
Computing Maximum Unavoidable Subgraphs
Using SAT Solvers

Cuong Chau and Marijn Heule

Department of Computer Science
The University of Texas at Austin

Austin, TX, USA

{ckcuong,marijn}@cs.utexas.edu

Abstract. Unavoidable subgraphs have been widely studied in the con-
text of Ramsey Theory. The research in this area focuses on highly struc-
tured graphs such as cliques, cycles, paths, stars, trees, and wheels. We
propose to study maximum unavoidable subgraphs measuring the size in
the number of edges. We computed maximum unavoidable subgraphs for
graphs up to order nine via SAT solving and observed that these sub-
graphs are less structured, although all are bipartite. Additionally, we
found large unavoidable bipartite subgraphs up to order twelve. We also
present the concept of multi-component unavoidable subgraphs and show
that large multi-component subgraphs are unavoidable in small graphs.
We envision that maximum unavoidable subgraphs can be exploited us-
ing an alternative approach to breaking graph symmetries.

Keywords: satisfiability solving, unavoidable subgraph, combinatorics,
graph theory, symmetry breaking

1 Introduction

Satisfiability (SAT) solvers have become very powerful tools to solve hard-
combinatorial problems that have only few symmetries. Recent successes in this
direction are solving Erdős discrepancy problem [10] and the Boolean Pythagorean
Triples problem [9]. However, for hard-combinatorial problems with many sym-
metries, such as Ramsey numbers [7], SAT solvers may not be the strongest
tools around. For example, the most impressive result regarding Ramsey num-
bers, solving R(4, 5) [12], is two decades old and cannot be reproduced with
SAT solving yet. In this paper, we propose to study a special kind of hard-
combinatorial problems that could be helpful to bridge this gap.

Consider the fully connected undirected graph of order n, in short Kn. A
graph G is called an unavoidable subgraph of Kn if G occurs as a fully red or
fully blue subgraph in any red/blue edge-coloring of Kn. Unavoidable subgraphs
have been widely studied, as can be observed in a survey paper [13] that cites
over 600 papers on the subject. This research area focuses on highly structured
graphs such as cliques, cycles [3], paths [6], stars [8], trees [4], and wheels [14].



2

We propose to investigate less structured graphs: the maximum unavoidable
subgraphs with the size measured in the number of edges.

We compute the maximum unavoidable subgraphs via SAT solving. We ob-
serve that the maximum unavoidable subgraphs for small graphs are all bipartite
and conjecture that this is also the case for large graphs. Another interesting
observation made within the experimented range is that Kn+1 always has a
strictly larger unavoidable subgraph than Kn for n > 3. The difference in size
between the maximum unavoidable subgraphs of Kn and Kn+1 is typically one
edge and sometimes two edges. Consequently, the size of the maximum unavoid-
able subgraphs (measured in the number of edges) grows faster than the size of
Kn (measured in the number of vertices).

The conventional notion of unavoidable subgraphs considers only connected
(single-component) subgraphs. We introduce the concept of multi-component un-
avoidable subgraphs: each component occurs in either red or blue in all red/blue
edge-colorings of Kn — although some components may occur in blue, while
others occur in red. Starting with K6, some interesting patterns can be observed
in the largest found multi-component unavoidable subgraphs.

The state-of-the-art symmetry-breaking methods for SAT [1] or specifically
for graphs [5] are not powerful enough to make some reasonably simple unavoid-
able subgraph problems solvable via SAT techniques. For example, consider the
problem whether a star of eight edges, in short S8, is an unavoidable subgraph
of K15. Using a short combinatorial argument one can solve this problem: K15

has an odd number of edges (105), so not all vertices can have exactly seven red
and seven blue edges. Hence, one vertex must have at least eight red or at least
eight blue edges, or equivalently S8 as a monochromatic subgraph.

We envision that knowledge about the maximum unavoidable subgraphs,
both the single and the multi-component variants, could be a basis for novel
symmetry-breaking techniques for SAT solvers. All edges in a component can be
replaced by a single edge in the component, allowing significant simplification of
graph problems.

The remainder of this paper is structured as follows. First we present some
background information on unavoidable subgraphs in Section 2. In Section 3, we
describe how to encode unavoidable subgraph problems into SAT. Computing
single and multi-component unavoidable subgraphs is discussed in Section 4
and 5, respectively. Section 6 presents a method to exploit unavoidable subgraphs
and we draw some conclusions in Section 7.

2 Unavoidable Subgraphs and Motivation

All graphs mentioned in the paper are undirected. Before presenting the defini-
tion of an unavoidable subgraph, we first introduce the concept of graph isomor-
phism: Two graphs G and H are isomorphic if there exists an edge-preserving
bijection from the vertices of G to the vertices of H. We say that two isomorphic
graphs occur in the same isomorphism class.



3

Definition 1 (Unavoidable subgraph). A graph G is called an unavoidable
subgraph of the fully-connected graph Kn if for all red/blue edge-colorings EC of
Kn, there exists a subgraph H of Kn such that

1. H is isomorphic to G.
2. H is monochromatic, either in red or blue, under the coloring EC of Kn.

We want to emphasize that Definition 1 does not require that H is the same
graph for different red/blue edge-colorings of Kn. A small example of unavoidable
subgraphs is shown in Figure 1. This figure lists all red/blue edge-colorings of
K3. Notice that a monochromatic path of two edges occurs in all graphs. Hence
a path of two edges is an unavoidable subgraph of K3.

b c

a

any

b c

a

a-c-b

b c

a

b-a-c

b c

a

a-b-c

b c

a

a-c-b

b c

a

b-a-c

b c

a

a-b-c

b c

a

any

Fig. 1. All red/blue edge-colorings of K3. For readability, we draw red and blue edges
using solid and dashed lines, respectively. Observe that all colored graphs contain a
monochromatic path of two edges (as shown below the graphs).

The two propositions below follow from the definition of unavoidable sub-
graphs. We will refer to them in Section 4:

Proposition 1. If G is an unavoidable subgraph of Kn, then G is also an un-
avoidable subgraph of Km for all m ≥ n.

Proposition 2. If G is an unavoidable subgraph of Kn, then all subgraphs of G
are also unavoidable subgraphs of Kn.

Many “nicely” structured unavoidable subgraphs have been heavily stud-
ied [13] such as cliques, cycles [3], paths [6], stars [8], trees [4], and wheels [14].
We propose to study unavoidable subgraphs somewhat differently compared to
existing work. Instead of searching for graphs with a well-defined structure, we
want to compute maximum unavoidable subgraphs (measured in the number of
edges). Such maximum unavoidable subgraphs may not have a clear structure.

We argue that maximum unavoidable subgraphs are interesting, because they
allow for an alternative symmetry-breaking approach for graph problems: given
an avoidable subgraph, we can simplify graph problems by enforcing that all
edges in the unavoidable subgraph are either all present or all absent. The larger
the unavoidable subgraph, the stronger the symmetry-breaking predicate that
can be derived from it. In Section 6 we will explain this in more detail.

3 SAT Encoding of Unavoidable Subgraph Problems

We employ a SAT solver to check whether a given graph G of order k is an
unavoidable subgraph of the complete graph Kn where k ≤ n. The SAT encoding



4

is illustrated in the following example: check whether a path of two edges is
an unavoidable subgraph of K3. There are three paths of two edges in K3 as
shown in Figure 2. A path of two edges is an unavoidable subgraph of K3 if
and only if for any red/blue edge-coloring of K3, at least one of the three paths
in Figure 2 is monochromatic. Let ab, ac, and bc denote the Boolean variables
representing the color of the edges connecting vertices a and b, a and c, and
b and c, respectively. If a Boolean variable has value true, the corresponding
edge has color red, otherwise it has color blue. Then, the following Boolean
formula represents the fact that at least one of the three paths in Figure 2 is
monochromatic:

FG,K3
= (ab ∧ bc) ∨ (ab ∧ bc) ∨ (ab ∧ ac) ∨ (ab ∧ ac) ∨ (ac ∧ bc) ∨ (ac ∧ bc)

Determining whether a path of two edges is an unavoidable subgraph of K3

is equivalent to checking the validity of FG,K3
, i.e., checking if FG,K3

holds for
all truth assignments to the variables. This is then equivalent to checking if the
negation of FG,K3

is unsatisfiable.

FG,K3
= (ab ∨ bc) ∧ (ab ∨ bc) ∧ (ab ∨ ac) ∧ (ab ∨ ac) ∧ (ac ∨ bc) ∧ (ac ∨ bc)

Since FG,K3 is in conjunctive normal form (CNF), SAT solvers can solve it
directly. Thus, determining an unavoidable subgraph problem can be converted
into a SAT problem as illustrated. The construction of FG,Kn

is described in
Algorithm 1. In particular, given the complete graph Kn and its subgraph G
that we want to check if G is unavoidable in Kn, for each subgraph H of Kn

that is isomorphic to G, we construct two clauses: (1) disjunction of positive
literals representing red color of edges in H, and (2) disjunction of negative
literals representing blue color of edges in H. The formula FG,Kn is then the
conjunction of all of these clauses.

a

b c

a

b c

a

b c

Fig. 2. All paths of two edges in K3.

The most expensive computation in Algorithm 1 is the function call at line 2,
which generates all subgraphs of Kn that are isomorphic to G. A naive approach
for generating all isomorphic graphs is to apply all permutations on every set of
k nodes taken from n nodes, where k is the number of nodes in G. Each permu-
tation application will of course produce an isomorphic graph to G. However,
duplicate graphs can be produced since different permutations can return the
same graph. The number of duplicate graphs can be huge in comparison with the
number of non-duplicate isomorphic graphs, depending on the graph’s structure
and size. More importantly, the number of permutations grows rapidly as the
number of nodes in G increases. And the number of non-duplicate isomorphic



5

Algorithm 1 SAT Encoding of An Unavoidable Subgraph Problem

1: function Unavoid-Subgraph-SAT-Encoding(G,Kn)
2: G ← Isomorphic-Subgraphs-Gen(G,Kn)
3: FG,Kn ← ∅
4: for each H ∈ G do
5: Cr ← disjunction of positive literals representing red color of edges in H
6: Cb ← disjunction of negative literals representing blue color of edges in H
7: FG,Kn ← FG,Kn ∧ Cr ∧ Cb

8: end for
9: return FG,Kn

10: end function

graphs is usually very small in comparison with the number of permutations.
Consequently, we will come up with spending most of the time computing du-
plicate graphs, which are unnecessary. We want to avoid these computations.
Instead we just apply all permutations on the first set of k nodes taken from n
nodes. After this step, we will recognize which permutations generate duplicate
graphs. We can then avoid applying these permutations on all remaining sets of
k nodes. The details of this approach are described in Algorithm 2. The output
of this algorithm is a collection of all non-duplicate subgraphs of Kn that are
isomorphic to the input graph G.

Algorithm 2 only applies the set Pk of all permutations on the first set of k
nodes taken from n nodes in the first loop (lines 7-14). This loop also constructs
a minimal set P ′k of permutations that generates all non-duplicate isomorphic
graphs to G for any set of k nodes (recall that k is the number of nodes in G).
After this loop, the algorithm will apply P ′k instead of Pk for all remaining sets
of k nodes (lines 16-22).

4 Computing Unavoidable Subgraphs Using SAT Solvers

We are interested in computing unavoidable subgraphs mechanically. By exploit-
ing the gtools programs in the nauty package [11], we are able to generate all
non-isomorphic graphs of order k (≤ 10) very quickly. For each generated graph
G, we can mechanically check whether it is unavoidable for a given complete
graph Kn by converting into a SAT formula FG,Kn as described in the previous
section, and then employing a SAT solver to check the formula’s satisfiability.
We use the glucose 3.0 SAT solver [2] to do the satisfiability check.

4.1 Breaking Symmetries

Symmetries are the main obstacle for checking the satisfiability of FG,Kn effi-
ciently. To counter this obstacle, we add symmetry-breaking predicates (SBP)
to FG,Kn

before calling a SAT solver. Unavoidable subgraph problems have two
symmetries: any permutation of the vertices and swapping the edge colors. The



6

Algorithm 2 Computing Isomorphic Subgraphs

1: function Isomorphic-Subgraphs-Gen(G,Kn)
2: Pk ← all permutations of {0, 1, 2, ..., k − 1}, where k is the order of G
3: Qn

k ← all k-combinations of k nodes taken from the vertex set of Kn

4: G ← ∅ . Output: all subgraphs of Kn that are isomorphic to G
5: P ′k ← ∅ . A subset of Pk s.t. its application generates non-duplicate graphs

6: Pick the first k-combination Q ∈ Qn
k

7: for each π ∈ Pk do
8: Q′ ← π(Q)
9: G′ ← Q′(G) . Construct an isomorphic graph G′ of G

10: if G′ /∈ G then . Check if G′ is not duplicate in G
11: G ← G ∪ {G′}
12: P ′k ← P ′k ∪ {π}
13: end if
14: end for

15: Qn
k ← Qn

k\{Q} . We are done with the first combination of Qn
k

16: for each Q ∈ Qn
k do

17: for each π ∈ P ′k do
18: Q′ ← π(Q)
19: G′ ← Q′(G) . Construct an isomorphic graph G′ of G
20: G ← G ∪ {G′} . G′ is guaranteed to be non-duplicate in G
21: end for
22: end for

23: return G

24: end function

edge color symmetry can easily be broken by selecting an edge and forcing it to
a color by adding a unit clause.

Several methods have been developed to break such graph symmetries [1, 5].
Existing techniques can be viewed as enforcing a lexicographic order on the rows
of the adjacency matrix. Let AG be the adjacency matrix representing a graph G
of order n. The predicate AG[i] �{i,j} AG[j] states that the binary representation
of the i-th row of AG is less than or equal to the binary representation of the
j-th row of AG when excluding the i-th and j-th columns of AG.

Definition 2 (Linear symmetry break). We define the linear symmetry-
breaking predicates (L-SBP) for graph G as follows:

L-SBP(G) =

n−1∧
i=1

AG[i] �{i,i+1} AG[i + 1]

The symmetry-breaking tool shatter [1] adds L-SBP to graph problems such
as unavoidable subgraph formulas.



7

Table 1. The number of graphs that satisfy the symmetry-breaking predicates L-SBP
and Q-SBP as compared to the number of isomorphism classes of graphs of order 5 to
12. The number of satisfying assignments were computed using sharpSAT [15].

n L-SBP Q-SBP # isomorphism classes

5 46 43 34

6 325 276 156

7 4,045 3,158 1,044

8 89,812 66,595 12,346

9 3,583,903 2,587,488 274,668

10 258,518,959 184,193,025 12,005,168

11 33,859,710,152 23,962,961,317 1,018,997,864

12 8,086,937,704,176 5,700,915,311,729 165,091,172,592

Codish et al. [5] demonstrated that the comparator �{i,j} is not transitive:
AG[h] �{h,i} AG[i] ∧AG[i] �{i,j} AG[j] does not imply AG[h] �{h,j} AG[j]. En-
forcing AG[i] �{i,j} AG[j] for all 1 ≤ i < j ≤ n is a valid symmetry-breaking
predicate for graph problems [5]. We will refer to this method as quadratic
symmetry-breaking method since it adds a quadratic number of constraints to
graph problems.

Definition 3 (Quadratic symmetry break). We define the quadratic symmetry-
breaking predicates (Q-SBP) for graph G as follows:

Q-SBP(G) =
∧

1≤i<j≤n

AG[i] �{i,j} AG[j]

Table 1 shows the number of graphs / assignments that satisfy the symmetry-
breaking predicates L-SBP and Q-SBP as well as the number of isomorphism
classes. Notice that Q-SBP is slightly better than L-SBP. Both numbers are not
close to the number of isomorphism classes meaning that many symmetries are
not broken by both methods.

The impact of symmetry-breaking predicates on the time required to solve
some large unavoidable subgraph problems is shown in Table 2. Notice that the
runtime is reduced by orders of magnitude for the larger unavoidable subgraphs.
However, there is no clear difference between the L-SBP and Q-SBP methods.

Table 2. Runtime in seconds to compute the maximum or largest found unavoidable
subgraphs of K6 to K12 shown in Figure 3 using glucose 3.0. The experiments were
run on 3.5GHz Intel Xeon E31280 processors with 8MB L3 cache size. A ’-’ means a
timeout after 24 hours.

n 6 7 8 9 10 11 12

No SBP 0 0.025 0.38 4.85 11,690.70 - -

L-SBP 0 0 0.01 0.11 4.77 18.73 312.60

Q-SBP 0 0 0.01 0.11 7.98 19.40 303.40



8

Algorithm 3 Computing Unavoidable Subgraphs of k Nodes for Kn

1: function Unavoid-Subgraphs-Order-K-Gen(k,Kn)
2: G ← all non-isomorphic graphs of order k generated using nauty

3: H ← ∅ . Output: all unavoidable subgraphs of order k in Kn

4: for each G ∈ G do
5: FG,Kn ← Unavoid-Subgraph-SAT-Encoding(G,Kn)
6: if UNSAT(FG,Kn ∧ SBP (FG,Kn)) then
7: H ← H∪ {G}
8: end if
9: end for

10: return H
11: end function

4.2 Enumerating Unavoidable Subgraphs

Algorithm 3 shows the pseudo-code of enumerating unavoidable subgraphs. In
principle, this algorithm can be applied to compute all unavoidable subgraphs of
a given complete graph Kn by setting k equal to n. Nonetheless, the number of
non-isomorphic subgraphs of Kn grows rapidly as n increases, so it is impractical
to exhaustedly check the unavoidability of all non-isomorphic subgraphs of large
complete graphs.

We reduced the number of evaluated subgraphs by ignoring several kinds of
graphs that cannot be unavoidable in a given complete graph. For example, if the
maximum degree of a graph exceeds some threshold, it cannot be unavoidable in
a given complete graph. One may think this threshold degree is bn/2c for all Kn

by reasoning that there always exists a red/blue edge-coloring on any complete
graph Kn such that: among edges connected to each vertex v in Kn, the number
of edges of the same color is at most bn/2c. As a result, subgraphs with the
maximum degree higher than bn/2c cannot be unavoidable in Kn. However, this
is not true when n ≡ 3 (mod 4) as stated in Theorem 1.

Theorem 1. For every Kn with n ≡ 3 (mod 4), there exists a graph G such
that G is unavoidable in Kn and the maximum degree of G is at least bn/2c+ 1.

Proof. We prove by contradiction. Suppose there exists a red/blue edge-coloring
of Kn such that among edges connected to each vertex v in Kn, the number of
edges of the same color is at most bn/2c. (1)

Since n ≡ 3 (mod 4), n is an odd number. For each vertex v in Kn, there are
(n− 1) edges connected to v, which is therefore an even number. (2)

From (1) and (2), we can claim that the number of red and blue edges
connected to each v in Kn are both equal to bn/2c. As a result, the number of
red and blue edges in Kn must be equal. (3)

Since n ≡ 3 (mod 4), Kn has an odd number of edges, or exactly 8l2 +10l+3
with l = bn/4c. Hence, the number of red and blue edges in Kn must be different,
which contradicts (3). Thus there must exist a subgraph G in Kn with the
maximum degree at least (bn/2c+ 1) and G is unavoidable in Kn.



9

By using our SAT solving approach, we proved that for all n ≤ 18, the
star Sbn/2c+2 is not an unavoidable subgraph of Kn when n ≡ 3 (mod 4), and
Sbn/2c+1 is not an unavoidable subgraph of Kn for other values of n1. Since the
star Sk (i.e., the complete bipartite graph K1,k) is the smallest graph with the
maximum degree k, if Sk is not unavoidable in Kn, then no other graphs with
the maximum degree at least k is unavoidable in Kn by the contrapositive of
Proposition 2. For that reason, given a complete graph Kn such that n ≤ 18, we
only need to check the unavoidability of subgraphs with the maximum degree
at most (bn/2c+ 1) if n ≡ 3 (mod 4), and subgraphs with the maximum degree
at most bn/2c for the other case of n.

Since we are interested in discovering maximum unavoidable subgraphs —
instead of all unavoidable subgraphs of a given complete graph Kn — we skipped
evaluating subgraphs that are smaller than the largest known unavoidable sub-
graph of Kn. For example, when we know that certain graph G is a maximum
unavoidable subgraph of Kn, then we only need to evaluate subgraphs with at
least (|E(G)| + 1) edges for Kn+1, because G is also unavoidable in Kn+1 by
Proposition 1. In particular, we first check subgraphs satisfying the maximum de-
gree requirement as stated above and their number of edges equal to (|E(G)|+1).
If at least one of them is unavoidable in Kn, we then check subgraphs with the
number of edges equal to (|E(G)|+2), and so on. The process will stop if neither
one of subgraphs with the number of edges (|E(G)| + i) is unavoidable in Kn.
From the contrapositive of Proposition 2, we can claim that there does not exist
a subgraph H in Kn s.t. |E(H)| ≥ (|E(G)|+ i) and H is unavoidable in Kn. In
other words, a maximum unavoidable subgraph of Kn must have (|E(G)|+ i−1)
edges. Using this approach, we are able to find maximum unavoidable subgraphs
for K3 to K9 effectively by reducing the number of subgraphs to be checked a
substantial amount (see Table 3).

Table 3. The number of graphs to be evaluated while searching for maximum unavoid-
able subgraphs of Kn as compared to the number of isomorphism classes of graphs of
order n with 3 ≤ n ≤ 9. Our approach imposes an upper bound on the maximum
degree of graphs and a lower bound on the number of edges. We start with the fact
that K2 is the maximum unavoidable subgraph for itself.

n 3 4 5 6 7 8 9

# isomorphism classes 4 11 34 156 1,044 12,346 274,668

# checked graphs 2 2 6 35 97 291 904

1 Currently, our system is not able to prove this property for n > 18 due to out of
computational resources.



10

|E| = 2

K3 & K4:

|E| = 3

K5:

|E| = 5

K6:

|E| = 6

K7:

|E| = 7

K8:

(a)

|E| = 8

K9:

|E| = 10

K10:

|E| = 11

K11:

(b)

|E| = 12

K12:

Fig. 3. Some large single-component unavoidable subgraphs of K3 to K12: (a) max-
imum unavoidable subgraphs of K3 to K9, all of them are bipartite; (b) maximum
bipartite unavoidable subgraphs discovered of K10 to K12.

4.3 Results on Single-Component Unavoidable Subgraphs

Figure 3 (a) shows the maximum unavoidable subgraphs for each Kn with 3 ≤
n ≤ 9 2. Observe that all maximum unavoidable subgraphs are bipartite. We
used this observation to find large unavoidable subgraphs for K10 to K12. The
bipartite restriction was required to make the number of graphs to be evaluated
manageable — apart from the other restrictions of the maximum degree and the
minimum number of edges. Figure 3 (b) shows the largest found unavoidable
subgraphs for K10 to K12. We are unable to determine whether these unavoidable
bipartite subgraphs are maximal: the evaluation of many graphs with one more
edge required more than 24 hours SAT solving time (the limit on our cluster).

5 Computing Multi-Component Unavoidable Subgraphs

The concept unavoidable subgraphs as stated in Definition 1 can be generalized
to multiple components, such that each component must occur monochromatic
in all red/blue edge-colorings of Kn. We will represent a multiple-component

2 We found multiple maximum unavoidable subgraphs for K9. Figure 3 (a) shows one
of them.



11

a

b

c

d e

f
a b c d e f

a 0 2 0 1 1 2
b 2 0 2 1 1 0
c 0 2 0 0 1 0
d 1 1 0 0 0 3
e 1 1 1 0 0 3
f 2 0 0 3 3 0

———

- - - - -

...........

: 1st component

: 2nd component

: 3rd component

Fig. 4. An example illustrating the adjacency matrix of a 3-component graph.

graph G by a graph with edge labels. Edges are in the same component of
G if and only if they have the same label. In this section, we show how to
compute multi-component unavoidable subgraphs using SAT solvers. We will
discuss in Section 6, how multi-component unavoidable subgraphs can be helpful
in constructing symmetry-breaking predicates for graph problems. Given a multi-
component graph G, we write Gi to denote the subgraph of G that has only
the edges with label i. The adjacency matrix of a multi-component graphs is
constructed as follows: AG(i, j) = AG(j, i) = k if the edge connecting nodes
i and j has label k and AG(i, j) = AG(j, i) = 0 if no edge connects nodes i
and j. Figure 4 shows a 3-component graph and its adjacency matrix. In the
visualizations, edges with label 1 are shown as solid lines, edges with label 2 as
dashed lines, and edges with label 3 as dotted lines.

Algorithm 4 describes the SAT encoding algorithm for the case m = 2.
Given a graph G consisting of two components, first all occurrences of G in Kn

are computed using Isomorphic-Subgraphs-Gen(G,Kn). Notice that we had
to generalize this procedure to deal with graphs that have labelled edges. For
each possible presence of G in Kn, we have 4 clauses stating that at least one
component must be non-monochromatic. The algorithm can be easily generalized
to m-component unavoidable subgraphs by adding 2m clauses for each possible
presence of the graph in Kn.

Our mechanism for computing m-component unavoidable subgraphs is in-
cremental from some (m− 1)-component unavoidable subgraph (m ≥ 2). Algo-
rithm 5 describes our mechanism for computing 2-component unavoidable sub-
graphs from a given single-component unavoidable subgraph. In this algorithm,
we use the notation V (G) to denote the vertex set of G, and Ei(G) to denote the
edges with label i in G. Given an unavoidable subgraph G of Kn, we generate
all possible supergraphs that have one additional edge in the second component.
For each of those generated graphs, we check whether it is also unavoidable in
Kn. If it is unavoidable, we recursively call the same procedure again (line 7).

The idea of this algorithm can be generalized to m-component unavoidable
subgraph computation for all m ≥ 2. Let S(n) denote the size of maximum single-
component unavoidable subgraphs of Kn. As heuristic to reduce the vast number
of possible multi-component graphs, we start with a single component with at
least S(n) − 1 edges. Second, we compute which one of them can be extended



12

Algorithm 4 SAT Encoding of A 2-Component Unavoidable Subgraph Problem

1: function Two-Comp-Unavoid-Subgraph-SAT-Encoding(G,Kn)
2: G ← Isomorphic-Subgraphs-Gen(G,Kn)
3: FG,Kn ← ∅
4: for each H ∈ G do . Suppose H consists of 2 components H1 and H2

5: Cr1 ← disjunction of positive literals representing red color of edges in H1

6: Cb1 ← disjunction of negative literals representing blue color of edges in H1

7: Cr2 ← disjunction of positive literals representing red color of edges in H2

8: Cb2 ← disjunction of negative literals representing blue color of edges in H2

9: FG,Kn ← FG,Kn ∧ (Cr1 ∨ Cr2) ∧ (Cr1 ∨ Cb2) ∧ (Cb1 ∨ Cr2) ∧ (Cb1 ∨ Cb2)
10: end for
11: return FG,Kn

12: end function

Algorithm 5 Computing 2-Component Unavoidable Subgraphs of Kn from a
Given Subgraph

1: function Two-Comp-Unavoid-Subgraphs-Gen(G,Kn)
2: G ← all supergraphs H of G s.t. |V (H)| = |V (G)|, |E1(H)| = |E1(G)|, and
|E2(H)| = |E2(G)|+ 1

3: H ← ∅ . Output: all 2-component graphs (extended from G)
. that are unavoidable in Kn.

4: for each H ∈ G do
5: FH,Kn ← Two-Comp-Unavoid-Subgraph-SAT-Encoding(H,Kn)
6: if UNSAT(FH,Kn ∧ SBP (FH,Kn)) then
7: H ← H∪ {H} ∪Two-Comp-Unavoid-Subgraphs-Gen(H,Kn)
8: end if
9: end for

10: return H
11: end function

using a second component consisting of two edges (not necessarily connected).
Notice that components consisting of a single edge can be ignored as each single
edge is always monochromatic. This is repeated by trying to extend the graphs
with two components to three components by adding another component with
two edges. Once the starting points of unavoidable subgraphs have been deter-
mined, we try to extend them by adding edges to each component. We repeat
this until no multi-component graphs can be further extended. Figure 5 displays
our discovery of largest found multi-component unavoidable subgraphs for K6,
K7, and K8. One interesting observation is that the maximum single-component
unavoidable subgraph of K6 is an induced subgraph of the maximum single-
component unavoidable subgraphs for K7 and K8. The same observation can
also be made for the largest found multi-component unavoidable subgraphs.

The above procedure does not necessarily produce maximum multi-component
unavoidable subgraphs. The used heuristics, i.e., starting with a single compo-
nent of at least S(n) − 1 edges, may prevent us finding a maximum multi-



13

2|E(K6)|−(5−1) = 211

2|E(K6)|−(7−2) = 210

K6: 2|E(K6)| = 215

2|E(K7)|−(6−1) = 216

2|E(K7)|−(10−3) = 214

K7: 2|E(K7)| = 221

2|E(K8)|−(7−1) = 222

2|E(K8)|−(11−3) = 220

K8: 2|E(K8)| = 228

Fig. 5. Comparison between maximum single-component and largest found multi-
component unavoidable subgraphs of K6, K7, and K8. The top row displays single-
component graphs. The bottom row displays multi-component graphs: 2-component
for K6, 3-component for K7 and K8. For all these three cases, symmetry-breaking
predicates derived from largest found multi-component unavoidable subgraphs result
in smaller search spaces (measured in the number of graphs) as compared to the ones
derived from maximum single-component unavoidable subgraphs.

component unavoidable subgraph. Also, we restricted the search to graphs that
have at most three components. In future work, we want to compute maxi-
mum multi-component unavoidable subgraphs by applying the methods without
heuristics and restrictions.

6 Deriving Symmetry-Breaking Predicates from
Unavoidable Subgraphs

In order to compute unavoidable subgraphs efficiently, symmetry-breaking tech-
niques were used as discussed in Section 4.1. Although adding symmetry-breaking
predicates reduced the solving costs substantially, we also observed that these
predicates are not strong enough to solve some relatively easy unavoidable sub-
graph problems using SAT. For example, the problem whether the star S8 is
unavoidable in K15 cannot be solved even after symmetry breaking. This sec-
tion describes how knowledge about some unavoidable subgraphs could be turned
into an alternative approach to symmetry breaking.

The method works as follows. Given a known unavoidable subgraph G of Kn

consisting of m components, construct a predicate that forces for each component
that all of its edges are equal. For example, recall that a path of two edges is
an unavoidable subgraph of K3. First, we pick a concrete path, say b-a-c, and
force both edges (a-b and a-c) to be equal, i.e., either both present or both



14

absent in graphs of order 3. There are only four graphs of order 3 that satisfy
this constraint and these are shown in Figure 6. Moreover, these four graphs
represent exactly the four isomorphism classes of graphs of order 3. This implies
that the symmetry-breaking predicate derived from a path of two edges is perfect
for graphs of order 3, i.e., exactly one graph from each isomorphism class satisfies
the symmetry-breaking predicate.

a

b c

a

b c

a

b c

a

b c

Fig. 6. All graphs of order 3 satisfying the symmetry-breaking predicate that forces
the path b-a-c to be either present or absent.

More concretely, given an unavoidable subgraph G of Kn. Let |E1(G)| = l
and let e1, e2,..., el denote the Boolean variables representing the edges with
label 1. The symmetry-breaking predicate forcing all these variables (edges) to
be equivalent is

e1 e2 e3 ... el

The (l − 1) equivalence relations above can be expressed using a cycle of l im-
plications, which can be represented using l binary clauses as follows:

e1 e2 e3 ... el ≡ e1 e2 e3 ... el

≡ (e1 ∨ e2) ∧ (e2 ∨ e3) ∧ ... ∧ (el ∨ e1)

Thus, a monochromatic component consisting of l edges can be encoded
with l binary clauses. Applying the method for all components of G results in
a symmetry-breaking predicate of |E(G)| binary clauses. Since any unavoidable
subgraph G of Kn is also an unavoidable subgraph of Km where m ≥ n, we
can apply the symmetry-breaking predicate derived from G in checking the un-
avoidability of other subgraphs of Km. How useful are these symmetry-breaking
predicates? Using the largest found unavoidable subgraph of K11 as symmetry-
breaking predicate to compute the largest found unavoidable subgraph of K12

reduces the runtime to 532.48 (s). Not as strong as the L-SBP and Q-SBP pred-
icates (see Table 2), but still reasonably well.

In general, given an unavoidable subgraph G of Kn with m components, the
number of graphs of order n that satisfy the symmetry-breaking predicate is
2|E(Kn)|+m−|E(G)|, because |E(G)|−m edges will be depending on m edges (the
representatives of the components). Figure 5 shows how much the search space is
reduced when converting the maximum or largest known unavoidable subgraphs
for K6, K7, and K8 into symmetry-breaking predicates. In all these three cases,
the largest known multi-component unavoidable subgraphs are more effective



15

Table 4. Number of graphs of order n that satisfy symmetry-breaking predicates. L-
SBP-bin: the binary clauses of L-SBP; Q-SBP-bin: the binary clauses of Q-SBP; and
USG-SBP: the symmetry-breaking predicates based on unavoidable subgraphs.

n L-SBP-bin Q-SBP-bin USG-SBP

6 5,210 4,672 1,024
7 196,608 181,248 16,384
8 14,680,064 13,664,256 1,048,576

than the maximum single-component unavoidable subgraphs. When comparing
these numbers with Table 1, the results do not look impressive. However, the
existing symmetry-breaking methods use many long clauses. If we only consider
the binary clauses in symmetry-breaking predicates of existing techniques, then
symmetry-breaking predicates derived from unavoidable subgraphs look much
more interesting, see Table 4. The number of graphs that satisfy the predicates
is much smaller.

The main question that arises is: how can we improve the unavoidable sub-
graph based predicates? A possible answer is finding non-binary clauses that
can be added similar to the L-SBP and Q-SBP methods. Alternatively, one can
search for asymmetric unavoidable subgraphs, such as: is a cycle of four edges
occurring in red or a path of two edges occurring in blue unavoidable in K4? We
observed that this asymmetric subgraph is indeed unavoidable. Converting such
asymmetric unavoidable subgraphs into a symmetry-breaking predicate makes
it stronger. These topics will be the focus of future work.

7 Conclusions

We studied and computed maximum unavoidable subgraphs using SAT solvers.
During our experiments we observed that all maximum unavoidable subgraphs
are bipartite and conjecture that this holds in general. Also, it appears that the
maximum unavoidable subgraphs of Kn+1 are strictly larger than the maximum
unavoidable subgraphs of Kn for n > 3. Symmetry breaking was crucial to
obtain our results. However, we also observed that current symmetry-breaking
techniques are not strong enough to compute some relatively simple unavoidable
subgraph problems using SAT. We demonstrated how unavoidable subgraphs
can be converted into symmetry-breaking predicates. We are hopeful that this
approach helps to improve symmetry-breaking techniques for SAT.

Acknowledgements

The authors are supported by the National Science Foundation under grant
number CCF-1526760 and acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing grid resources that
have contributed to the research results reported within this paper.



16

References

1. Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry break-
ing for boolean satisfiability. In Georg Gottlob and Toby Walsh, editors, IJCAI-03,
Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence, Acapulco, Mexico, August 9-15, 2003, pages 271–276. Morgan Kaufmann,
2003.

2. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
SAT solvers. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pages 399–404, 2009.

3. John A. Bondy and Paul Erdős. Ramsey numbers for cycles in graphs. Journal of
Combinatorial Theory, Series B, 14(1):46 – 54, 1973.

4. Stefan A Burr and Paul Erdős. Extremal Ramsey theory for graphs. Utilitas
Mathematica 9, pages 247–258, 1976.

5. Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey. Breaking
symmetries in graph representation. In Proceedings of IJCAI 2013, pages 510–516.
IJCAI/AAAI, 2013.

6. László Gerencsér and András Gyárfás. On Ramsey-type problems. Annales Uni-
versitatis Scientiarum Budapestinensis, 10:167–170, 1967.

7. Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey Theory. A
Wiley-Interscience publication. Wiley, 1990.

8. Frank Harary. Recent results on generalized ramsey theory for graphs. In Y. Alavi,
D.R. Lick, and A.T. White, editors, Graph Theory and Applications, volume 303
of Lecture Notes in Mathematics, pages 125–138. Springer Berlin Heidelberg, 1972.

9. Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer, 2016. Accepted
for SAT 2016, appearing in the same volume.

10. Boris Konev and Alexei Lisitsa. A sat attack on the erdos discrepancy conjecture.
In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability
Testing SAT 2014, volume 8561 of Lecture Notes in Computer Science, pages 219–
226. Springer International Publishing, 2014.

11. Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Jour-
nal of Symbolic Computation, 60(0):94 – 112, 2014.

12. Brendan D. McKay and Stanislaw P. Radziszowski. R(4, 5) = 25. Journal of Graph
Theory, 19(3):309–322, 1995.

13. Stanis law P. Radziszowski. Small Ramsey numbers. The Electronic Journal of
Combinatorics, #DS1, 2014.

14. Stanis law P. Radziszowski and Xia Jin. Paths, cycles and wheels in graphs without
antitriangle. Australasian Journal of Combinatorics, 9:221–232, 1994.

15. Marc Thurley. Theory and applications of satisfiability testing - sat 2006: 9th
international conference, seattle, wa, usa, august 12-15, 2006. proceedings. chapter
sharpSAT – Counting Models with Advanced Component Caching and Implicit
BCP, pages 424–429. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.


