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Abstract. Prototypes for automated spatial layout in architecture focus
on approaches, which define occupiable space as an orthogonal 2D-grid
and use algorithms to allocate each rectangle of the grid to a particular
function. However, these approaches are limiting the design to orthog-
onal spatial layouts. Based on SAT solving techniques, the prototype
presented in this paper proposes a methodology for automated 3D-space
planning for orthogonal and nonorthogonal, more specifically, voxelized
curvilinear geometries.

1 Introduction

Two systems for automated 2D-layout design based on some form of constraint
satisfaction techniques have been compared by Fleming et al. [1]. While one
of the systems - Loos - uses a form of generate-and-test constraint satisfaction
and the other system - Wright - uses disjunctive constraint satisfaction. Both
have, according to Fleming et al., an under-constrained problem definition and,
therefore, both produce an unmanageable large amount of feasible solutions.
Furthermore, they may be sensitive to scaling when dealing with larger problems.

Loos adds objects sequentially, while Wright satisfies constraints incremen-
tally. When tested and compared both generate similar solutions for the same
problem. According to the authors, disjunctive constraint satisfaction is more
efficient, but less general than hierarchical generate-and-test constraint satis-
faction regarding the type and criteria it can incorporate. However, both can
incorporate features of the other approach and overcome their limitations.

More recently, Michalek et al. [2] have been developing a system for 2D-
layout design using optimization techniques based on simulated annealing and
sequential quadratic programming. Similarly to Loos and Wright, this system
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addresses automated space allocation conceived as 2D placement of functional
spaces or objects within an orthogonal 2D representation of a rectangular room
or building floor-plan.

The prototype presented in this paper, FunctionLayouter [FL], generates, how-
ever, 2D-layouts of functional objects placed in a voxelized 3D-space, which ap-
proximates complex curvilinear geometries. Furthermore, it solves instances of
layout problems by exploring relative large solution spaces of these instances and
achieves this by reducing the search space, and by exploring it efficiently.

The search space is reduced by applying heuristics: From preliminary spatial
studies it is obvious that certain parts of the available space are difficult to
access or too small to accommodate Functional Objects [FO]. This space has
been deducted from the total enabling a search space reduction of almost 1/2.

Furthermore, efficient exploration of the search space is ensured by employing
search algorithms based on Boolean Satisfiability [SAT]: The Boolean Satisfia-
bility problem [SAT] is a decision problem attempting to answer the question:
When given a specific formula, consisting of a number of Boolean variables - true
or false - is there a particular assignment to these variables for which the entire
formula evaluates to true?

A Boolean variable Xi, or its negation ¬Xi, is called a literal. In SAT, formu-
las consist of a conjunction (AND; ∧) of clauses and every clause is a disjunction
(OR; ∨) of literals. As follows:

(X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ X3 ∨ ¬X4) (1)

If there is an assignment to the literals such that every clause is satisfied -
evaluates to true - the formula is said to be satisfiable.

SAT is an NP-complete problem, i.e.: there is no known algorithm that is
able to determine in polynomial time - with respect to the length of the input -
whether there is a satisfying assignment or what that assignment is [3]. Only due
to the recent development of satisfiability solvers such as MiniSat [4], RSat [5],
and March [6] it is currently possible to solve problems with a large amount of
clauses in reasonable time. These SAT solvers are capable of determining if a
satisfying assignment exists for formulas with millions of clauses.

A special class of SAT-based solvers work with pseudo-Boolean formulas
consisting of a conjunction of constraints or inequalities. On the left side is a
summation over literals and their coefficients, on the right side is an integer
number denoting how the left side is constraint:

∑
ai(¬)Xi ≤ k, with Xi ∈ {0, 1}, and ai, k ∈ Z (2)

Due to its ability to handle pseudo-Boolean constraints, the proposed pro-
totype FL makes use of MiniSat+. FL generates a number of Pseudo-Boolean
constraints, which MiniSat+ converts to a set of clauses and then invokes the
embedded SAT solver. MiniSat+ has been identified as a back-end to address
the layout problem described in this paper, due to the fact that a number of the
constraints involved in the problem description are based on cardinality require-
ments.



2 Methodology

The layout-problem is specifically defined for architectural designs based on
curvilinear geometries. While rather easy to manipulate formally, NURBS-based
spaces are difficult to control with respect to allocation of functions in 3D-space.
Therefore, in a first step the NURBS-based space is voxelized [7].

Fig. 1. Voxelized NURBS-based geometries provide a discrete 3D-space, which can be
easily populated with Functional Objects.

Voxelized spaces in architecture enable fluent transition from curvilinear-
smooth to angular-facetted geometries, and can be seen as mass-models used for
volumetricaland functional studies: In an iterative process volumes are assigned
to functions, and spatial relationships are established between the different func-
tional volumes in order to generate 3D-layouts.

Voxelization within this project enables continuous, low-high resolution voxel-
representation within a 5-90 cm range.

A number of FOs, representing objects, which can be placed within these
voxels, are defined. Furthermore, constraints and optimization targets, which
define how objects may be placed in voxel-space, are defined. These are then
summarized in a problem description, which is translated into a SAT solver-
understandable format. Finally, the solver produces numerical and graphical
output containing all possible and optimal solutions found.

In this context, several constraint rules have been identified: 1. Cardinality
constraints, describing how many FOs may be present; 2. Occupancy constraints,
describing which voxels FOs may occupy; 3. Adjacency constraints, describing
FOs neighboring rules, and 4. Design constraints, describing spatial relations
between FOs. Furthermore, implicit overlap constraints exist, preventing FOs
from overlapping.

After defining these constraints, a number of optimization goals have been
formulated, including their priority: 1. Maximize occupancy: As many voxels as
possible must be occupied by FOs, ensuring a maximum use of available space,
and 2. Ergonomic optimization, describing optimizations that help create an
optimal work flow, and/or ensure safety for people using the FOs.



Fig. 2. Voxelization resolution ranges from 5-90 cm enabling an almost accurate rep-
resentation of the curved geometry. Figure shows voxelization resolution 30/30/30 and
15/15/15 cm.

3 Implementation

The constraint solver used for solving the described layout-problem is MiniSat+.
This solver employs DPLL SAT, which is a complete search procedure to explore
a search space for possible solutions. This search procedure has been developed
in the early 1960s and is referred to as the Davis-Putnam-Logemann-Loveland
[DPLL] algorithm.

The DPLL algorithm divides a problem into sub-problems by selecting in
each step a Boolean decision variable. This variable is assigned a truth value.
The formula is then reduced under this assumption and checked for solutions.
When a solution is found, the algorithm halts. When no solution is found, it can
be concluded the variable should be assigned the opposite truth value and the
search is continued. Only when the whole search space has been explored and
no solution is found, the problem can be considered unsatisfiable.

Over the last decade relevant improvements have been made in order to speed
up the DPLL algorithm: Most notably clause learning, as well as improved data
structures and alternative types of backtracking have increased search efficiency
enabling solvers to handle problems with millions of variables and clauses [8].

3.1 Problem Description

The layout-problem addresses NURBS-based designs tested in a case study, a
foodkiosk - Figure 3 - which has been abstracted in a first iteration in such a
way that equipment components are placed in a voxelized kiosk-space with a
resolution of 90/90/90 cm.

In this context, FunctionLayouter 90 [FL90] uses heuristics such as placement
of equipment on two levels easily accessible to the kiosk-users 0.00-0.90 and 0.90-
1.80 m in order to reduce effectively the search space. Furthermore, equipment



is defined as 90/90/90 cm units, ensuring a 1:1 mapping of FO to voxel, which
is a simplified model.

The second iteration, Flexible FunctionLayouter [FlexFL] drops the 1:1 map-
ping constraints, allowing FOs to span multiple voxels. This enables, inter alia,
flexible voxel resolutions, which have been tested on a 30/30/30 cm resolution
case study wherein FOs can span multiple voxels, increasing complexity in FO
allocation with respect to geometry.

Fig. 3. Image showing top- and right-view of the kiosk as a 3D NURBS-model, which
has been employed in the voxelization and layout study.

In the original FL90 test case, a food kiosk has been modeled, in which a
total number of 14-26 functional objects have been assigned to 26 voxels. In this
context, 11 functional object types have been differentiated: Refrigerator [RF],
sink [SK], stove [ST], exhaust [EX], automat [AT], storage room [SR], trash bin
[TB], dish-washer [DW], coffee machine [CM], micro-wave [MW], and cash desk
[CD]. These FOs represent a typical equipment selection for a food-kiosk.

In addition, allocation constraints have been formulated implying definition
of most effective functional spatial configurations: These are in part based on
empirical findings formalized by Neufert [9] as well as the kitchen work-triangle
defined by the Building Research Council [10] at the University of Illinois. This
specifies that SK, ST, and RF form, preferably, a triangle in which the closer
the length of the triangle sides is to about 200 cm, the better is the layout.

The FlexFL test-case uses a higher resolution model 30/30/30 cm, which im-
plies a higher accuracy in geometrical representation, and therefore, a reduction
of available space for placing FOs.

Instead of 14-26 FOs FlexFL30 allocates 10 FOs with differentiated sizes de-
fined by their corresponding height/width/depth: SK 60/60/30, ST 60/60/15,
RF 60/60/60, AT 60/60/60, SR 60/60/60, MW 45/45/45, DW 45/45/45, TB
45/45/60, EX 45/45/15, CM 45/45/15, and CD 45/45/15. Sizes are, in this case,
simplified but realistic assumption for FO-masses.

FlexFL30 deals, therefore, with a nearly realistic problem description, while
FL90 deals with an abstracted one.



3.2 Software Architecture

The basic control flow of FunctionLayouter has been split into a sequence of
operations: Initially, a problem is read in from an XML problem description.
Here, the problem is split into a number of rules and optimization targets.

The problem is then translated pseudo-Boolean constraints, which are run
through a version of MiniSat+ modified by the authors of this paper.

The SAT solver’s output is then parsed and translated into solutions. Based
on the optimization target, new constraints may then be added, and MiniSat+

invoked again. Finally, the solutions are displayed on a graphical user inter-
face, where the user may request more information on a specific solution, again
invoking the constraint translation system.

In this context, the main focus has been the translation of constraints from
the specifications as given by designer, to the pseudo-Boolean constraints solv-
able by MiniSat+.

3.3 Constraints Translation in FL90

In order to enable constraints translation into pseudo-Boolean, variables have
been defined as XFO

x,y,z, where x, y, z are the coordinates in voxel-space. For

example, when XRF
0,0,1 is true, a refrigerator is placed at (0,0,1). When it is false,

the refrigerator is not placed there.
These variables can then be combined into constraints. For example, an over-

lap constraint specifying that only one item may be contained in voxel x, y, z

would take on the form:

∑

f∈FO

+1 · Xf
x,y,z ≤ 1 (3)

where FO is the set of all FOs that may be placed at x, y, z.
1. Cardinality and occupancy constraints are relatively trivial to translate,

and are summations of possible locations for each FO, constrained by the min-
imum and maximum number of instantiations of each FO. The occupancy con-
straints are implicitly formulated in this manner, since all placement variables
for a functional object are specified.

For example, to specify a maximum of two refrigerators [RF]:

∑

x,y,z∈VOXRF

+1 · XRFx,y,z ≤ 2 (4)

where VOXRF contains all RF locations.
2. Adjacency rules are based on direct neighbors at the same height, not

including diagonals. To compute such rules for an FO f at voxel x, y, z, a list of
disallowed neighbor types is generated. Next, for every disallowed neighbor type,
a list of voxels neighboring f is generated. This is the set of directly neighboring
voxels, as in Figure 5(a). Once this neighbor list has been generated, FlexFL
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Fig. 4. Diagram showing occupancy constraint definition: (a) Invalid Overlap, (b)
Marking using arrows, (c) Potential Neighbor in FlexFL.

iterates through these neighbors, and generates the following constraints for
every voxel u, v, w in the list:

+1 · Xf
x,y,z + 1 · Xg

u,v,w ≤ 1 (5)

where g is the current disallowed neighbor.

For the example given in Figure 5(a), the following constraints would be
generated:

+1 · XRF
1,1 + 1 · XSK

0,1 ≤ 1

+1 · XRF
1,1 + 1 · XSK

1,0 ≤ 1

+1 · XRF
1,1 + 1 · XSK

2,1 ≤ 1

+1 · XRF
1,1 + 1 · XSK

1,2 ≤ 1

(6)

3. Design constraints incorporate rules such as ‘if a sink is placed, a dish-
washer must be placed in one of its neighboring cells’. In general, if an FO g

must be placed next to an FO f , a neighbor list Lf
x,y,z is generated for every

voxel x, y, z that f can be placed at as in the previous section. Unlike the normal
adjacency case, however, the variables in the neighbor list are summed up, and
included in a rule as follows:

−1 · Xf
x,y,z

∑

u,v,w∈L
f
x,y,z

+1 · Xg
u,v,w ≥ 0 (7)

This implies that if f is positioned at x, y, z, one of the voxels in Lf
x,y,z must

contain g.

Constraints translation in FlexFL is different from FL90 mainly because the
1:1 mapping between voxels and FOs is replaced by a flexible mapping of FOs
of different sizes to voxel resolutions ranging from 5-90 cm.
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Fig. 5. Diagram showing neighboring rules: (a) Neighbors in FL90 (b) 2x2 sized neigh-
bors in FlexFL.

3.4 Constraints Translation in FlexFL

A major difference between the FL90 and FlexFL is that a placement variable no
longer represents the whole functional object, but the anchor of an FO, i.e. the
FOs voxel that is closest to the left, front, bottom corner of the FO.

Most constraints are based on this anchor voxel, including the cardinality
constraints, occupancy constraints, and the optimizations that are explained in
the next section. This allows the translation for these rules to constraints to
remain unchanged. There are, however, a few differences, which are explained in
this section.

1. Overlap constraints are more complex, to prevent situations such as in
Figure 4(a). To prevent this from taking place, rules are added to ensure that if
a certain voxel is occupied by the anchor of an FO, the other voxels occupied by
it are marked with arrows to such an anchor voxel, as in Figure 4(b).

By ensuring that different arrows can not co-exist with each other or other
occupying FOs in a single voxel, overlap is prevented. Extension to the 3D-case
is done by adding a third, downwards pointer.

2. Adjacency rules are translated in a similar fashion to the FL90 case, how-
ever, since in the FlexFL case, layouts as in Figure 4(c) are also possible. The
neighbor list calculation is, therefore, performed differently. For example, the
generated neighbor list for a 2x2 object would be as shown in Figure 5(b).

3.5 Optimization

Once the search space has been reduced by the above constraints, optimal solu-
tions are generated from the number of valid solutions.

In both FL90 and FlexFL, two optimization targets have been consecutively
allowed, one to maximize the occupancy, and one to optimize spatial layout with



respect to ergonomic aspects. The maximization goal is applied during an initial
invocation of the SAT solver.

A second call is then made to the SAT solver, with an additional constraint
that fixates the occupancy to the previously found maximum value. During this
run, an ergonomic target is used, based on the empirical findings formalized,
inter alia, in the kitchen work triangle by the Building Research Council [10].

1. Maximizing Occupancy: MiniSat+ contains a feature, which minimizes a
given goal function. By summing up all possible FO locations, and multiplying
this sum by -1, the following minimizing goal function is obtained:

−1 ·
∑

x,y,z∈VOX

∑

f∈FOx,y,z

Xf
x,y,z (8)

where VOX contains all voxel positions, and FOx,y,z contains all FOs that can
be placed at that voxel position. The procedure that MiniSat+ uses to find the
optimal solution is to find an initial solution while ignoring the minimization
function. It then computes the value of the goal function, and adds a constraint
that all new solutions should be better. The solver then continues its search with
this new constraint. This procedure is repeated until no new results are found,
where the last result is the optimal one.

2. Ergonomic Rules: Since translating the kitchen work triangle target to a
pseudo-Boolean goal function would be complex, a different approach has been
chosen. An exhaustive search is performed for all different layouts of the sink,
stove and refrigerator. This is done by running the solver repeatedly, while adding
constraints to exclude sink-stove-refrigerator configurations that have previously
been found.

These configurations are then presented to the user, ordered by their simi-
larity with the optimal kitchen work triangle. The user can then select one of
these configurations and generate all possible layouts containing that triangle
configuration.

3.6 Results

FL90 generates 11 possible layout solutions from which 4 are optimal. All 4
optimal solutions satisfy occupancy maximization as well as SK, ST, and RF
triangle optimization.

Generated solutions have been 2D visualized as shown in Figure 6. The tri-
angle spanning between SK, ST, and RF shows the difference between possible
and best possible solutions according to the principle the smaller the triangle,
the better the solution.

FlexFL30 generates 28 layout solutions incorporating about 23 different tri-
angle configurations from which all are sub-optimal, since the maximum triangle
edge length is exceeding 391 cm. However, 9 triangle configurations are close to
optimal.

Solutions are 2D represented in a sequence of voxel-layers, where FO positions
are obviously more differentiated in response to not only the complex geometry



Fig. 6. Image shows one of the four optimal layouts for 90/90/90 voxelization resolution
as 2D representation of the levels at 0.90 and 1.80 m relative space height. Sub-optimal
solutions are marked in the table dark gray.

but also to a nearly realistic problem definition. Each voxel-layer shows contained
FOs: TB for instance spans 2 voxel-layers, since it is 60 cm high, while SK
occupies one voxel-layer, since only 30 cm high.

FOs are placed in such a way that they accommodate the complex geometry
except for one case, where an AT is not accessible. This problem can be addressed
by defining additional constraints describing in more detail spatial accessibility.
However, FOs layout satisfies, in general, requirements of not only accessibility
but also optimal placement relative to each other as well as to the whole space.

4 Discussion

FunctionLayouter generates, in comparison with Loos and Wright, functional lay-
outs of similar scale and realistic relevance. However, Loos and Wright deal only
with the placement of functional objects in 2D, while FunctionLayouter addresses
the layout in 3D dealing with the allocation of functions within complex - free-
formed geometries - instead of simple - rectangular - space geometries.

With respect to optimization, Loos constructs solutions incrementally, testing
intermediate solutions on consistency and other criteria relevant for architectural
design, while optimization is carried out according to these intermediate tests,
in an ad hoc procedure implying that no overall objective directs the search.
However, without invoking a backtracking procedure, Loos search is not com-
plete. As presented in Flemings paper [1] it is neither exhaustive nor does it
yield solutions with an overall optimal objective.

Wright is more similar to the approach presented in this paper: Wright uses
Constraint Satisfaction, to implement a backtracking procedure that makes the
search complete. Optimization is implemented afterwards and is, therefore, not
used to direct the search.
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Fig. 7. Image shows layout solutions for 30/30/30 voxelization resolution as 2D repre-
sentation of levels 0.90 - 1.80 m relative space height.

Loos and Wright deal directly with the geometric aspects of both space and
objects, while FL employs voxelization after which all geometric aspects are mod-
eled through neighboring constraints. Furthermore, FL allows for a hierarchical
optimization procedure: Optimal occupancy is an overall objective directing the
search while the triangle objective is done by inspection and selection.



Loos and Wright as presented in Flemings paper [1], are rather sensitive
to scaling effects, while FlexFL30 indicates that the approach presented in this
paper is less sensitive with respect to scaling. Furthermore, since FL is able to
find if an assignment is possible or not, the FL-search is complete.

5 Conclusion

FunctionLayouter generates functional layouts exhaustively and enables the de-
signer to consider more alternatives than by means of conventional sketching
methods mainly because architectural space planning is highly combinatorial
and, therefore, difficult to conceive exhaustively by human search means.

Instead of one, FunctionLayouter generates all possible designs and allows for
critical choices by departing from a singular design principle, that represents a
potentially prejudiced position of the singular designer. FunctionLayouter gener-
ates not only all possible solutions but also offers solutions within the spectrum
of an optimal solutions-field.
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