
1/25

Compositional Propositional Proofs

Marijn J.H. Heule

Joint work with

Armin Biere

LPAR-20, November 25, 2015

2/25

Introduction and Motivation

Clausal Proofs

Composition Rules

Parallel Proof Checking

Tools and Evaluation

Conclusions

3/25

Motivation

Satisfiability solvers are used in amazing ways...
I Hardware verification: Centaur x86 verification
I Combinatorial problems:

I Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors.
I Documented bugs in SAT, SMT, and QBF solvers;

[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors;
I Problem partitioning can introduce errors as well;
I Compute proofs to validate the results of solvers.

4/25

From Resolution to Clausal DRAT Proofs

Easy to Emit

Compactness

Checked Efficiently

Expressiveness

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

5/25

All problems related to propositional proofs solved? No!
Many challenges still exist. For example,

Proofs are still too large for some applications [IWIL 2015]:
I Clausal proof logging has been mandatory during the SAT
2013 and 2014 competitions. Some proofs could not be
validated because they were larger than the 100 GB limit;

I Proofs for some hard-combinatorial problems are huge.

No reasonably fast mechanically-verified clausal proof checker.
I First steps realized, lots of work required. [Wetzler 2015]

No parallel proof checker nor proof logging of parallel solvers:
I Merging proofs from multiple solvers is not trivial;
I Naive parallel proof checking can result in slow validation;
I Our LPAR 2015 paper shows how to deal with both.

6/25

Clausal Proofs

7/25

Resolution Asymmetric Tautology (RAT) [IJCAR 2012]

Given a clause C = (l1 ∨ · · · ∨ lk) and a CNF formula F :
I C denotes the conjunction of its negated literals (l̄1) ∧ · · · ∧ (l̄k)

I F `1 ε denotes that unit propagation on F derives a conflict
I C is an asymmetric tautology w.r.t. F if and only if F ∧ C `1 ε

I C is a resolution asymmetric tautology on l ∈ C w.r.t. F iff for all
resolvents C � D with D ∈ F and l̄ ∈ D holds that F ∧ C � D `1 ε

Example
Consider the formula F = (a ∨ c) ∧ (b̄ ∨ c̄) ∧ (b ∨ d):

I The clause (a ∨ d) is an asymmetric tautology w.r.t. F
I The clause (b∨ c) is a resolution asymmetric tautology w.r.t. F on b

Theorem: Given a formula F and a clause C having RAT with
respect to F , then F and F ∪ {C} are equi-satisfiable.

8/25

Clausal Proof System using RAT addition and deletion

F

Learn: add a clause
* Clause C has RAT w.r.t. F

Forget: remove a clause
* Clause C has RAT w.r.t. F \{C}

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init

9/25

Composition Rules

10/25

Base Rules

Given a formula i (multi-set), a clause C and a modification

m ∈ {a, d}, a proof step is denoted as i
m(C)−−−−→ i+1.

ADD:
a(C)−−−−→ C

where C has RAT on l ∈ C w.r.t.

DEL:
C

d(C)−−−−→
(no side condition)

DEL has no side condition for refutations (unsatisfiability).
For satisfiability proofs, DEL has the ADD side condition.

Consider the proof

0
m1(C1)−−−−−→ 1

m2(C2)−−−−−→ 2 . . . n−1
mn(Cn)−−−−−→ n

= m1(C1)m2(C2) · · ·mn(Cn) gives a derivation from 0 to n.

11/25

Compositional Triples

We represent rules using compositional triples: (pre, , post).

Triples consists of a pre-CNF pre, a proof , and a post-CNF
post, denoting that proof is a derivation from pre to post.

Triple (pre, , post) is valid if and only if pre −−→ post.

Proposition: Given a valid composition triple (pre, , post),
if pre is satisfiable then post is satisfiable as well.

We focus on the contrapositive, e.g., if post contains the
empty clause then pre is unsatisfiable.

12/25

SEQ Rule

0 1

1

S 2

2

S

SEQ1 2

S: solve

No restrictions: both 1 and 2 may contain RAT clauses.

13/25

PAR Rule

0

0

0

1

2

1 2

2

1

PAR

0 1 2

F

S

S

J

F: fork S: solve J: join

Restricted: 1 and 2 can only have asymmetric tautologies.

14/25

Composition Rules
We propose two composition rules which combine two
compositional triples into one.

The first rule SEQ, short for “sequential”, combines two
compositional triples for which the post-CNF of one triple
equals the pre-CNF of the other triple.

0
1−−→ 1 1

2−−→ 2

0
1 2−−−−→ 2

The second rule PAR, short for “parallel”, combines two
compositional triples for which the two pre-CNFs are equal.

0
1−−→ 1 0

2−−→ 2

0
0 1 2−−−−−−→ 1 2

15/25

Parallel Proof Checking

16/25

Parallel Proof Checking using SEQ Rule

Given a refutation for formula 0, apply the following steps:
I partition into k subproofs 1, . . . , k (sequential).
Simply use Unix’ split.

I compute the post-formulas i by applying subproof i to
formula i−1 (sequential).

I check that all i
i+1−−−→ i+1 are valid derivations for

i ∈ {0..k − 1} with k = ε (parallel).

Costs of first two (sequential) steps are relatively small.

0
1−−→ 1 1

2−−→ 2 . . . k−1
k−−→ ε

0
1 2... k−−−−−−→ ε

17/25

Forward vs Backward Proof Checking (1)

original formula

backward checking

forward checking

ε

18/25

Forward vs Backward Proof Checking (2)

Forward Checking checks each addition step in a derivation.

Backward Checking initializes by marking the empty clause.
Afterwards the proof is checked is reverse order. Only marked
clauses are checked, which will mark clauses using conflict
analysis. Many addition steps may be skipped (up to 99%).

How to perform backward checking subproofs without ε?
I Initialize marking only clauses that added, but not deleted;
I Unmark clauses that are subsumed by a marked clause;
I Proceed as usual by checking the proof in reverse order.

Backward checking generalization: empty clause subsumes all.

For subproofs: many addition steps can be skipped, although
not as many as with refutations.

19/25

Parallel Proof Generation for Cube-and-Conquer

Cube-and-Conquer is a powerful parallel SAT-solving paradigm
which realizes linear speed-ups on many hard-combinatorial
problems — even when using thousands of cores. [HVC 2012]

Cube-and-Conquer consists of two phases: First, the input is
partitioned using a look-ahead solver. The resulting cubes are
afterwards solved with CDCL solvers.

How to construct proofs for a Cube-and-Conquer solver?

0
1−−→ 1 0

2−−→ 2 . . . 0
k−−→ k

0
0... 0 1 2... k−−−−−−−−−−−→ 1 2 . . . k 1 2 . . . k

c−−→ ε

0
0... 0 1 2... k c−−−−−−−−−−−−−→ ε

20/25

Tools and Evaluation

21/25

Tools

New proof checker Drabt: Armin Biere implemented a clausal
proof + derivation checker to validate results using two tools.

Proof checker DRAT-trim: Added support to validate
derivations backwards and to unmark using subsumption.

Cube solver march_cc: The original version only emitted
cubes that could not be solved using lookahead techniques.
Now all cubes appear in the partition.

Conquer solver iLingeling: Added DRUP proof logging
support. Each CDCL solver within iLingeling produces its
own proof. The post-CNFs are the set of negated solved cubes.

22/25

Evaluation: Parallel Proof Generation and Checking

Using Cube-and-Conquer to generate the proof; check in parallel

103

104

105

1 2 4 8 16

validation process time
validation wall clock time

solving process time
solving wall clock time

cores

23/25

Evaluation: Parallel Proof Checking

We evaluated our parallel proof checking method using several
“short" DRAT proofs for hard-combinatorial problems that
were solved by symmetry-breaking [CADE-25].

Experiments on TACC cluster having 16 cores per node.

instance size check split CNFs seq-chk par-chk seq+init
par+init

seq
par

EDP1161 2,180 3,331 2.91 85.70 3,288 455.93 6.20 7.21
Ramsey4 20.01 2.55 0.04 1.91 4.19 0.43 2.58 9.74
tph6 2.78 0.61 0.01 1.25 2.03 0.22 2.22 9.23
tph7 5.09 1.30 0.02 1.39 2.70 0.29 2.41 9.31
tph8 10.68 2.98 0.03 1.61 4.29 0.46 2.82 9.32
tph9 34.18 6.17 0.04 1.98 7.33 0.83 3.28 8.83
tph10 19.86 11.78 0.06 2.51 12.67 1.32 3.92 9.60
tph11 56.49 22.96 0.09 3.39 22.64 2.85 4.13 7.94
tph12 92.29 39.42 0.15 4.73 39.07 3.89 5.01 10.04

size in MB, times in seconds

24/25

Conclusions

25/25

Conclusions

Conclusions:
I We presented composition rules and tools to produce and
validate propositional proofs in parallel;

I We can produce proofs of Cube-and-Conquer solvers;
I Parallel proof validation based on the rules is efficient.

Future work:
I Apply and evaluate the method to a huge proof, 100+ TB;
I Develop a method to trim large proofs in parallel;
I Develop a method to produce proofs from Treengeling;
I Implement a mechanically-verified clausal proof checker.

Thanks! Questions?

25/25

Conclusions

Conclusions:
I We presented composition rules and tools to produce and
validate propositional proofs in parallel;

I We can produce proofs of Cube-and-Conquer solvers;
I Parallel proof validation based on the rules is efficient.

Future work:
I Apply and evaluate the method to a huge proof, 100+ TB;
I Develop a method to trim large proofs in parallel;
I Develop a method to produce proofs from Treengeling;
I Implement a mechanically-verified clausal proof checker.

Thanks! Questions?

	Introduction and Motivation
	Clausal Proofs
	Composition Rules
	Parallel Proof Checking
	Tools and Evaluation
	Conclusions

