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Satisfiability (SAT) solving has many applications

formal verification

planning

graph theory

combinatorics

bioinformatics

cryptography

train safety

rewrite termination

encode decodeSAT solver

Main challenges to solve hard problems and trust the results:

I Can we achieve linear speedups on multi-core systems?

I Can we produce proofs to gain confidence in the results?
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Pythagorean Triples Problem
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Schur’s Theorem [Schur 1917] (1)

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c?
Otherwise, what is the smallest finite counter-example?

Consider the case k = 2 with the colors named red and blue:

1 → 1 2 → 1 2 4 → 1 2 3 4 → ×

init 1+1=2 2+2=4 1+3=4
1+4=5
2+3=5

Let S2
n denote the inference rules for k = 2 with a, b, c ≤ n.

S2
5 : 1+1=2 1+2=3 1+3=4 1+4=5 2+2=4 2+3=5

The above shows: S2
5 + 1 ×. Now we can make a proof:

S2
5 + 1 × S2

5 + 1 ×
S2
5  ×
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Schur’s Theorem [Schur 1917] (2)

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c?
Otherwise, what is the smallest finite counter-example?

Consider the case k = 2 with the colors named red and blue:

1 → 1 2 → 1 2 4 → 1 2 3 4 → ×

init 1+1=2 2+2=4 1+3=4
1+4=5
2+3=5

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number, such that there exists a k-coloring of [1, S(k)]
without a monochromatic solution of a + b = c with
a, b, c ≤ S(k), while this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965],
160 ≤ S(5) ≤ 315 [Exoo 1994, Fredricksen 1979].
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Pythagorean Triples Problem [Graham]

Can the set of natural numbers N = {1, 2, 3, . . . } be colored
with red and blue such that there is no monochromatic
Pythagorean triple (a, b, c ∈ N with a2 + b2 = c2)?
Otherwise, what is the smallest finite counter-example?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean triple [Cooper & Overstreet 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean triple (a, b, c) two
clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving + proof logging)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].
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A Small SAT Problem: Pythagorean Triples up to n = 55

(x3 ∨ x4 ∨ x5) ∧ (x̄3 ∨ x̄4 ∨ x̄5) ∧ (x5 ∨ x12∨x13) ∧ (x̄5 ∨ x̄12∨x̄13) ∧
(x7 ∨ x24∨x25) ∧ (x̄7 ∨ x̄24∨x̄25) ∧ (x9 ∨ x40∨x41) ∧ (x̄9 ∨ x̄40∨x̄41) ∧
(x6 ∨ x8 ∨ x10) ∧ (x̄6 ∨ x̄8 ∨ x̄10) ∧ (x8 ∨ x15∨x17) ∧ (x̄8 ∨ x̄15∨x̄17) ∧
(x10∨x24∨x26) ∧ (x̄10∨x̄24∨x̄26) ∧ (x12∨x35∨x37) ∧ (x̄12∨x̄35∨x̄37) ∧
(x14∨x48∨x50) ∧ (x̄14∨x̄48∨x̄50) ∧ (x9 ∨ x12∨x15) ∧ (x̄9 ∨ x̄12∨x̄15) ∧
(x15∨x36∨x39) ∧ (x̄15∨x̄36∨x̄39) ∧ (x12∨x16∨x20) ∧ (x̄12∨x̄16∨x̄20) ∧
(x16∨x30∨x34) ∧ (x̄16∨x̄30∨x̄34) ∧ (x20∨x48∨x52) ∧ (x̄20∨x̄48∨x̄52) ∧
(x15∨x20∨x25) ∧ (x̄15∨x̄20∨x̄25) ∧ (x18∨x24∨x30) ∧ (x̄18∨x̄24∨x̄30) ∧
(x24∨x45∨x51) ∧ (x̄24∨x̄45∨x̄51) ∧ (x21∨x28∨x35) ∧ (x̄21∨x̄28∨x̄35) ∧
(x20∨x21∨x29) ∧ (x̄20∨x̄21∨x̄29) ∧ (x24∨x32∨x40) ∧ (x̄24∨x̄32∨x̄40) ∧
(x28∨x45∨x53) ∧ (x̄28∨x̄45∨x̄53) ∧ (x27∨x36∨x45) ∧ (x̄27∨x̄36∨x̄45) ∧
(x30∨x40∨x50) ∧ (x̄30∨x̄40∨x̄50) ∧ (x33∨x44∨x55) ∧ (x̄33∨x̄44∨x̄55)

Does there exist an assignment satisfying all clauses of F55?
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Search for a satisfying assignment (or proof none exists)

(x3 ∨ x4 ∨ x5) ∧ (x̄3 ∨ x̄4 ∨ x̄5) ∧ (x5 ∨ x12∨x13) ∧ (x̄5 ∨ x̄12∨x̄13) ∧
(x7 ∨ x24∨x25) ∧ (x̄7 ∨ x̄24∨x̄25) ∧ (x9 ∨ x40∨x41) ∧ (x̄9 ∨ x̄40∨x̄41) ∧
(x6 ∨ x8 ∨ x10) ∧ (x̄6 ∨ x̄8 ∨ x̄10) ∧ (x8 ∨ x15∨x17) ∧ (x̄8 ∨ x̄15∨x̄17) ∧
(x10∨x24∨x26) ∧ (x̄10∨x̄24∨x̄26) ∧ (x12∨x35∨x37) ∧ (x̄12∨x̄35∨x̄37) ∧
(x14∨x48∨x50) ∧ (x̄14∨x̄48∨x̄50) ∧ (x9 ∨ x12∨x15) ∧ (x̄9 ∨ x̄12∨x̄15) ∧
(x15∨x36∨x39) ∧ (x̄15∨x̄36∨x̄39) ∧ (x12∨x16∨x20) ∧ (x̄12∨x̄16∨x̄20) ∧
(x16∨x30∨x34) ∧ (x̄16∨x̄30∨x̄34) ∧ (x20∨x48∨x52) ∧ (x̄20∨x̄48∨x̄52) ∧
(x15∨x20∨x25) ∧ (x̄15∨x̄20∨x̄25) ∧ (x18∨x24∨x30) ∧ (x̄18∨x̄24∨x̄30) ∧
(x24∨x45∨x51) ∧ (x̄24∨x̄45∨x̄51) ∧ (x21∨x28∨x35) ∧ (x̄21∨x̄28∨x̄35) ∧
(x20∨x21∨x29) ∧ (x̄20∨x̄21∨x̄29) ∧ (x24∨x32∨x40) ∧ (x̄24∨x̄32∨x̄40) ∧
(x28∨x45∨x53) ∧ (x̄28∨x̄45∨x̄53) ∧ (x27∨x36∨x45) ∧ (x̄27∨x̄36∨x̄45) ∧
(x30∨x40∨x50) ∧ (x̄30∨x̄40∨x̄50) ∧ (x33∨x44∨x55) ∧ (x̄33∨x̄44∨x̄55)

Solving F55 is easy. How to solve hard problems: F7824 or F7825?
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An Extreme Solution (a valid partition of [1, 7824]) I
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Main Contribution

We present a framework that combines, for the first time, all
pieces to produce verifiable SAT results for very hard problems.

The status quo of using combinatorial solvers and years of
computation is arguably intolerable for mathematicians:

I Kouril and Paul [2008] computed the sixth van der
Waerden number (W (2, 6) = 1132) using dedicated
hardware without producing a proof.

I McKay’s and Radziszowski’s big result [1995] in Ramsey
Theory (R(4, 5) = 25) still cannot be reproduced.

We demonstrate our framework on the Pythagorean triples
problem, potentially the hardest problem solved with SAT yet.
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Linear Speedups
using Cube-and-Conquer
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Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

There exists two main SAT solving paradigms:

I Conflict-driven clause-learning (CDCL) aims to find a
short refutation using (cheap) local heuristics.

I Look-ahead aims to construct a small binary search-tree
using (expensive) global heuristics.

The combination: Create a tautological DNF using look-ahead
techniques and solve the problem using CDCL each time under
the assumption that a given cube is true.

Example (Partitioning using a tautological DNF)

Given a formula F and a DNF D = (a ∧ b) ∨ (a ∧ b̄) ∨ (ā).
Instead of solving CDCL (F ), we solve CDCL (F ∧ (a ∧ b)),
CDCL (F ∧ (a ∧ b̄)), and CDCL (F ∧ (ā)).

The approaches are equivalent if and only if D is a tautology.
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Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

There exists two main SAT solving paradigms:

I Conflict-driven clause-learning (CDCL) aims to find a
short refutation using (cheap) local heuristics.

I Look-ahead aims to construct a small binary search-tree
using (expensive) global heuristics.

Combining look-ahead and CDCL, called cube-and-conquer,
does not work out of the box. Crucial details are:

I Partition a given formula into many (millions) of
subproblems. When just a few subproblems are created,
say only 32, the performance could actually decrease.

I Use heuristics to create equally hard subproblems, i.e., not
simply using the depth of the search-tree.

Cube-and-conquer solves many hard-combinatorial problems
significantly faster than both pure CDCL and pure look-ahead.
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Results Summary

I After splitting —into a million
subproblems— there were no
hard subproblems: each could
be solved within 1000 seconds;

I We used 800 cores on the
TACC Stampede cluster;

I The total computation was
about 4 CPU years, but less
than 2 days in wallclock time;

I If we could use all 110 000
cores, then the problem could
be solved in less than an hour;

I Almost linear speed-ups even
when using 1000’s of cores.
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Producing & Verifying a Proof
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Overview of Solving Framework

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs
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Phase 1: Encode

Input: encoder program

Output: the “original” CNF formula

Goal: make the translation to
SAT as simple as possible

1: encode

encoder

original
formulafor (int a = 1; a <= n; a++)

for (int b = a; b <= n; b++) {

int c = sqrt (a*a + b*b);

if ((c <= n) && ((a*a + b*b) == (c*c))) {

addClause ( a, b, c);

addClause (-a, -b, -c); } }

F7824 has 6492 (occurring) variables and 18930 clauses, and
F7825 has 6494 (occurring) variables and 18944 clauses.

Notice F7825 = F7824 + 14 clauses. These 14 make it UNSAT.
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Phase 2: Transform

Input: original CNF formula

Output: transformed formula
and transformation proof

Goal: optimize the formula for
the later (solving) phases

2: transform

original
formula

transformed
formula

transform
proof

We applied two transformations (via blocked clauses):

I Pythagorean Triple Elimination removes Pythagorean
Triples that contain an element that does not occur in any
other Pythagorean Triple, e.g. 32 + 42 = 52 (till fixpoint).

I Symmetry breaking colors the number most frequently
occurring in Pythagorean triples (2520) red.

All transformation (pre-processing) techniques can be
expressed using RAT steps [Järvisalo, Heule, and Biere 2012].
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Phase 3: Split

Input: transformed formula

Output: cubes and tautology proof

Goal: partition the given formula to
minimize total wallclock time

Two layers of splitting F7824:

I The top level split partitions
the transformed formula into
exactly a million subproblems;

I Each subproblem is
partitioned into tens of
thousands of subsubproblems.
Total time: 25,000 CPU hours

x5

x2x3

x7 x3

x6

ft

f t

ft

t f

t f

f t

D = (x5 ∧ x̄3) ∨
(x5 ∧ x3 ∧ x7) ∨
(x5 ∧ x3 ∧ x̄7) ∨
(x̄5 ∧ x2) ∨
(x̄5 ∧ x̄2 ∧ x3 ∧ x̄6) ∨
(x̄5 ∧ x̄2 ∧ x3 ∧ x6) ∨
(x̄5 ∧ x̄2 ∧ x̄3)
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Phase 4: Solve

Input: transformed formula and cubes

Output: cube proofs (or a solution)

Goal: solve —with proof logging—
all cubes as fast as possible

4: solve

cubes

transformed
formula

cube proofs
Let ϕi be the i th cube with i ∈ [1, 1 000 000].

We first solved all F7824 ∧ ϕi , total runtime was 13, 000 CPU
hours (less than a day on the cluster). One cube is satisfiable.

The backbone of a formula is the set of literals that are
assigned to true in all solutions. The backbone of F7824 after
symmetry breaking (2520) consists of 2304 literals, including

I x5180 and x5865, while 51802 + 58652 = 78252 → 7825

I x̄625 and x̄7800, while 6252 + 78002 = 78252 → 7825
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Phase 5: Validate Pythagorean Triples Proofs.

5: validate

original
formula

transform
proof

tautology
proof

cube
proofs

We check the proofs with the DRAT-trim checker, which has
been used to validate the UNSAT results of the international
SAT Competitions since 2013.

Recently it was shown how to validate DRAT proofs in
parallel [Heule and Biere 2015].

The size of the merged proof is almost 200 terabyte and has
been validated in 16,000 CPU hours.
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Overview of Solving Framework: Contributions

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

[HVC 2011]

[LPAR 2010]

[JAR 2012]

[JAIR 2015]

[CADE 2012]

[JSAT 2011]

[APPA 2014]

[HVC 2012]

[ITP 2013]

[FMCAD 2013][SAT 2014]
[STVR 2014]

[LPAR 2015]

[ICGI 2010]

Joint work with: Armin Biere, Warren Hunt, Matti Järvisalo, Oliver
Kullmann, Florian Lonsing, Victor Marek, Martina Seidl, Antonio Ramos,
Peter van der Tak, Sicco Verwer, Nathan Wetzler and Siert Wieringa.
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Media, Meaning, and Truth
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Media: The Largest Math Proof Ever
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Mathematics versus Computer Science

A typical argument, as articulated in the Nature 543, pp 17–18:

If mathematicians’ work is understood to be a quest
to increase human understanding of mathematics,
rather than to accumulate an ever-larger collection of
facts, a solution that rests on theory seems superior to
a computer ticking off possibilities.

Widespread missing understanding of computer science:

I Computers do not simply “tick off
possibilities”;

I The “possibilities” are non-trivial, and
simple algorithms might take forever;

I The complexity issues touched here might
be far more interesting/relevant than the
concrete result in Ramsey theory.
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Perhaps meaningless is the true meaning?

Facts may be meaningless, but...

I The “computer ticking off possibilities” is actually quite a
sophisticated thing here, and is absolutely crucial for the
analysis for example of the correctness of microprocessors.

I For some not yet understood reasons it seems that these
benchmarks from the field of Ramsey theory are relevant
for the perhaps most fundamental question in computer
science: what makes a problem hard (P vs NP)?

Perhaps it is precisely that the fact 7825 has
no meaning, which makes these computational
problems meaningful – the bugs in the designs
of complicated artificial systems also have no
meaning!
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Alien Truths

Let’s call alien a true statement (best rather
short) with only a very long proof.

I Already the question, whether we can show
something (like our case) to be alien, is of
highest relevance. There may be a short
proof for the Pythagorean Triples problem,
but probably not for exact bound of 7825.

I But independently, such “alien truths” or “alien
questions” arise in formal contexts, where large
propositional formulas come out from engineering systems,
which in its complexity, especially what concerns “small”
bugs, is perhaps beyond “understanding”.
Mathematicians dislike “nitty-gritty details”, but prefer
“the big picture” (handwaving).
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Human and Alien Truth Hierarchy

Human Classical math proofs, e.g. Schur’s Theorem.

Weakly Human Proofs with a large human component and
some computer effort, e.g. Four Color Theorem.

Weakly Alien A giant humanly generated case-split, e.g.
minimum number of givens is 17 in Sudoku.

Alien A giant case-split that mysteriously avoids an
enormous exponential effort, e.g. the sixth van
der Waerden number, vdW(6,6), is 1132.

Strongly Alien An alien truth regarding a high-level statement,
e.g. any two-coloring of the natural numbers
yields a monochromatic Pythagorean triple.

The traditional interest is to search for a short proof. But
perhaps the question, why there isn’t one, or what makes the
problem hard, is the real question here?
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Conclusions and Future Work
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Conclusions

Theorem (Main result)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

We solved and verified the theorem via SAT solving:

I Cube-and-conquer facilitated massive parallel solving.

I A new heuristic was developed to substantially reduce the
search space. Moreover the heuristic facilitated almost
linear speed-ups while using 800 cores.

I The proof is huge (200 terabyte), but can be compressed
to 68 gigabyte (13,000 CPU hours to decompress) and be
validated in 16,000 CPU hours.
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Future Directions

Apply our solving framework to other challenges in Ramsey
Theory and elsewhere:

I Existing results for which no proof was produced, for
example W(2,6) = 1132 [Kouril and Paul 2008].

I Century-old open problems appear solvable now, such as
Schur number 5.

Look-ahead heuristics are crucial and we had to develop
dedicated heuristics to solve the Pythagorean triples problem.

I Develop powerful heuristics that work out of the box.

I Alternatively, add heuristic-tuning techniques to the tool
chain [Hoos 2012].

Develop a mechanically-verified, fast clausal proof checker.
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