is no hope that either will be
strongly solved within the coming decades, since none of the existing powerful
solving procedures can determine the game-theoretical value. Here, new solving
procedures are required.



Table 3. Degree of possible application of solving procedures to various games.

Year Game
Retrograde
Analysis

Transposition
Tables

Threat
Sequences

Pattern
Strategies

1980 qubic ��� ��� ��

1989 connect-four ��� �� ���

1994 go-moku ��� ��� ��

1996 nine men’s morris ��� �� ��

1996 pentominoes

2000 domineering ��� ���

2001 renju �� �� ��

2003 awari ��� �

> 2004 checkers �� �� �

> 2004 chess � � �

> 2004 hex 15 × 15 �� ��

> 2004 go � �

5 Gipf

Games like chess, checkers, go, and awari have existed for ages. Yet, recently, Kris
Burm has developed a series of six two-player board games with perfect informa-
tion - gipf, tamsk, zèrtz, dvonn, yinsh, and pünct - which has won various awards3.
These games provide great challenges to the field of artificial intelligence, since
these games will probably be very hard to solve.

These games have many interesting characteristics in which they differ from the
classic games. Four examples: 1) In tamsk the material is time-based, with each
piece having its own hour-glass. This results in multi-dimensional time pressure
- in contrast of playing a classic game with a single clock. 2) In dvonn the
players first have to determine the starting position in a turn-based fashion -
yielding billions of possible starting positions. 3) In most games each player has
its own kind of material. However, in zèrtz all the material is shared between
both players. 4) In classic n-in-a-row games, the player wins who first constructs
a row of his color. In contrast: winning yinsh requires a player to construct three

rows.

This section will focus exclusively on the solvability challenges of zèrtz, dvonn

and yinsh, because these games are by far the most popular of this series4. We
will discuss here three characteristics of these games in which they differ from
the classics. To handle the difficulties that arise from these characteristics will
probably require new solving procedures. The rules of zèrtz, dvonn and yinsh are
provided in appendices B, C and D, respectively.

3 see www.gipf.com.
4 see for example the Internet Top 100 Games List on http://scv.bu.edu/∼aarondf/

Top100/.



5.1 Billions of starting positions

Classic two-player board games have a fixed starting position. This feature is
very useful for computer players as they can use an opening book to guarantee
a strong initial strategy. Obviously, a game like chess would be even harder to
solve if it would have multiple starting positions.

The games dvonn and yinsh have multiple starting positions. These are set out
in a placement phase: before the players move their pieces, they first determine
a starting position by placing the pieces on the board in a turn based fashion.

Due to this placement phase, the number of initial positions is enormous: play-
ing dvonn requires first to place the three dvonn pieces, followed by alternately
placing the black and white pieces. This placement phase can result in 49!

3!23!23!
≈

1.5 × 1017 positions. Even when we consider the symmetries of the board, ap-
proximately 4 × 1016 different positions remain feasible.

For yinsh the number of positions is slightly smaller but still very large: after
alternately placing the black and white rings on the board, 85!

5!5!75!
≈ 7.9 × 1014

positions are possible. When considering the symmetries, approximately 8×1013

different starting positions remain at hand.

Because dvonn and yinsh have billions of starting positions, they are probably
extremely hard to solve: even if the game-theoretic value of a single starting
position can be computed, it would still be very complicated to determine this
value for the initial position of the placement phase.

5.2 No pain, no gain

Threats are important in solving many games (as discussed in section 3.4). The
number of moves of the opponent can be greatly reduced by threatening: to
create a row for example, or to capture some material. In zèrtz and yinsh these
threats do exist, but their application also weakens the player’s own position.
Therefore, threat sequence procedures could contribute to only a minor reduction
of the game-tree for these games.

Capturing marbles in zèrtz is rarely for free. Generally, one has to sacrifice some
marbles to the opponent in order to capture marbles. Essential to winning the
game is a clear estimation of the relative importance between sacrificed and
captured marbles: A player needs to avoid that the opponent owes his victory
to sacrificed marbles.

Compared to all other make-a-row games, yinsh has an important difference:
whereas other games require only one row to claim victory, yinsh requires three.
Therefore, a sudden death threat rarely occurs in yinsh5. Moreover, by making
a row the player undermines his own position: 1) A ring of his color must be
removed from the board, reducing his mobility; and 2) the markers of the row
must be removed, reducing the markers of his color on the board.

5 In theory, a player could collect all three rings in one turn by making three rows by
a single move. However, in practice this is an unlike winning strategy



5.3 Fair and balanced

The game-theoretic value of most games can easily be predicted without actu-
ally solving it: either the player with the initiative can force a victory, or the
opponent has enough possibilities to force a draw. For example, on the highest
level of competition, games of checkers and chess frequently result in a draw.
Even though both games have not been solved yet, it is very likely that their
game-theoretic value is a draw. An interesting aspect of dvonn, yinsh, and zèrtz

is that their game-theoretic value is hard to predict.
Unlike chess and checkers, games between experienced players of dvonn rarely
result in a draw6. After the placement phase, the board contains an odd number
of pieces. So, even if a certain game progresses towards a close finish, an odd
number of pieces should get isolated (and therefore must be removed) during the
game to enable a draw. Dvonn is also very balanced because neither player has
a clear advantage over the opponent: on the one hand, black has the initiative
in the placement phase, while white has the initiative in the movement phase.
Balanced advantages and rare draws are also features of yinsh: although white

has the initiative in both the placement and the movement phase, this may not
yield a clear advantage: after creating a row a player has to remove a ring of his
color, which reduces his mobility severely. A yinsh draw occurs only when all 51
markers have been placed on the board before any of the players has collected
three of their rings.
The game of zèrtz never results in a draw: in the unlikely and extreme event
that all board pieces would be filled with a marble (before neither of the players
has a winning set of marbles), the player that made the last move, wins. In
zèrtz , balanced advantages are guaranteed. There is no distinction between the
material of the first and the second player. In general, the second player appears
to have the upper hand in the opening phase of the game7. However, since the
first player has numerous opening moves, there may still be an opening strategy
assuring his advantage.
The combination of balanced advantages in all three games and rare draws in
both dvonn and yinsh - and no draws in zèrtz ! - make it hard to predict their
game-theoretic value.

5.4 Solvability

Solving the games of zèrtz , dvonn, and yinsh will be fertile grounds for the field
of artificial intelligence: 1) It is a challenge to solve each of them; 2) All three
games are very popular; 3) It is even hard to predict their game-theoretic value.
Clearly, zèrtz will be the easiest game to solve: it has only one starting position
and games between experienced players take only a few turns. Although zèrtz

appears to offer the players a large number of possibilities per turn, in practice
the possibilities are very limited: the player needs to avoid a deadly sequence

6 see for example the championship results of dvonn on www.littlegolem.net
7 see for example http://www.scat.demon.co.uk/zertz/strategy.htm



of sacrifices by his opponent. By developing pattern strategies based on these
deadly sequence of sacrifices and on how to avoid them, the game may be solvable
within a few years.

The most important obstruction to solve dvonn is its immense number of starting
positions. Although not all starting positions should be evaluated to determine
the game- theoretic value, those that need to be computed still amount to huge
numbers. Besides this obstruction, it should be possible to solve a given starting
position: 1) The game-tree is no very deep (at most 24 turns for each player);
2) transposition tables could be applied to reduce computational costs substan-
tially; and 3) by threatening to isolate many pieces, a player could significantly
tighten the number of moves of his opponent.

For yinsh, none of the existing solving procedures seem to be applicable: 1) Ret-
rograde analysis could not be applied because of its different nature; 2) flipping
of the markings renders transposition tables useless; and 3) since three rings
must be collected to win, none of the threat sequence procedures are profitable.
Moreover, the billions of starting positions will make it even harder to solve the
game. Therefore, yinsh will probably be a monumental challenge in this field for
the next decades.

6 Conclusions and Future Work

The main conclusion of this paper is that solvability of two-player games with
perfect information could effectively be explained by the applicable solving pro-
cedures. The question which solving procedures could be applied to strongly
solve a game is determined by analysis of the characteristics of a game. We
presented four such characteristics. Using these provides a more accurate classi-
fication than state-space and game-tree complexity would.

Five categories of solving techniques have been discussed. All of these tech-
niques were mentioned in articles of currently solved games. However, only four
appeared essential to obtain the known solutions. The only non-essential tech-
nique - game-tree search methods - is also the most diverse category: It contains
many variants. The usefulness of these variants, in general or for a particular
game, is unknown. Analyzing the performance of the techniques and comparing
them to - for example - the minimal game-tree, will be a topic of future research.

In contrast to hand-made patterns, computer generated patterns are not yet an
essential technique for strongly solving games. Still, we expect that solving hex

on a large sized board, say 15 × 15, will require enormous patterns. Probably,
their number will be too large to create by hand. By first solving hex on small
sized boards - using only computer generated patterns analogous to hand-made
patterns by JingYang [21] - we will try to develop an effective solving procedure
based on automatically generated patterns.



References

1. L.V. Allis, Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
University of Limburg, The Netherlands, ISBN 90-9007488-0 (1994).

2. L.V. Allis, H.J. van den Herik, and M.P.H. Huntjens, Go-Moku and Threat-Space

Search. http://citeseer.nj.nec.com/170657.html
3. L.V. Allis, H.J. van den Herik, and I.S. Herschberg Which Games Will Survive?

Heuristic Programming in Artificial Intelligence 2: the second computer olympiad
(eds. D.N.L. Levy and D.F. Beal) Ellis Horwood, Chichester. ISBN 0-13-382615-5
(1991), 232–243.

4. N. Bullock, Domineering: Solving Large Combinatorial Search Spaces ICGA Jour-
nal 25 (2) (2002), 67–83.

5. B. Bouzy, Go patterns generated by retrograde analysis. Computer Olympiad Work-
shop, (2001).

6. D.M. Breuker, J.W.H.M. Uiterwijk, H.J. van den Herik, Replacement schems for

transposition tables. ICCA Journal 17 (4) (2004), 183–193.
7. D.M. Breuker, J.W.H.M. Uiterwijk and H.J. van den Herik, Solving 8×8 Domi-

neering. Theoretical Computer Science, ISSN 0304-3975, vol. 230 (2000), 195–206.
8. R.U. Gasser, Solving Nine Men’s Morris. R.J. Nowakowski(Ed.), Games of No

Change, MSRI publications, vol. 29 (1996), 101–113.
9. M.L. Ginsberg, Partition Search. Procedings AAAI-96 (1996), 228–233.

10. H.J. van den Herik, J.W.H.M. Uiterwijk, and J. van Rijswijck, Games Solved: Now

and in the future. Artificial Intelligence, ISSN 0304-3975, vol. 134 Nos. 1-2 (2002),
277–311.

11. T.R. Lincke, Exploring the Computational Limits of Large Exhaustive Search Prob-

lems PhD thesis, ETH Zurich, Swiss (2002).
12. H.K. Orman, Pentominoes: A first player win. R.J. Nowakowski(Ed.), Games of

No Change, MSRI publications, vol. 29 (1996), 339–344.
13. O. Patashnik, Qubic: 4×4×4 Tic-Tac-Toe. Mathematics Magazine, vol. 53 (4)

(1980), 202–216.
14. J. van Rijswijck, Search and evaluation in Hex. Technical report, University of

Alberta, Canada (2002).
15. J.W. Romein and H.E. Bal, Solving the Game of Awari using Parallel Retrograde

Analysis. IEEE Computer, vol. 36 (10) (2003), 26–33.
16. J. Schaeffer, Y. Bjornsson, N. Burch, R. Lake, P. Lu and S. Sutphen, Building the

ckeckers 10-piece Endgame Databases, (2003).
17. M. Sakuta and H. Iida, The Performance of PN*, PDS, PN Search on 6×6 Othello

and Tsume-Shogi. In: H.J. van den Herik, B. Monien (Eds.), Advances in Computer
Games, vol. 9 (2001), 203–222.

18. T. Thomsen, Lambda-search in game trees - With an application to Go. ICCA
Journal 23 (4) (2000), 203–217.

19. J.W.H.M. Uiterwijk, H.J. van den Herik, and L.V. Allis. A knowledgebased ap-

proach to connect-four. the game is over: White to move wins! In D.N.L. Levy
and D.F. Beal, editors, Heuristic Programming in Artificial Intelligence: The First
Computer Olympiad (1989), 113–133.

20. J. Wágner and I. Virag, Solving Renju. ICGA Journal 24 (1) (2001), 30-34.
21. J. Yang, S. Liao, M. Pawlak, On a decomposition method for finding winning strat-

egy in Hex game. International Conference on Application and Development of
Computer Games in the 21st Century (2001), 96–111.

22. http://www.ee.umanitoba.ca/∼jingyang/index.html.



Appendix A

Table 4. Overview of procedures discussed in articles

Article
Retrograde
Analysis

Transposition
Tables

Game-tree search
procedures

Winning
threat-sequence

procedures

Winning pattern
procedures

Solving nine men’s morris DC, CP, NU SY αβ

Building the checkers 10-piece. . . DC, CP, NU
Exploring the computational. . . DC, CP
Solving the game of awari. . . DC, CP, AA SY

Replacement schemes for trans. . . TI, RS, TS
Solving 8×8 domineering TI, RS, TS αβ HP

A knowledge-based approach. . . SY, GP CN HP
The performance of PN*, PDS. . . αβ, PN, PN*, PDS
Pentominoes: A first. . . SY HA

Qubic: 4×4×4 tic-tac-toe SY HA Tseq
Search for solutions in games. . . αβ, PN Tsp
Go-moku and threat-space. . . PN Tsp
Solving renju HA Tseq
Lambda search in game trees. . . λ

Domineering: Solving large. . . αβ HP
On a decomposition method. . . HP
Search and evaluation in hex HP, CP
Go patterns generated. . . SY CP
Partition search CP

Explanation of abbreviations

Retrograde analysis: DC: Decomposition, CP: Compression, AA: Asynchronic algorithm, NU: Neglecting unlikely positions.

Transposition tables: TI: Table information, RS: Replacement schemes, TS: Table size SY: Symmetry, GP: Generalised positions.

Game-tree search procedures: HA: by hand, αβ: α-β search , CN: Conspiracy numbers search, PN: Proof-number search.

Winning threat-sequence procedures: Tseq: Threat-sequence search, Tsp: Threat-space search, λ: lambda search.

Winning patternprocedures: HP: Hand-made pattern, CP: Computer generated pattern



B Zertz

Material:
6 white, 8 gray and 10 black marbles and 37 round board pieces.

Moving:

Fig. 8. The board at the start of the
game.

The initial state of the board is shown
in figure 8. Each turn, a player has
two possible moves: (I) either place a
marble on the board and then remove
a board piece, or (II) capture one or
more marbles.

(I) Placing a marble and remov-
ing a board piece:
1. At each turn, the player first se-
lect a marble from the pool. Next, the
marble must placed it on the board.
The player may select any color he
wishes and he may place the marble
on any vacant board piece. Important:
the marbles, in the pool as well as on the board, belong to both players (i.e.
neither of the players ”owns” the marbles placed on the board).

2. After a player has placed a marble on the board, he must remove a ”free”
board piece. ”Free” means: the piece must be vacant and it must be

positioned at the edge of the board. In

Fig. 9. Only the board pieces with an
arrow may be removed.

other words, there may not be a mar-
ble on it and the player must be able
to remove it from the sides without
disturbing the position of the remain-
ing board pieces.

3. Placing a marble and removing a
board piece is one turn. A player must
do both. However, it may occur that
a player cannot remove any of the va-
cant board pieces without disturbing
the position of the other board pieces.
In this case one does not remove a
board piece (i.e. the move ends after
having placed a marble.)



(II) Capturing marbles:
1. If marbles could be captured, a player is forced to do so.
2. Marbles can be captured by jumping over it with another marble (i.e. as in
checkers). One may only jump over a marble on an adjacent board piece. The
player may jump in any direction if there is a vacant board piece behind the
marble that he intends to capture.
3. If the player jumps over a marble and he has the possibility to jump over a
second one, then he must do so, no matter in which direction the second (or
third) jump could be made.
4. When there are multiple ways to capture marbles (see figure 10 (left)), the
player could freely chose one of them.
5. After capturing a marble, the player could not place a marble, nor remove a
board piece.

Fig. 10. (left) Four possible captures: a) 1 captures 2 and 3; (b) 1 captures 2, 4, and
5; (c) 2 captures 1; and (d) 3 captures 2 and 1. (right) If you remove the board piece
indicated by the arrow, you capture the marble on the isolated board piece.

Isolating marbles:
1. If a player succeeds in isolating one or more board pieces from the main part
of the board, he may claim these isolated pieces, including the marbles on them.
Most of the times it will concern one board piece, thus one marble, but it is
not limited to one. This ”claiming” should be seen as a second way of capturing
marbles, but it is not compulsory.
2. A player can only capture marbles this way if there are no vacant board pieces
in the isolated group. So, a player may claim one or more board pieces when he
either puts a marble on the last vacant board piece of an already isolated group,
or remove the board piece through which a group of occupied board pieces gets
isolated.

Goal:
The goal of the game is to capture either 2 marbles of each color, or 3 white
marbles, or 4 gray marbles, or 5 black marbles. The winner is the first player to
achieve one of these goals.



C Dvonn

Material:
23 white, 23 black and 3 dvonn pieces.

Placement phase:
The game starts with an empty board. The players take turns placing their
pieces on a vacant space of the board, one at a time. They must start with the
dvonn pieces and then continue with their own color:

White places first dvonn piece; Black places second dvonn piece; White places
third dvonn piece; Black places first black piece; White place first white piece;
Black places second black piece; And so on. . .

Moving phase:
1. White also begins the moving phase.
2. Each turn a player must move one piece or one stack. He may only move a
piece or a stack of his own color. When two or more pieces are stacked on top of
each other, the color of the topmost piece determines who owns the stack, and
thus which player may move it.
3. A single piece may move one space in any direction, but only on top of another
piece or stack of any color.
4. A stack must always be moved as a whole and moves as many spaces as there
are pieces in the stack. Thus, a stack of 3 pieces (regardless of their color) must
be moved exactly 3 spaces. Just like a single piece, a stack may be moved in any
direction, but always in a straight line.
5. A move may never end in an empty space, but it is allowed to move across
one or more empty spaces. When making a move, each space must be counted,
no matter whether it is empty or occupied (see figure 11).

Fig. 11. The indicated stack may be moved 3 spaces in the direction of the arrows.

6. A piece or stack that is surrounded on all 6 sides may not be moved. So, at
the beginning of the game only the pieces at the edge of the board may move.
The pieces that are not positioned at the edge remain blocked for as long as they
remain completely surrounded (see figure 12).



Fig. 12. The pieces and stacks marked with an X are completely surrounded.

7. A single dvonn piece may not be moved, but a piece or stack may move on
top of it. When a dvonn pieces is part of a stack, it is perfectly legal to move the
stack containing the dvonn piece. 8. You may not pass a turn, unless you cannot
make any more moves.

Losing pieces:
1. Pieces and stacks must somehow remain in contact with at least one dvonn

piece to remain in play. ”In contact” means that there must always be a link
with at least one dvonn piece. Each and every piece and/or stack that is not
linked to any of the dvonn pieces, must be removed from the board at once.

Fig. 13. If White moves the indicated piece, the pieces on the left will no longer be in
contact with a dvonn piece. They must all be removed from the board at once.

2. All removed pieces go out of the game. It doesn’t matter who makes the move
through which the pieces and/or stacks become isolated. Watch out for this,
especially in the endgame. Since you may not pass, you may be forced to make
a move that isolates one or more of your own stacks.
3. All 3 dvonn pieces remain in play until the end of the game, even if one of
them becomes isolated, as it will always remain in contact with itself.

Goal:
The game ends when the last move is made. When this stage is reached, each
player puts all of the stacks he controls on top of each other. The player with the
highest stack wins the game, regardless of the color of the pieces in his stack. If
both players end up with an equal stack, then the game ends in a tie.



D Yinsh

Material: 5 white and 5 black rings, and

Fig. 14. The board after both
players placed their rings.

51 markers (white on one side, black on the
other side).

Opening phase: White begins and places
one of the white rings on the board, followed
by Black placing one a black ring. This is re-
peated until both players placed their five
rings. After this opening phase the board
looks like figure 14.

Moving:
1. Each move starts by selection one of the rings of the player.
2. Next, the player places a marker in that ring such that his color is facing up
in the ring.

3. Then the player must move that ring ac-

Fig. 15. a move. First you put a
marker with your color face up in
one of your rings, next you move
the ring. You only movthe ring,
not the marker!

cording to the following rules:
- Only the rings is moved, not the marker
inside.
- A ring must always move in a straight line
and always to a vacant space.
- A ring may move over one or more vacant
spaces.
- A ring may jump over one or more markers,
regardless of color, as long as they are lined
up without interruption. In other words, if
you jump over one or more markers, you must
always put your ring in the first vacant space
directly behind the markers you jumped over.
- A ring can only jump over markers and va-
cant spaces, not over rings.



Collecting rings:

Fig. 16. the same situation as in
figure 15, but now after black’s
move.

1. By moving rings and flipping markers the
players must try to form a row of 5 mark-
ers of their own color. These 5 markers must
be adjacent and in a straight line. Rings do
not count. For the sake of clarity: hereafter,
a row of 5 markers that show the same color
will simply be referred to as ”a row”.
2. After forming a row, the player must re-
move the 5 markers from the board.
3. After removing a row, the player must also
collect one of the rings of this color. For this
purpose, the player can choose any of his
rings.
4. If a player forms a row of more than 5
markers, then he can choose any 5 markers
to remoce - as long as they form an uninter-
rupted row.

5. It is possible to form two (or more) rows

Fig. 17. Black has formed a row
of 5 markers.

with only one move. If these rows don’t inter-
sect, the player must remove all these rows
and as many rings. If rows do intersect, then
the player may choose which row you’ll take.
Obviously, in this case only one rings is col-
lected.
6. A player could also form a row of the
markers of the opponent. In this case the op-
ponent must remove the row and a ring be-
fore he makes his move. He may freely choose
which of his rings he will collect.
7. If a player forms a row of his own markers
and also a row of his opponent markers at
the same time, then first he removes his own
row (and a ring), and next turn the oppo-
nent remove his row and a ring as described
above.

Goal: The first player that collects three of his own rings wins the game.


