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Abstract. Several proof formats have been used to verify refutations
produced by satisfiability (SAT) solvers. Existing formats are either
costly to check or hard to implement. This paper presents a practical
approach that facilitates checking of unsatisfiability results in a time
similar to proof discovery by embedding clause deletion information into
clausal proofs. By exploiting this information, the proof-checking time
is reduced by an order of magnitude on medium-to-hard benchmarks as
compared to checking proofs using similar clausal formats. Proofs in a
new format can be produced by making only minor changes to existing
conflict-driven clause-learning solvers and their preprocessors, and the
runtime overhead is negligible. This approach can easily be integrated
into Glucose 2.1, the SAT 2012 challenge winner, and SatELite, a pop-
ular SAT-problem preprocessor.

1 Introduction

Satisfiability (SAT) solvers act as the core search engine in many tools used
for bounded model checking and the verification of hardware and software. It
is incumbent upon these solvers to produce the correct results. The correctness
of a satisfiability model is easy to check, but most SAT solvers do not emit
an unsatisfiability proof. This paper shows that with minor modifications to
contemporary SAT solvers and preprocessors a proof log can be emitted that
can be checked in a time similar to the solving time. Such assurance should be
built into all SAT solvers.

For nearly a decade, researchers have been proposing ways to check refuta-
tions produced by SAT solvers [1,2,3,4,5,6]. Currently, the dominant SAT solver
architecture is based on the conflict-driven clause-learning (CDCL) paradigm [7].
CDCL solvers operate by adding conflict clauses that are logically implied by
the input formula. An input formula is refuted as soon as the empty clause (a
clause with no literals) can be added. Several proof formats have been designed
to express how to check that each conflict clause is logically implied by the input
clauses, but limitations prevent regular use.

Ideally, a proof format should have four properties. First, the proof should be
compact. Second, it should be possible to verify the proofs efficiently. Checking
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a proof should not be more costly than constructing a proof. Third, the imple-
mentation of the proof checker should be simple, and if possible, one should be
able to formally verify the checker. Fourth, it should be easy for CDCL solvers
to output refutations in the chosen proof format. Presently, only a few solvers
output proofs, and there is no agreed-upon representation or checking algorithm.
To increase acceptance of proof checking, complicated modifications to the code
should not be required.

A new proof format is proposed in this paper to bridge the gap between
the apparent trade-offs of proof size and proof complexity. Proofs in formats
for which efficient and simple checking tools exist tend to be huge in size and
hard to emit from CDCL solvers. Conversely, the checkers for formats that fa-
cilitate compact proofs are slow and more complicated. The crucial difference
between the proposed format and existing formats is the use of clause deletion
during proof checking. Redundant clauses, i.e., those clauses that can be removed
while preserving logical equivalence, put a burden on memory usage and infer-
ence speed. This approach supports aggressive elimination of redundant clauses,
analogous to clause deletion in CDCL solvers.

Clause deletion significantly decreases computational costs to check clausal
proofs. Clausal proofs are known to be compact and easy to obtain from CDCL
solvers, but have been historically costly to check. The inclusion of clausal time-
stamps improves the efficiency with which proofs can be checked by eliminating
clauses that are no longer needed. On medium-to-hard benchmarks, the proof-
checking time for proofs in the new format is an order of magnitude smaller
than existing clausal proof-checking algorithms and is comparable to, though
somewhat slower than, the solving time. Proofs in the new format can be emit-
ted by Glucose 2.1 and its preprocessor SatELite with minor modifications. A
mechanically verified proof-checking algorithm, written it in the ACL2 language,
demonstrates a soundness property for this proof system, and the correctness of
this algorithm has been verified by the ACL2 theorem-proving system [8].

The new proof format combined with the presented checker makes it practi-
cal to verify refutations produced by CDCL solvers. In addition, such checking
is useful when debugging CDCL solver implementations and validating compe-
tition results. CDCL solvers can include this proof-checking capability, thereby
increasing user confidence in SMT solvers and theorem provers that use SAT
technology.

This paper proceeds by presenting some preliminary information in Section 2.
Motivation for this work is provided in Section 3. In Section 4, resolution proofs
and clausal proofs are shown as sound methods to add clauses that are logically
implied by a formula. The process of clause deletion is discussed in Section 5,
and a new proof format is proposed in Section 6. Implementation details are
provided in Section 7, along with performance results in Section 8. Related work
is described in Section 9 and conclusions follow in Section 10. Two appendices
document the changes necessary to alter a CDCL solver to emit a proofs in
the proposed format (Appendix A) and the mechanical verification of the proof-
checking algorithm (Appendix B).
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2 Preliminaries

To make it easier to follow the presentation, some background concepts are first
discussed: conjunctive normal form (CNF), resolution, and Boolean constraint
propagation.

Conjunctive Normal Form. For a Boolean variable x, there are two literals, the
positive literal, denoted by x, and the negative literal, denoted by x̄. A clause is a
finite disjunction of literals and a CNF formula is a finite conjunction of clauses.
The set of literals occurring in a CNF formula F is denoted by LIT(F ). A truth
assignment for a CNF formula F is a function τ that maps literals l ∈ LIT(F )
to {t, f}. If τ(l) = v, then τ(l̄) = ¬v, where ¬t = f and ¬f = t. Furthermore:

– A clause C is satisfied by assignment τ if τ(l) = t for some l ∈ C.
– A clause C is falsified by assignment τ if τ(l) = f for all l ∈ C.
– A formula F is satisfied by assignment τ if all C ∈ F are satisfied by τ .
– A formula F is falsified by assignment τ if some C ∈ F is falsified by τ .

A CNF formula with no satisfying assignments is called unsatisfiable. A clause
C is logically implied by formula F if adding C to F does not change the set of
satisfying assignments of F .

Resolution. The resolution rule states that, given two clauses C1 = {x, a1, . . . , an}
and C2 = {x̄, b1, . . . , bm}, the clause C = {a1, . . . , an, b1, . . . , bm}, can be inferred
by resolving on variable x. C is the resolvent of C1 and C2 and this is written
as C = C1 � C2. Furthermore, C is logically implied by any formula containing
C1 and C2.

Boolean Constraint Propagation. For a CNF formula F , Boolean constraint prop-
agation (BCP) (or unit propagation) simplifies F based on unit clauses; that is,
it repeats the following until fixpoint: if there is a unit clause {l} ∈ F , remove
all clauses that contain the literal l from the set F \ {{l}} and remove the lit-
eral l̄ from all clauses in F . The resulting formula is referred to as BCP(F ). If
{l} ∈ BCP(F ) for some unit clause {l} /∈ F , then BCP assigns the literal l to t
(and the literal l̄ to f). If {l} and {l̄} are in BCP(F ) for some literal l ∈ LIT(F )
(or, equivalently, ∅ ∈ BCP(F )), then BCP derives a conflict.

3 Motivation

Over time, state-of-the-art SAT solvers are becoming more complex, and the
importance of their correctness is becoming more critical as they are used to
answer questions in engineering, design, manufacturing, and medicine. Therefore,
it is important that there is a uniform method for representing the correctness
of SAT solvers that is easy to obtain, efficient to check, and covers all practical
techniques.
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Modern SAT solvers use many different techniques, but the CDCL [7] ap-
proach is currently the leading paradigm. The most important aspect of CDCL
solvers is the addition of learned clauses. As soon as a clause becomes falsified,
the solver computes a corresponding learned clause which is used to avoid revis-
iting that part of the search space. These learned clauses are logically implied by
the input clauses. A solver refutes the input, i.e., claims that no solution exists,
when it adds the empty clause. Proof formats for CDCL solvers express how
to check that each learned clause is logically implied by the input clauses. Fur-
thermore, CDCL solvers aggressively delete lemmas to lower the computational
costs of unit propagation.

State-of-the-art CDCL solvers also use preprocessing techniques to simplify
input formulas before search, and some solvers even use inprocessing, where
preprocessing techniques are applied during search. In general, preprocessing
and inprocessing techniques cannot be verified using only resolution or clausal
proofs, but most of the current preprocessing and inprocessing techniques can
be translated to resolution and clausal proofs.

Much of the growing complexity of SAT solvers comes from various prepro-
cessing and inprocessing techniques. Some techniques even go beyond resolu-
tion; for example, they perform blocked clause elimination (BCE) [9]. However,
there is a clear difference between techniques that weaken the input formula
(by removing clauses or adding literals to clauses) and those that strengthen
the input formula (by adding clauses or removing literals from clauses). All
weakening techniques, such as BCE, do not interfere with refutations. If one
can prove the unsatisfiability of a weakened formula, the same proof applies
to the original formula. All non-weakening techniques used by current state-of-
the-art CDCL solvers are based on resolution, such as variable elimination and
self-subsumption [10]. These techniques can be expressed using resolution and
clausal proofs.

The CDCL paradigm and current preprocessing and inprocessing techniques
can be expressed as either performing clause addition and/or clause deletion
operations. In Section 4, different methods for clause addition with respect to
proofs of unsatisfiability are presented. In Section 5, the effects of clause deletion
on a proof are discussed.

4 Clause Addition

Concerning the addition of clauses, two approaches are presented: one for res-
olution proofs and one for clausal proofs. Recall that lemmas are often used to
construct a proof of a theorem in mathematics. Here, lemmas are represented as
learned clauses and the “theorem” is that the formula is unsatisfiable. From now
on, the term clause is used to refer to an input clause, while lemma will refer to
a learned clause.
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4.1 Resolution proofs

Early approaches to verify refutations produced by SAT solvers were based on
resolution [1]. The lemmas computed by CDCL solvers can be simulated by a
sequence of resolutions [11]. Let L be a lemma and {C1, . . . , Cm} be the input
clauses. For each lemma L there exists a sequence of resolutions such that L =
(((Ci � Cj) . . . ) � Ck). In practice, this sequence may also use previously added
lemmas to construct a new lemma.

Resolution proofs can be checked efficiently, and since resolution is such an
elementary operation, simple checking algorithms exist [1,3,12]. There are clear
disadvantages, however. Resolution proofs can be huge (see Section 4.3). It is also
hard to modify a SAT solver to emit a resolution refutation; for instance, each
clause and lemma needs a unique identifier for the entire search. In some cases,
clauses or lemmas may not have a unique identifier, and in others, identifiers may
change during garbage collection. Since resolution is not associative, the order of
the clauses in the resolution sequence is crucial. The difficulty to compute this
order lies in how the generation of lemmas is implemented.

It is hard to overemphasize the seriousness of this last problem. At the mo-
ment, there exist only four SAT solvers that output resolution proofs: zChaff [1],
Minisat [13], Picosat [14], and Booleforce [15]. These solvers all use different
formats, and the proof-logging versions for the first two solvers are outdated.
Even for the author(s) of a SAT solver, modifying the solver to emit resolution
proofs is not an easy task. After the integration of a portfolio of SAT solvers into
an SMT solver or into a theorem prover, it would be a daunting task to enhance
them all to emit resolution proofs.

4.2 Clausal proofs

An alternative approach was proposed by Goldberg and Novikov [2]. They intro-
duced clausal proofs, also known as Reverse Unit Propagation (RUP) proofs [3].
The key insight regarding clausal proofs is that each lemma L learned by SAT
solvers can be checked using BCP. Lemmas, like clauses, are disjunctions of lit-
erals. Let L denote the set of unit clauses that falsify all literals in a lemma L.
If BCP(F ∪ L) results in a conflict, i.e., produces the empty clause ∅, then L is
implied by F .

Clausal proofs are represented as a queue of lemmas (L1, . . . , Lm) such that
Lm = ∅. Given a CNF formula F , a clausal (or RUP) proof of F consists of
lemmas Li that are logically implied by F . Let F0 := F and Fi := Fi−1 ∪ {Li}.
To check that Li is logically implied by F , it should hold that if all literals l ∈ Li

are assigned to f , then BCP on Fi−1 results in a conflict.
The elegance of clausal proofs is that they can be expressed in conjunctive

normal form, although the order of the lemmas matters. Clausal proofs are signif-
icantly smaller, as compared to resolution proofs, and only minor modifications
of a SAT solver are required to output these proofs. However, because of unit
propagation, checking of clausal proofs can be quite expensive, especially for
large proofs. Checking algorithms for clausal proofs are typically more complex
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than those for resolution proofs, making it harder to trust or prove correctness
of the algorithm.

RUPchecker (CNF formula F , CNF queue Q)

1 while Q is not empty

2 L := Q.pop()

3 F ′ := BCP(F ∪ L)

4 if ∅ /∈ F ′ then return “checking failed”

5 F := BCP(F ∪ L)

6 if ∅ ∈ F then return “unsatisfiable”

7 return “all lemmas validated”

BCP (CNF formula F )

11 while ∃ {l} ∈ F do

12 for C ∈ F with l ∈ C do

13 F := F \ {C}
14 for C ∈ F with l̄ ∈ C do

15 C := C \ {l̄}
16 return F

Fig. 1. Pseudo-code to check (clausal) Reverse Unit Propagation (RUP) proofs.

Fig. 1 shows the pseudo-code of a clausal proof checking algorithm. The input
is a CNF formula F and a CNF queue Q of lemmas representing a refutation
of F . Lemmas are sorted in chronological order as they are learned by a SAT
solver. While Q is not empty (line 1), its front lemma L is popped (line 2). If
unit propagation on F using L does not derive a conflict, then terminate because
L is not logically implied by F and (lines 3 and 4). Otherwise, L is added to F .
In the case that L was unit, the new F is simplified using BCP (line 5). If that
simplification results in a conflict, a top level contradiction is found meaning
that the formula is unsatisfiable (line 6). If the algorithm reaches the end (line
7), all lemmas in Q are validated but no top-level conflict was encountered.

Goldberg and Novikov [2] suggested checking lemmas in reverse order so
that some lemmas may be skipped, but this process uses conflict analysis which
complicates the proof checker. It is possible to implement a clausal checker that
validates lemmas in reverse order [16]. A tool called DRUPtrim was developed in
order to validate proofs as efficiently as possible at the cost of being larger and
more complicated. The DRUPtrim tool uses the main contributions described in
this paper to realize fast performance and was used to validate the results of the
SAT 2013 Competition. However, in the remainder of the paper, the presentation
concerns checking lemmas in the order they are learned because the resulting
algorithm is simpler.

4.3 Comparison

For medium-sized and larger problems, resolution proofs can be quite large and
it is hard to modify solvers to emit them, but the resulting proofs can be checked
with simple, efficient algorithms. Such proofs can require hundreds of gigabytes of
disk space, and the creation of such large proof files often dramatically increases
the solving time because of the sheer amount of data that needs to be written
to and read from disk. However, checking resolution proofs is relatively fast. In
fact, most of the checking time is spent reading the proof. A critical disadvantage
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of resolution proofs is the difficulty to extract them from state-of-the-art SAT
solvers. As solvers have become more complex, these difficulties continue to
increase.

Clausal proofs are compact and easy to obtain, but they are computationally
more expensive and complex to check. For these proofs, the lack of speed in ex-
isting checking algorithms has traditionally been the major drawback. However,
this paper presents a fast, clausal, proof-checking algorithm in less than 200 lines
of C code (see Section 7.1). Alternatively, one could transform a clausal proof
into a resolution proof, although this further increases the checking costs [3].

Experience has shown that clausal proofs are easier to emit than resolu-
tion proofs. To illustrate the dynamics between the two approaches consider the
clause minimization [17] technique. After a SAT solver computes a lemma L,
clause minimization tries to eliminate literals from L. This technique results in
shorter lemmas which decreases the number of lemmas necessary for a clausal
proof while increasing the number of unit propagations during clausal proof
checking. However, eliminating literals requires additional (up to the number
of variables) resolution steps. Hence, the length of lemmas in resolution proofs
increases when clause minimization is used [18]. Additionally, to emit resolution
proofs, it is necessary to identify the clauses and lemmas on which to resolve
and compute the order in which to apply resolution steps.

Resolution-style proof checkers are generally considered straightforward to
implement, but their code size is typically several hundreds of lines of code or
larger. In contrast, a clausal proof-checking algorithm might be considered some-
what more complex, but can be implemented in less than 200 lines. One difficulty
in claiming that a clausal proof checker is “simple” concerns the use of a watch-
pointer data structure, which is critical for unit-propagation performance; this
code increases the complexity of the proof-checking algorithms and, therefore,
may reduce confidence in the soundness of the checker. Mechanically-verified
proof checkers exist for the resolution proof formats [19,20,12,21]. Through use
of the ACL2 theorem-proving system, it is possible to mechanically verify a RUP
checking algorithm (see Appendix B). It is also possible to mechanically verify a
generalization of the RUP proof format based on satisfiability equivalence [22].

5 Clause deletion

One of the most crucial techniques in SAT solvers is the 2-watch-literal, or watch-
pointer, data structure [23]. Due to this data structure, only a fraction of clauses
are examined during propagation.

When checking clausal proofs, performance increases when both watch-pointer
and clause deletion techniques are used. The watch-pointer data structures can
be integrated relatively easily, although it makes the checking algorithm more
complex. However, clause deletion is not currently used by any proof format.
Clausal proofs contain only a few hints about which clauses are redundant. Per-
sistence of lemmas is the most important reason why larger proofs are expensive
to check.
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An exploration of what information in clausal proofs can be used to support
deletion of clauses, without including additional information in the proof, sug-
gested that efficiency could be improved by deleting subsumed clauses and lem-
mas. After the addition of a new lemma, one can checked which clauses and/or
lemmas this new lemma subsumes (i.e., clauses or lemmas which are a superset
of the new lemma) and later delete them (when they are no longer needed).
Unit and binary lemmas frequently subsume several clauses and lemmas. How-
ever, most lemmas of length three or more rarely subsume other lemmas. Sub-
sumption information speeds up verification; preliminary results indicated a 20%
improvement.

In order to substantially lower the checking costs, the clause deletion infor-
mation of SAT solvers needs to be included in the proof. The main advantage
of clausal proofs is that SAT solvers can output them with only a few addi-
tional lines of code. That also holds for clause deletion information. There are
several approaches to implement this. A straight-forward way is to interleave
the addition and the deletion of lemmas (both as a set of literals) by using a
flag to denote addition or deletion. The order in the emitted proof provides the
information about when lemmas can be deleted.

Several alternative deletion-oriented implementations are possible, but they
may depend on information about lemmas that is not available. When each
clause and lemma has a unique identifier, this identifier could be combined with
added lemmas. In that case, clause deletion can be expressed using these iden-
tifiers. Such an alternative does not require matching add and delete entries in
the proof. The above straight-forward proposal is somewhat more costly, but is
at most twice the size of conventional clausal proofs.

6 New Proof Formats

The structure of clausal proof formats can effect the ease of implementation
and the size of the proof to be checked. Two new proof formats are presented
in this section. The first format is designed to minimize the modifications to
SAT solvers, while exporting all information required to ensure efficient check-
ing. The second format is a generally more compact variant designed to reduce
the complexity needed to check a proof. With a small program, it is possible to
convert the first format to the second one. Fig. 2 shows the details of the conven-
tional clausal proof format RUP [3] and two new formats for a small unsatisfiable
formula.

The first new format is called delete-reverse-unit-propagation (DRUP). This
format is designed to make it easy to output added and deleted lemmas into a
standardized form. Proofs in DRUP simply list the literals of each lemma (both
for addition and deletion entries). Lemma deletion entries are preceded with a
“d” identifier. This information can easily be generated from any modern SAT
solver. Appendix A shows the minor modifications required to output the DRUP
format for the Glucose solver and the SatELite preprocessor.
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CNF formula

p cnf 3 5

1 2 0

-1 2 0

1 -2 0

-1 3 0

-2 -3 0

RUP proof

-1 -2 0

1 0

0

DRUP proof

-1 -2 0

d -1 3 0

d -2 -3 0

1 0

d 1 2 0

d 1 -2 0

0

IORUP proof

iorup 3 5

1 7 1 2 0

2 8 -1 2 0

3 7 1 -2 0

4 6 -1 3 0

5 6 -2 -3 0

6 8 -1 -2 0

7 8 1 0

8 8 0

Fig. 2. An example of a CNF problem in the typical DIMACS format (left) as well as
equivalent clausal proofs in the RUP (middle left), DRUP (middle right) and IORUP
(right) formats. For the CNF problem and IORUP format, the numbers in the first line
denote the number of variables (first) and the number of clauses (second). Spaces be-
tween numbers can be arbitrary long. Spacing in the example is to improve readability.
A 0 marks the end of clauses and lemmas. For each lemma line in RUP, there is a
corresponding line in DRUP. Additionally, the DRUP format contains some d (delete)
lines. Compared to the RUP format, the IORUP format has two additional numbers on
each line denoting the ‘in’ and ‘out’ time-stamps of the corresponding clause or lemma.
The RUP and DRUP formats are appended to the input formula, but the IORUP format
modifies the input formula to contain time-stamps.

The in-out-reverse-unit-propagation or IORUP format contains two time-
stamps for each clause and lemma. The ‘in’ time-stamp denotes the time at
which the lemma becomes active (all clauses are active before the first lemma).
These ‘in’ time-stamps are strictly increasing and are used to determine which
other clauses become inactive. The checker maintains a global time-stamp that
is set to the ‘in’ time-stamp of the last processed lemma. The ‘out’ time-stamp
of a clause or lemma denotes when it becomes inactive. A clause or lemma will
be inactive when its ‘out’ time-stamp is smaller than the global time-stamp.
Inactive clauses and lemmas can be ignored for the remainder of the proof.

Clausal proofs in the DRUP format can cheaply be converted into the IORUP
format. Solvers can first emit the refutation in the DRUP format, and then
convert that into the IORUP format, and finally check the latter.

There is little difference between proof validation in RUP and IORUP for-
mats. Two changes are required to exploit the information in the IORUP format.
The ‘out’ time-stamp has to be stored with each clause and lemma. And, while
examining clauses and lemmas during unit propagation, the corresponding ‘out’
time-stamps need to be checked. If the ‘out’ time-stamp is larger than the global
time-stamp, then the corresponding watch-pointers are deleted (and the literals
of the clause or lemma will not be checked).

One might note that the ‘in’ time-stamp is not necessary during proof vali-
dation. A global time-stamp that is increased after each lemma will suffice. The
addition of explicit ‘in’ time-stamps improves readability, which is important
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when “debugging” proofs. Furthermore, the addition of ‘in’ time-stamps does
not significantly increase the size of proofs. In the worst case, every lemma is
binary and every line increases from three integers (two literals and a terminat-
ing zero) to five integers (the time-stamps, two literals, and a terminating zero)
— roughly doubling the file-size. The general case is much better as an average
conflict clause (for existing application benchmarks) contains 40 or more literals.
Overall, the ‘in’ time-stamps only account for small increase in file size.

The remainder of this paper is focused on validating proofs in the IORUP
format because this format facilitates a small and efficient checker implemen-
tation. However, there are situations in which the DRUP format is preferred.
Recall that the set of original clauses (together with time-stamps) is present in
IORUP proofs. The act of adding time-stamps for the original formula can intro-
duce inconsistencies. In some settings, such as validating the results of the SAT
2013 Competition, this might be exploited by modifying the original formula.
Modification of the input formula is not a problem for validating proofs in the
DRUP format as the lemmas are expressed as a separate input.

6.1 Preprocessing validation

State-of-the-art CDCL solvers use input preprocessors, but there is little research
on proof-checking of these solvers. Clausal proof checking can also be used to
validate results produced by SAT preprocessors. Checking a proof log produced
by preprocessing tools is a little different than checking a refutation. When
checking a refutation using a RUP checker (recall Fig. 1), it is expected it to
return “unsatisfiable”. When checking a proof by a preprocessor, the expected
outcome is “all lemmas validated”, meaning that all added lemmas are logically
implied by the input clauses.

As discussed in Section 3, the strengthening techniques used in preprocessors
are based on resolution and can therefore be validated using clausal and resolu-
tion proofs. While SAT solving procedures only add and remove lemmas, some
preprocessing techniques also remove literals from clauses and lemmas. Literal
elimination can easily be simulated by adding and removing clauses: one first
adds the shortened clause and then removes the original clause.

7 Implementation

The result of this work produced three tools for proofs for the RUP, DRUP,
and IORUP formats.1 The first program is a compact, fast implementation for
checking RUP proofs. The second program converts DRUP proofs into IORUP
proofs. The third program is a modified version of the first program and is used to
check proofs in the IORUP format. At the time of submission, the only publicly-
available tool to check RUP proofs first converts clausal proofs into resolution
proofs and checks the resolution proof using a RES checker [3].

1 The tools are available at http://www.cs.utexas.edu/~marijn/IORUP/.

http://www.cs.utexas.edu/~marijn/IORUP/
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7.1 RUP checker

The new proof checkers, implemented in C, for the RUP and the IORUP formats
are compact (less than 200 lines of C code); this makes it relatively “easy” to
visually inspect the code for correctness. The implementation of the RUP checker
focuses on compactness while compromising as little efficiency and readability
as possible.

To realize efficiency, the watch-pointer data structure [23] was used. This
data structure only examines whether a clause or lemma is unit when one of its
first two literals becomes falsified. In contrast to most CDCL solvers, the two
watch-pointers are stored in memory next to the first two literals. Using this
structure, no dynamic arrays are required to store the watch-pointers. Memory
is only allocated during initialization and without the use of libraries (no malloc).

The core of the code, the BCP implementation, is just over 20 lines, and each
line is documented. Most of the other lines are related to parsing. As discussed in
Section 4.3, checking clausal proofs is considered more complex when compared
to checking resolution proofs. Yet existing resolution proof checkers are several
hundreds of lines of code. This is caused by applying some tricks to deal with huge
files efficiently. Although the size of the code is not a very good measurement of
its complexity, one could argue that the RUP checker is not that much harder
to visually inspect for correctness than existing resolution proof checkers.

7.2 DRUP to IORUP converter

The second program implemented converts DRUP proofs into IORUP proofs.
This small program merely parses and matches the ‘add’ and ‘delete’ entries. The
DRUP format does not prescribe the order of the literals in clauses and lemmas.
Hence, the order of the literals between matching ‘add’ and ‘delete’ entries might
be different. In practice, the order is rarely the same because the watch-pointer
data structure approach frequently shuffles literals within clauses and lemmas.
One possible solution is to sort all entries, but this is rather expensive. Instead,
a hash table was used to match ‘add’ and ‘delete’ entries. The hash function uses
three statistics for each lemma that are independent of the order of the literals:
the sum, the product, and the xor of its literals. For a given lemma L a hash
function computes a value as follows (with size denoting the size of the table):

hash(L) := (1023 · sum(L) + product(L)⊕ (31 · xor(L))) (mod size) (1)

Collisions are addressed by adding linked lists to implement separate-chaining
collision resolution. In order to avoid collisions, the size of the table is 10 times
the number of lines without d entries. Using this approach, the conversion costs
are mostly caused by parsing the input file and writing the output file to disk.
The conversion tool adds typically 5% overhead to checking a IORUP proof.

7.3 IORUP checker

The third, and most important tool, is a checking algorithm for IORUP proofs.
The algorithm closely follows the RUP checking algorithm and contains about
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30 additional lines of C code. The IORUP checker stores in memory the ‘out’
time-stamp with the two watch-pointers for each clause and lemma.

The checker also maintains a global time-stamp which is equal to the ‘in’
time-stamp of the lemma currently being checked. The BCP algorithm is changed
in such a way that for each examined clause or lemma, the corresponding ‘out’
time-stamp is first obtained. If this ‘out’ time-stamp is larger than the global
time-stamp, the watch-pointers to that clause are permanently removed. These
modifications represent about 15 lines of code.

Notice that only the watch-pointers to the clauses are removed, while the
corresponding clauses are kept in memory. The checker becomes about 25%
faster by periodically removing all ‘out’ clauses from the data structures —
this includes clauses satisfied by top level unit clauses. This feature makes the
checking algorithm somewhat more complex, so it can be argued whether the
performance gain is worth it. No matter, this feature is used throughout all
experiments.

8 Evaluation

In this section, the three tools presented above are evaluated. The Glucose 2.1
SAT solver was modified — the winner of the SAT 2012 challenge2 — to emit
proofs in the DRUP format (see Appendix A for the changes). Recall that the
DRUP format can easily be converted to the RUP and IORUP formats. Four
checking tools were used during the evaluation. There are two tools written
by Van Gelder, which might be considered to be the official RUP checker. The
RUPtoRES tool first converts a RUP proof into a RES proof. Then, the Checker3

tool checks the resulting RES proof. Those tools are compared with the checkers
presented here: one for RUP (see Section 7.1) and one for IORUP (see Section 7.3).

Two benchmark suites of unsatisfiable application instances were constructed.
The first suite consists of medium-to-hard benchmarks from the SAT 2012 chal-
lenge. The second suite consists of benchmarks frequently used in papers that
concern the checking of unsatisfiability proofs. Instances from the second suite
are mostly easy benchmarks, but they are included to aid comparison with ear-
lier work. Because Glucose 2.1 uses the SatELite [10] preprocessor, SatELite
was first applied to all formulas to have a clear comparison with the SAT 2012
challenge results. Verification of the preprocessing is discarded while checking
the SAT solving for two reasons: the preprocessing and its checking are only a
small fraction of the total costs, and the RUP format does not support clause
deletion. Therefore, verification of a combined preprocessing and solving run
would require that all clauses removed by the preprocessor are present during
the solving phase; this would significantly degrade the performance. Results on
preprocessing are further discussed in Section 8.1. These experiments were per-
formed on a 4-core Intel Xeon CPU E31280 3.50GHz, 32 Gb RAM machine
running Ubuntu 10.04. Because the RUPtoRES tool created huge files and storage
resources were limited, the size of the output files was restricted to 100 Gb.

2 http://baldur.iti.kit.edu/SAT-Challenge-2012/

http://baldur.iti.kit.edu/SAT-Challenge-2012/
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Table 1. Comparison of the runtime (in seconds) on application benchmarks: solving
an instance with Glucose 2.1; converting a clausal proof using RUPtoRES by Van Gelder;
verifying a RES proof using Checker3 by Van Gelder; and verifying the RUP proof and
corresponding IORUP proof using the checkers described in this paper. |V |, |C|, and |L|
denote the number (in thousands) of variables, clauses and lemmas, respectively. OoS
(Out of Space) means that RUPtoRES hit the storage limit of 100 Gb. Consequently, some
RES proofs could not be checked (denoted by —). The top section of the table shows
SAT 2012 challenge instances, while the bottom section shows benchmarks frequently
used in papers regarding proof checking.

benchmark |V | |C| |L| solving RUPtoRES RES RUP IORUP

aes-bottom12 6.7 37 479 37.12 573.36 100.52 242.54 67.75
aes-bottom13 7.8 43 3,403 402.53 15,588.20 1,422.71 9,613.47 875.28

AProVE07-02 2.3 13 3,189 231.41 OoS — 5,618.84 497.41
AProVE07-08 2.5 13 1,469 147.21 3,231.11 671.26 2,587.83 308.38
AProVE07-27 3.6 20 2,741 401.26 OoS — 12,098.36 1,174.86

eq.atree.09 0.6 3 412 28.13 432.34 46.25 375.24 53.24
eq.atree.10 0.8 3 1,349 133.45 4,393.31 173.10 4,772.71 334.61
eq.atree.11 1.0 4 3,289 467.47 OoS — 26,452.72 1,411.61

gus-md5-08 28.5 163 102 177.41 OoS — 157.38 126.62
gus-md5-09 28.5 163 309 441.01 OoS — 591.42 361.71
gus-md5-10 28.5 163 1,406 1,860.24 OoS — 6,421.71 1,503.25

maxor064 18.6 86 858 125.49 2,184.15 1,033.26 512.07 169.23
maxxor032 4.7 22 924 97.35 2,069.98 550.59 815.86 158.00
maxxororand032 6.6 35 1,262 231.68 OoS — 3,086.81 395.51

q query 3 l44 7.5 65 1,009 74.93 1,537.70 42.17 1,282.81 148.79
q query 3 l45 7.7 67 999 75.84 1,576.52 39.23 1,344.34 148.58
q query 3 l46 7.9 69 985 72.88 1,426.51 36.07 1,208.62 141.70

rbcl xits 07 0.6 57 1,068 100.52 3,053.81 40.83 2,270.79 216.37

c5315 1.5 7 17 0.32 2.74 0.33 0.20 0.21
c7552 1.7 8 26 0.51 1.58 0.62 0.44 0.43

fifo8 200 14.6 68 39 1.29 1.98 0.46 0.55 0.56
fifo8 300 22.5 105 123 7.34 16.78 6.58 4.40 4.09
fifo8 400 30.5 141 134 7.92 11.56 2.36 3.41 3.29

longmult13 1.4 8 304 8.25 112.78 75.64 27.09 15.54
longmult14 1.6 9 129 6.67 106.95 77.62 19.54 11.56
longmult15 1.8 10 111 5.78 68.12 44.60 15.38 10.16

w10 45 4.4 23 2 0.09 0.30 0.05 0.06 0.06
w10 60 7.2 38 8 0.43 2.05 1.40 0.38 0.39
w10 70 9.0 48 26 1.01 7.17 6.12 0.93 0.95

Table 1 shows the result of running the tools on both suites. For all tools the
real time in seconds is listed. While RUPtoRES and the RUP and IORUP tools
were using 100% of the CPU, the Checker3 tool for the RES proof was slowed
by file I/O and used, on average, 20% of the CPU. The top section shows the
first suite. On nearly half of those instances, the RUPtoRES hit the space limit
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of 100 Gb, demonstrating one of the main weaknesses of resolution proofs. On
the other instances, the performance of RUPtoRES is comparable with the RUP
checker. Notice that for the approach from RUP to RES, the cost is the sum of
the RUPtoRES and RES columns.

For medium-to-hard benchmarks, IORUP clearly outperforms RUP. The ex-
tent of the performance gain on an instance is related to the size of the proof: the
larger the proof, the larger the speed-up. For most medium-to-hard benchmarks,
checking the IORUP proofs is an order of magnitude faster when compared to
checking the RUP format. Moreover, the cost of checking IORUP proofs remains
comparable with the solving time, although about a factor two slower on aver-
age. Comparing the solving time and the checking time for RUP proofs shows a
growing gap as the solving time increases. It is impractical to use RUP proofs for
hard benchmarks — in contrast to IORUP proofs. Checking proofs in the RUP
format requires that all lemmas be in memory during the validation; therefore,
the cost of proof checking increases.

The bottom section of Table 1 shows the results on benchmarks frequently
used in papers [1,2,3,20] regarding proof checking. These benchmarks are easy
for modern SAT solvers as Glucose 2.1 can solve each of them within 10 seconds.
Papers on RUP checking [2,3] report solving times and RUP checking times
on several of these instances of over 1,000 seconds. Notice that the number
of variables and clauses may differ from other papers, because all benchmarks
have been preprocessed by SatELite.

A comparison of the size of refutations in different proof formats is shown in
Table 2. The smallest proof format is RUP. Proofs in the DRUP format are gener-
ally twice as large as compared to RUP, while IORUP proofs are only 10% larger.
Clausal proofs are significantly smaller, typically by two orders of magnitude,
than resolution proofs.

Table 2. Comparison between the proof sizes (in Mb) on some application benchmarks
solved by Glucose 2.1. The solver emits DRUP proofs, which are then converted to the
RUP format by removing the d lines and to the IORUP format using the converter
presented in Section 7.2. Proofs in the RES format were obtained by applying the
RUPtoRES tool on RUP proofs.

benchmark RES RUP DRUP IORUP

aes-bottom12 9,831.71 70.99 141.04 78.46
aes-bottom13 65,703.17 521.54 1,044.81 573.04

AProVE07-08 51,386.24 238.61 479.19 259.47

eq.atree.09 4,531.55 31.27 61.94 36.67
eq.atree.10 16,549.82 113.76 227.87 132.47

maxor064 62,010.42 246.32 478.61 260.53
maxxor032 46,831.80 289.96 574.58 302.83

q query 3 l44 3,949.44 121.79 243.14 137.55
q query 3 l45 3,807.54 118.51 237.99 134.20
q query 3 l46 3,554.44 117.81 236.91 133.35

rbcl xits 07 3,747.44 79.17 158.56 95.46
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8.1 Preprocessing results

As discussed in Section 6, clausal proof-checking techniques can be used for pre-
processing as well. Presently, SatELite [10] is the most widely used preprocessor.
Modifying SatELite to emit a proof in the DRUP format was only slightly harder
than modifying the Glucose 2.1 solver: seven lines of code (see Appendix A) are
required. SatELite implements removal of literals in a way that fits within the
DRUP format as a shortened clause is added and the original clause is deleted.

Preprocessing techniques can typically consume a large amount of computa-
tion. SatElite is optimized to keep the cost of preprocessing low by avoiding
expensive techniques. Regarding the SAT 2012 challenge suite, SatELite fin-
ishes in less than a second on half the instances, and terminates on almost all
instances in less than ten seconds.

Table 3. Comparison of the preprocessing time (in seconds) by SatELite, the proof-
checking time of RUP proofs, and the proof-checking time of the IORUP proofs. |V |,
|C|, and |L| denote the number of variables, clauses and lemmas, respectively.

benchmark |V | |C| |L| preproc. RUP IORUP

aigs-lfsr 008 079 112-t 448,370 1,130,525 5,205,849 227.29 136.13 50.65
clauses-6 683,996 2,623,082 1,412,364 39.49 4.79 4.89
safe-50-h50-sat 633,392 2,141,556 6,925,757 147.61 295.46 81.59

In order to show the effectiveness of clausal proof formats in checking pre-
processing techniques, the three most costly (in terms of SatELite runtime)
benchmarks were selected from the SAT 2012 challenge. The results are shown
in Table 3. For these and other benchmarks, checking IORUP proofs requires
less time than the preprocessing time. Checking RUP proofs may be more costly
than preprocessing — as shown for safe-50-h50-sat in the table. In general,
checking preprocessing tends to take less time than checking solving procedures.

9 Related Work

9.1 Related Tools

At the time of this article, only one proof checker based on the RUP format
is publicly available. This checker, RUPtoRES by Van Gelder [3], converts RUP
proofs into resolution (RES) proofs, which in turn are validated by a RES checker.
In Section 8, this approach was compared to the RUP and IORUP checker im-
plementations.

Four tools have been developed to produce resolution proofs: zChaff [1],
Minisat 1.14 [13], Picosat [14] and Booleforce [15]. Unfortunately, these tools
use different resolution proof formats, although all except Minisat have the op-
tion to output to the official RES format. The solvers that support the RES
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format also participated in the certified UNSAT track of the SAT 2007 competi-
tion [24]. The first two tools, zChaff and Minisat 1.14, have not been updated
recently3; therefore, these tools lack the recent improvements of modern SAT
solvers. Consequently, the performance of these tools is not competitive when
compared to most SAT 2012 challenge participants.

Picosat is the only state-of-the-art tool that can output resolution proofs.
Proofs are emitted in the tracecheck format [15] which is an alternative resolu-
tion proof format for which one can optionally add clausal proof information.
Validating proofs in the tracecheck format is very fast. Unfortunately, there is
no tool that can convert RUP proofs into tracecheck proofs. However, one can
easily convert tracecheck proofs with the additional clause proof information into
IORUP proofs. In the tracecheck format, each lemma stores all of the clauses that
are required to construct it using resolution. The clauses can be used to compute
the (perfect) ‘out’ time-stamp for each lemma by determining when each clause
will be last used. Using this method, tracecheck proofs can be converted into
IORUP proofs.

In general, validating tracecheck proofs is about a factor of four faster than
checking the corresponding IORUP proof. Checking IORUP proofs is slower be-
cause it performs many unit propagations that are not required to derive the
conflict. In essence, the tracecheck format exchanges time for space by explicitly
describing which unit clauses the checker should examine and in what order.
However, extracting this information from a SAT solver is essentially the same
as building a resolution proof.

It will be hard to beat the runtime of checking algorithms for resolution
proofs, but runtime is not the bottleneck when it comes to validating refutations
produced by SAT solvers. Currently the biggest obstacle is the availability of
solvers producing these proofs.

9.2 Verified Resolution Proof Checking

Weber [19,20] demonstrated the first mechanically-verified resolution-based proof
checker using Isabelle/HOL, evaluated the verified proof checker with resolu-
tion proofs produced by zChaff, and compared the results to the built-in zChaff

proof checker using CPU times (not wall-clock times). The verified checker was
one to two orders of magnitude slower than the zChaff built-in checker and took
about 50% longer than the zChaff solver. Memory problems were described dur-
ing evaluation as MiniSAT failed to produce resolution proofs for all but one of
the selected benchmarks. It should be noted that the author’s main focus was
developing a verified proof checker in order to integrate SAT solving technology
into the Isabelle/HOL theorem prover, which was successful.

Darbari et al. [12] verified a resolution-based proof checker in Coq which is
able to execute outside of the theorem-prover environment. The performance
was better than that of Weber’s, but memory issues were still a concern. The
authors found that up to 60% of the total time was spent in garbage collection.

3 Minisat has been improved, but not the proof-logging support.
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Armand et al. [21] extended a SAT resolution-based proof checker to include
SMT proofs using Coq.

9.3 Verified Solving

One method of assurance for SAT solvers is to develop a verified SAT solver.
This approach avoids the need for any post-processing, but this does not pro-
vide assurance for state-of-the-art, non-verified solvers. Furthermore, there is a
delicate balance between efficiency and verification.

The Davis-Putnam-Logemann-Loveland (DPLL) [25,26] algorithm is one of
the most basic SAT solving algorithms where unit propagation is combined with
backtracking. Lescuyer and Conchon [27] formalized and verified a DPLL algo-
rithm with Coq [28] using a process called reflection. A certified Ocaml implemen-
tation was extracted but the efficiency was not evaluated on larger, industrial-
scale problems, and the perofrmance was poor for small examples. Shankar and
Vaucher [29] also verified a DPLL solver using PVS; however, the performance
was never evaluated.

Modern SAT solvers are built around the CDCL [30] paradigm. In CDCL-
based solvers, redundant clauses are added to a formula during solving to re-
duce the search space. Marić verified pseudocode fragments of a CDCL solver
in 2009 [31] and verified a CDCL solver using Isabelle/HOL [32] in 2010 [33].
While the author spent years on the verification process (including verification
of a two-watched literal data structure), the performance was never clearly eval-
uated. Oe et al. [34] developed a verified CDCL solver in Guru called VerSAT.
The performance was compared to PicoSAT (which is no longer a state-of-the-art
solver), with RUP, and with tracecheck proof generation: VerSAT solved signi-
cantly fewer benchmarks within the timeout of 3600 seconds (6 of 16 chosen
benchmarks). On the benchmarks VerSAT completed, it was often an order or
two of magnitude slower than PicoSAT with tracecheck.

10 Conclusions

A new refutation proof format was presented as well as a new checker that makes
it practical to verify unsatisfiability results. Using this approach, proof discovery
time is essentially unchanged and the output can be checked in a time similar
to the proof discovery time. The new DRUP and IORUP proof formats were
introduced. To facilitate the checking of unsatisfiability results, existing SAT
solvers and their preprocessors should be modified to emit DRUP proofs. Then,
these DRUP proofs can be converted into the IORUP format which can then
be efficiently checked. The required modifications are simple, and the conversion
and validation are efficient. It appears that all CDCL-based solvers could include
a similar capability.

Using the new formats, the computational costs to verify clausal proofs are
reduced significantly on medium-to-hard benchmarks. These formats eliminate
the most important disadvantage of clausal proofs: their inefficiency. A new
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proof checker was implemented to check proofs in these new formats, and the
algorithm of the proof checker was analyzed with the aid of a theorem prover.
This approach shows that clausal proofs can be compact, easy to obtain, efficient
to check, and simple enough to be mechanically verified.

Given these results, one could argue that it is possible to check all refutations
produced by SAT solvers and associated preprocessors. This increase in confi-
dence will no doubt further increase their usage of SAT solving in all manner of
tools.
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28. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer (2004)

29. Shankar, N., Vaucher, M.: The mechanical verification of a DPLL-based satisfia-
bility solver. Electronic Notes in Theoretical Computer Science 269 (2011) 3–17

30. Marques-Silva, J.P., Lynce, I., Malik, S.: 4. In: Conflict-Driven Clause Learning
SAT Solvers. IOS Press (2009) 131–153
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A Code modifications

This section shows how to modify Glucose 2.1, the SAT 2012 challenge winner,
and the widely used preprocessor SatELite, to emit a proof in the DRUP format.
Add the following lines at the end of the procedure Solver::analyze in Solver.cc:

for (i = 0; i < out_learnt.size(); i++)

printf("%i ", (var(out_learnt[i]) + 1) *

(-2 * sign(out_learnt[i]) + 1));

printf("0\n");

Add the following lines at the beginning of Solver::removeClause in Solver.cc:

printf("d ");

for (int i = 0; i < c.size(); i++)

printf("%i ", (var(c[i]) + 1) * (-2 * sign(c[i]) + 1));

printf("0\n");

The same changes can be used for Minisat 2.2.0 on which Glucose 2.1 is based.
To emit a proof log by SatELite, almost the same lines can be used, but the

placement location is less intuitive as compared to the solvers. For the addition of
clauses, use the lines shown above, with out learn replaced by ps, and add them
to Solver clause.iC in the procedure Solver::addClause. The code should be
placed directly above the line “if (ps.size() == 0){”. Placing the lines at this
location causes SatELite to ignore literals in the input that are falsified by a unit
clause in the input. Consequently, the parsed input in the proof is not identical to
the raw input. The clause deletion lines are exactly the same and should be placed
at the beginning of Solver::deallocClause (not in Solver::removeClause)
in Solver clause.iC.

B Verification of clausal proof-checking algorithms

The goal of emitting a proof of unsatisfiability is to gain confidence in both
the result and the solver. However, it is possible to do more than to trust the
proof checker; it is possible to mechanically verify proof-checker implementa-
tions. Mechanically-verified proof checkers for the RUP and IORUP formats are
described below.

Two unsatisfiability proof checkers were modeled and analyzed with ACL2 [8]:
one checker uses the RUP format, and the other checker uses the IORUP format
proposed in this paper. ACL2 was used to mechanically prove the correctness of an
ACL2-based implementation of an unsatisfiability proof checker. The soundness
theorem states that if the proof checker can verify a proof, then there is no
solution for the given formula. Alternatively, an unsatisfiability proof checker is
correct if the following theorem is valid (where F is a formula, Q a proof, and τ
a truth assignment).

Checker (F, Q) = UNSATISFIABLE (2)

⇒ ¬∃ τ such that Evaluate (F, τ) = true
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The proofs of correctness for this RUP proof checker and the IORUP proof
checker are quite similar. The IORUP proof checker uses essentially the same
algorithm as the RUP proof checker except that it ignores certain clauses during
unit propagation. If the checker fails to establish the logical inference of a lemma,
then the proof-checking attempt fails and the theorem (2) is trivially valid. In
other words, it is the responsibility of the tool that creates the IORUP proof to
ensure that the proof is still valid.

The proof of the correctness of the RUP proof checker was done first. With
only minor modifications, the IORUP proof checker and its proof of correctness
were completed. The definition of the RUP proof checker and its proof of correct-
ness is comprised of 42 ACL2 events, which include both definitions and theorems.
Using the RUP proof checker as a starting point, 10 ACL2 events were added to
create the IORUP proof checker and its proof of correctness. The IORUP proof
of correctness takes only four additional seconds to mechanically verify.
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